
JFP 20 (3 & 4): 213–270, 2010. c© Cambridge University Press 2010

doi:10.1017/S0956796810000158

213

Formal polytypic programs and proofs

WENDY VERBRUGGEN∗, EDSKO DE VRIES†
and ARTHUR HUGHES

School of Computer Science and Statistics Trinity College Dublin, College Green, Ireland

(e-mail: wendyverbruggen@gmail.com, {Edsko.de.Vries,Arthur.Hughes}@scss.tcd.ie)

Abstract

The aim of our work is to be able to do fully formal, machine-verified proofs over

Generic Haskell-style polytypic programs. In order to achieve this goal, we embed polytypic

programming in the proof assistant Coq and provide an infrastructure for polytypic proofs.

Polytypic functions are reified within Coq as a datatype and they can then be specialized

by applying a dependently typed term specialization function. Polytypic functions are thus

first-class citizens and can be passed as arguments or returned as results. Likewise, we reify

polytypic proofs as a datatype and provide a lemma that a polytypic proof can be specialized

to any datatype in the universe. The correspondence between polytypic functions and their

polytypic proofs is very clear: programmers need to give proofs for, and only for, the same

cases that they need to give instances for when they define the polytypic function itself.

Finally, we discuss how to write (co)recursive functions and do (co)recursive proofs in a

similar way that recursion is handled in Generic Haskell.

1 Introduction

In the never-ending quest for higher levels of abstraction in programming language

research, generic programming has been a popular research topic in the functional

programming community for a while (Jansson & Jeuring 1997; Hinze & Peyton Jones

2001; Lämmel & Visser 2002; Lämmel & Peyton Jones 2003; Hinze 2006; Hinze &

Löh 2006; Hinze & Löh 2009; Rodriguez et al.2009). Unfortunately, a consensus on

the best approach has yet to be reached, and the number of approaches to generic

programming almost equals the number of papers written on the topic. The subject

area can be bewildering; some survey papers by Hinze et al. (2006) and Rodriguez

et al. (2008) try to disentangle some of the various strands of research.

One particular strand that we are interested in is polytypic programming as

advocated by Hinze in his seminal habilitationsschrift (2000), which has been

incorporated in at least two language designs: Generic Haskell (Löh 2004) and

Generic Clean (Alimarine 2005). The polytypic programming style of Generic

Haskell is characterized by the use of kind-indexed types. The key idea is that

if f is a polytypic function of type F , we can specialize f to an ordinary function

∗ Supported by the Irish Research Council for Science, Engineering and Technology.
† This research was supported by SFI project SFI 06 IN.1 1898.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

214 W. Verbruggen et al.

f〈T 〉 over a datatype T . The type of f〈T 〉 is the specialization F〈T 〉 to the kind of

T . Term specialization (f〈T 〉) is defined by induction on the structure of T ; type

specialization (F〈T 〉) is defined by induction on the kind of T .

We extend this paradigm to proofs over polytypic functions. Like polytypic

types, polytypic properties are kind-indexed and like polytypic functions, polytypic

proofs are type-indexed. The aim of this paper is to provide an infrastructure

within the proof assistant Coq that makes it possible to do formal (in the sense of

“machine verified”) proofs over Generic Haskell-style polytypic functions. We make

the following contributions:

1. We provide an infrastructure for defining polytypic functions and their types

which is very similar to the infrastructure provided by Generic Haskell or

Generic Clean.

2. In Generic Haskell, individual instances of specialization are type checked by

the Haskell compiler but the polytypic function itself is not type checked. In

contrast, we only allow the user to define type correct polytypic functions and

we formally prove that the result of term specialization (specTerm T f) must

have the type computed by type specialization (specType T F).
3. We give a definition of a polytypic property and show how it can be specialized.

It is not always easy to formulate polytypic properties, and the fact that we

may now ask the proof assistant to specialize polytypic properties to specific

datatypes can be helpful when trying out ideas.

4. We provide an infrastructure for polytypic proofs similar to the infrastructure

for polytypic functions, so that formal proofs over polytypic functions can be

done with little effort.

5. We give a number of example polytypic properties and give corresponding

polytypic proofs.

6. The infrastructure for polytypic proofs can be seen as a formal proof that

• property specialization yields well-formed properties, and that

• proof specialization is correct with respect to property specialization.

7. As we will see, when the user gives a polytypic function or a polytypic proof,

he only needs to provide instances of the function or of the proof for the

type constants in the universe. Our development is a formal proof that such a

function definition can indeed be specialized to any type in the universe, and

that such a proof indeed suffices to prove the property for any type in the

universe.

8. We discuss how to define corecursive functions and do coinductive proofs over

polytypic functions. Unfortunately, recursion requires some manual work on

behalf of the programmer or the prover, and the approach is limited because

of restrictions posed by the Coq guardedness checker. Nevertheless, our proof

of concept demonstrates that the Generic Haskell approach is feasible in a

formal setting. Making the approach more generic, or lifting the restrictions

of the guardedness checker, is discussed in future work.

Figure 1 gives a bird’s eye view of the paper. The Coq sources associated with

the formalization described in this paper can be found online (Verbruggen 2009).

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 215

Since this is a long paper, most sections will start with a “roadmap” which will explain what has

been achieved so far, what the subject is of the new section, and how the section relates to what is yet

to come. We hope that this will aid readability and avoid the reader getting lost. Here we will give a

bird’s eye view of the paper and introduce our running example, polytypic map.

Section 2 is an introduction to Coq. We assume the reader is familiar with Generic Haskell but may

not be comfortable with Coq. The aim of this section is to introduce the most important concepts.

Sections 3 and 4 explain how we define polytypic functions in a style that should be familiar from

Generic Haskell. Section 4.1 will introduce polytypic types and give the type of polytypic map:

Definition Map : PolyType 2 := polyType 2 (fun A B ⇒ A → B).

Section 4.2 introduces polytypic functions and defines polytypic map:

Definition map : PolyFn Map :=

polyFn Map

(fun (u : unit) ⇒ u)

(fun (z : Z) ⇒ z)

(fun (A B : Set) (f : A → B) (C D : Set) (g : C → D) (x : A × C) ⇒
let (a, c) := x in (f a, g c))

(fun (A B : Set) (f : A → B) (C D : Set) (g : C → D) (x : A + C) ⇒
match x with

| inl a ⇒ inl _ (f a)

| inr c ⇒ inr _ (g c)

end).
Sections 5 and 6 describe how polytypic types and terms are specialized to specific datatypes.

Section 7 turns to proofs of polytypic properties. We will show how to state the functor laws for

map polytypically; for example, preservation of composition is given in Section 7.2 as

Definition Comp : PolyProp 3 3 Map :=

polyProp 3 3 Map ((2, 3), (1, 2), (1, 3))

(fun (T1, T2, T3) (f1, f2, f3) ⇒ ∀ x : T1, f1 (f2 x) = f3 x).

Section 7.3 explains how to do polytypic proofs and gives the notably concise proof that map

satisfies Comp:

Lemma map_Comp : PolyProof map Comp.

Proof.

apply (polyProof map Comp); compute; auto; intros.

destruct x; rewrite H; rewrite H0; auto.

destruct x; [rewrite H | rewrite H0]; auto.

Defined.
Sections 8 and 9 are the counterparts of Section 5 and Section 6 and explain property and proof

specialization. As an example, the specialization of the polytypic property Comp of preservation of

composition to the datatype fork (ΛA �A×A) of kind �→ � gives:

∀(A B C : Set) (f : B → C) (g : A → B) (h : A → C),

(∀x : A, f (g x) = h x) → ∀(x,y) : A × A, (f (g x),f (g y)) = (h x,h y)
Section 10 discusses how to deal with recursive definitions. Since Haskell datatypes capture both

finite and infinite data structures, we will focus on corecursion.

Sections 11 and 12 finally discuss related and future work, and we will conclude in Section 13.

Fig. 1. Bird’s eye view of the paper.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

216 W. Verbruggen et al.

2 Coq

Before we delve into our formalization of polytypic programming, we will give a

brief overview of Coq. We discuss induction and recursion in Section 2.1, implicit

arguments in Section 2.2, coinduction and corecursion in Section 2.3, and dependent

types and their use in proofs in Sections 2.4 and 2.5. Finally, we discuss universes

in Section 2.6 and the treatment of equality in Section 2.7. Readers familiar with

Coq can skip this section, although they may wish to glance over our definition of

heterogeneous tuples in Section 2.6 and our definition of convert in Section 2.7 as

we will be using those in the rest of the development.

Coq is a proof assistant developed in INRIA based on the calculus of con-

structions, i.e. higher-order predicate logic, extended with inductive and coinductive

datatypes and an infinite hierarchy of universes. We can give but a brief overview

of Coq here. For more information, we refer the reader to the excellent textbook on

Coq (Bertot & Castéran 2004).

2.1 Induction and recursion

Inductive datatypes are introduced in much the same way that algebraic datatypes

are introduced in Haskell, using a syntax reminiscent of GADTs (Schrijvers et al.

2009). We will illustrate this with some examples. The simplest type we can define is

the empty type:

Inductive Empty_set : Set :=.

“Set” denotes the type of the type itself and corresponds to kind � in Haskell. Only

slightly more interesting is the unit type, which is denoted by () in Haskell, which

is called unit in Coq; its sole inhabitant is called tt. The type is defined as

Inductive unit : Set :=

| tt : unit.

The type of pairs, (,) in Haskell, is parameterized by types A, B and can be defined

in Coq as

Inductive prod (A : Set) (B : Set) : Set :=

| pair : A → B → prod A B.

Similarly, we can construct the sum of two types, denoted by Either in Haskell, as

Inductive sum (A : Set) (B : Set) : Set :=

| inl : A → sum A B

| inr : B → sum A B.

We will also make use of Coq’s option type, which corresponds to Maybe in Haskell:

Inductive option (A : Set) : Set :=

| Some : A → option A

| None : option A.

Inductive datatypes also give us recursion at the type level. For example, we can

construct the type of natural numbers as follows:

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 217

Inductive nat : Set :=

| O : nat

| S : nat → nat.

This is the Peano encoding of the natural numbers. Finally, we can define the type

of lists of elements of a type A as

Inductive list (A : Set) : Set :=

| nil : list A

| cons : A → list A → list A.

Functions over these inductive datatypes are defined much in the same way as their

Haskell counterparts. For example, here is the standard map function over lists:

Fixpoint map (A B : Set) (f : A → B) (xs : list A) : list B :=

match xs with

| nil ⇒ nil B

| cons x xs’ ⇒ cons B (f x) (map A B f xs’)

end.

The match construct corresponds to case analysis in Haskell. Unlike in Haskell,

however, all recursive functions must be total, i.e. terminate, in Coq and this is

enforced by a syntactic restriction: at least one of the arguments to the recursive

call must be getting structurally smaller. In the case of map the list argument xs

decreases in length in each recursive call.

Another thing to note about this definition is the explicit use of the type arguments

A and B for nil and cons on the right-hand side, whereas they are absent on the

left-hand side. Generally, all uniform parameters – parameters that do not differ

from a term to its subterms – are not mentioned when pattern matching on a term,

but must be given when constructing a term. See Section 6.5.2, Variably dependent

inductive types, of Coq’Art for details in Bertot & Castéran (2004).

Coq introduces some syntactic sugar for the types defined above: ordinary

numbers can be used to give instances of nat, A × B corresponds to prod A

B, (x, y) corresponds to pair x y and A + B corresponds to sum A B. Unlike

Haskell, Coq uses a different syntax for values and their types: (x, y) is a pair,

whereas A × B is the type of a pair. This is important because (A, B) in Coq is a

pair containing two types, and has type Set × Set.

2.2 Implicit arguments

Type arguments are explicit arguments in Coq, which is why we pass B as an

argument to nil and cons and both A and B as arguments to the recursive call to

map. However, in many cases Coq can actually infer arguments automatically. We

can therefore also write map as

Fixpoint map (A B : Set) (f : A → B) (xs : list A) : list B :=

match xs with

| nil ⇒ nil _

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

218 W. Verbruggen et al.

| cons x xs’ ⇒ cons _ (f x) (map _ _ f xs’)

end.

The underscores indicate arguments that we are asking Coq to infer for us. Moreover,

we can declare some arguments to be implicit by default. For example, we can declare

the type arguments of nil and cons to be implicit:

Implicit Arguments nil [A].

Implicit Arguments cons [A].

We can even ask Coq to automatically make as many arguments implicit as possible:

Set Implicit Arguments.

With these declarations in place, we can write map more concisely as

Fixpoint map (A B : Set) (f : A → B) (xs : list A) : list B :=

match xs with

| nil ⇒ nil

| cons x xs’ ⇒ cons (f x) (map f xs’)

end.

2.3 Coinduction and corecursion

Unlike Haskell’s datatypes, inductive datatypes in Coq only have finite inhabitants:

the list datatype above only describes finite lists (Bertot & Castéran 2004). Types

inhabited by infinite terms are described by coinductive datatypes. For instance, here

is a definition of streams, describing infinite lists:

CoInductive stream (A : Set) : Set :=

| scons : A → stream A → stream A.

Corecursive functions over coinductive datatypes are defined in much the same way

as recursive functions, but unlike recursive functions they do not need to terminate.

However, they must be productive. Intuitively, they must always generate the next

part of the output in finite time. This is enforced syntactically by requiring that

every recursive call must be an argument to a constructor of the datatype. We will

give a more precise definition of corecursion in Section 10. An easy example of a

guarded corecursive function is map for streams:

CoFixpoint smap (A B : Set) (f : A → B) (xs : stream A)

: stream B :=

match xs with

| scons x xs’ ⇒ scons (f x) (smap f xs’)

end.

The standard example of a function which is not productive is filter, which returns

the elements of a list that satisfy a predicate. We might attempt to define it like

CoFixpoint sfilter (A : Set) (p : A → bool) (xs : stream A)

: stream A :=

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 219

match xs with

| scons x xs’ ⇒ if p x then scons x (sfilter p xs’)

else sfilter p xs’ (* Not guarded! *)

end.

This definition is rejected because the second call to sfilter is not guarded. It

is not difficult to see that filter is not productive: it may be that none of the

elements in the stream satisfy the predicate so that sfilter never produces any

part of the result. Indeed, we can only define a filter on streams if we are given a

proof that there is always a next element of the stream that satisfies the predicate

(Bertot & Komendantskaya 2008).

2.4 Dependent types

The real power of Coq and the major difference with Haskell comes from the

fact that Coq features dependent types: types are first-class and can be passed as

arguments to functions or computed as results.

For example, suppose that we want to describe a type of homogeneous tuples of

length n with values of type A (sometimes called vectors). We might describe this

type as (A, . . . , A) in Haskell but we have no way to define it. But we can easily

construct this type in Coq:

Fixpoint tupleS (A : Set) (n : nat) : Set :=

match n with

| O ⇒ unit

| S m ⇒ A × tupleS A m

end.

For the zero-tuple we return the unit type, and for the tuple of length at m + 1 we

return the type of pairs of an element of type A and a tuple of length m. Here is an

example of a tuple of length 3 containing natural numbers:

Definition exampleNatTuple : tupleS nat 3 := (8, (3, (42, tt))).

To define a function that returns the ith element from an n-tuple, we must first

define a datatype that describes the set of valid indices into the tuple:

Fixpoint index (n : nat) : Set :=

match n with

| O ⇒ Empty_set

| S m ⇒ option (index m)

end.

For example, we have that

the expression evaluates to the type which comprises

index 0 Empty set {}
index 1 option Empty set {None}
index 2 option (option Empty set) {None, Some None}

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

220 W. Verbruggen et al.

In words, there are no valid indices into an empty tuple, there is only a single index

into a singleton tuple, etc. Using this index type, we can write the function that gets

the ith element from a tuple as

Fixpoint getS (A : Set) (n : nat) : index n → tupleS A n → A :=

match n return index n → tupleS A n → A with

| O ⇒ fun i _ ⇒ match i with end

| S n’ ⇒ fun i tup ⇒
match i with

| None ⇒ fst tup

| Some i’ ⇒ getS A n’ i’ (snd tup)

end

end.

Implicit Arguments getS [A n]

The “match n return τ with” defines a pattern match where the type of each

branch τ may depend on n, similar to GADTs in Haskell. This is necessary in getS.

For example, when the pattern match finds that we are dealing with the empty tuple

(n = 0), we need to know that the type of i is index 0. The pattern match on i

will then have no branches because the empty set has no constructors, and we are

done immediately. For the case where the tuple has length at least one, we check the

index to see if we need to return the first element of the tuple or whether we need

to recurse.

Throughout this paper we will often replace the syntax of indices by their

corresponding natural numbers for readability, writing “0” for None, “1” for Some

None, “2” for Some (Some None), etc.

2.5 Proofs

From a logical perspective, Coq’s language corresponds to constructive higher-order

predicate logic where every program in Coq is a proof of its type. This fascinating

result is known as the Curry–Howard isomorphism. A detailed discussion of this

topic would take us too far afield; we instead refer the reader to the excellent

textbook by Sørensen & Urzyczyn (2006). Here we illustrate the general idea by

giving a few examples.

Coq introduces a universe Prop for propositions, at the same level as Set. Prop is

used to separate computational content from proofs, which is necessary to support

extraction of Coq code to languages such as Haskell. If A : Prop is a proposition

then to prove A it suffices to give a term a : A. Totality is essential here: “non-

terminating” proofs are not really proofs at all.

The basic datatypes we have seen in Set have counterparts in Prop:

• The empty datatype corresponds to the proposition False, which has no

proofs.

• The unit datatype corresponds to the proposition True, which is trivially

proved.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 221

• The pair datatype corresponds to the logical conjunction of two propositions;

its elements are pairs of proofs of both propositions.

• The sum datatype corresponds to the logical disjunction of two propositions;

its elements are proofs of one of the two propositions.

As a more interesting example, consider the inductive type that corresponds to

the proposition that a natural number n is even:

Inductive even : nat → Prop :=

| even_0 : even 0

| even_SS : ∀ (n : nat), even n → even (S (S n)).

This is a dependent datatype, as it depends on a value, a natural number. Here is a

proof that 4 is even:

Lemma even_4 : even 4 := even_SS (even_SS even_0).

Lemma is just syntactic sugar for Definition to make intent clearer; there is no

distinction as far as Coq is concerned. As another simple example, consider a proof

of modus ponens:

Lemma MP : ∀ (A B : Prop), A → (A → B) → B.

Proof

(fun (A B : Prop) (a : A) (f : A → B) ⇒ f a).

Given two propositions A and B, a proof a of A and a proof f that A implies B, MP

constructs a proof of proposition B simply by applying f to a.

For more complicated proofs, we may choose to make use of tactics. Tactics are

small programs that search for proofs in a particular domain. The use of tactics

enables proof automation, where Coq handles most of the more mundane parts of

our proofs automatically. This is a huge help in any realistic proof. One of the

simplest tactics is auto, which attempts to solve the proof by repeated application

of the currently available hypotheses. Other tactics include tactics for induction (i.e.

recursion), inversion, arithmetic, etc. Moreover, Coq supports a language called Ltac

for writing custom tactics. Since tactics return a proof if one can be found, this

proof can be verified so that “rogue” tactic cannot compromise the soundness of the

system. A deeper understanding of tactics will not be required to read this paper,

so we refer the reader to Coq’Art (Bertot & Castéran 2004) for more information.

However, the support for tactics and proof automation is an important reason for

choosing Coq for our work since we feel that they will ease the burden on users of

our system.

2.6 Universes

We have seen that “5” has type nat in Coq, that nat has type Set, and that Set

corresponds to kind � in Haskell. This hierarchy continues ad infinitum: Set has

type Type0, Type0 has type Type1, and generally Typei has type Typei+1. Moreover,

there is a coercion rule that if T : Set then T : Type0 and if T : Typei then T : Typej
for any j � i. This stratification of Type prevents the encoding of logical paradoxes

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

222 W. Verbruggen et al.

(Hurkens 1995). Universe levels are not written explicitly in Coq code, where we

simply write “Type”, but are inferred by the type checker.

For example, a generalization of tupleS from the previous section is

Fixpoint tupleT (A : Type) (n : nat) : Type := ..

where A has type Type rather than Set. With this new definition, we can create a

tuple of types of type Set:

Definition exampleSetTuple : tupleT Set 2 := (nat, (unit, tt)).

One definition that we will need later in our proofs is a characterization of

heterogeneous tuples, in which every element has a different type. One natural way

we might consider is to define a function which given a tuple of types (A,B, C)

constructs the type A × B × C:

gtupleT : ∀ n : nat, tupleT Type n → Type

Such a function works fine in most cases. However, if we want to construct a

heterogeneous tuple where the elements themselves are tuples, i.e. a heterogeneous

tuple of the form

tupleT A1 m1 × tupleT A2 m2 × · · ·
we will run into a Universe inconsistency error.

To understand this error, we need to see the universe constraints inferred by the

type checker. For tupleT we get

tupleT : Typei → nat → Typej (i � j)

The constraint (i � j) comes from the fact that the first argument, A : Typei, is used

to construct the new type A × A × · · · × A : Typej .

Now consider what happens when we try to define our tuple of tuple types. The

elements of the tuple are the result of tupleT and therefore have type Typej . The

constructed type itself must then have type:

(tupleT A m : Typej , . . .) : tupleT Typej n

Since we pass Typej as the first argument to tupleT, and we have said that the

first argument has type Typei, we must have Typej : Typei. This constraint will hold

only if j < i. But the constraints i � j and j < i cannot both be satisfied, and Coq

reports a universe inconsistency: there is no suitable assignment that does not result

in an inconsistency.

The problem is that Coq does not support universe polymorphism (Harper &

Pollack 1991). A work-around would be to duplicate the definition of tupleT

which would then have type Typei′ → nat → Typej ′ . This duplicate definition of

tupleT would change the constraints to j ′ < i, i � j and i′ � j ′, thus solving

the inconsistency. This is, however, not a very elegant solution, especially since it

would lead to further code duplication elsewhere. Fortunately, we can follow Morris

et al. (2007) and give an alternative definition of heterogeneous tuples which avoids

universe inconsistency without the need for duplication (Morris et al. refer to this

operator as the modality �). Given a tuple (x, y, z) of elements of some type A and

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 223

a function f : A → Type, we construct the type f x × f y × f z. This alternative

definition is implemented as

Fixpoint gtupleT (A : Set) (n : nat) (f : A → Type)

: tupleS A n → Type :=

match n return tupleS A n → Type with

| O ⇒ fun _ ⇒ unit

| S m ⇒ fun tup ⇒ f (fst tup) × gtupleT m f (snd tup)

end.

Implicit Arguments gtupleT [A n].

While this definition of gtupleT is not formally equivalent to the previous one, it is

equally suitable for our purposes and avoids the universe inconsistency by avoiding

feeding the result of tupleT back into tupleT.

2.7 Reasoning about equality

The standard definition of equality in Coq states that two terms of the same type

which reduce to the same normal form are equal:

(e : T) =T (e : T)
Refl

This is often too restrictive as it does not allow us to state, much less prove, that

e1 : T1 is equal to e2 : T2 for two provably equal but not syntactically equal types

T1 and T2. Heterogeneous or John Major equality (McBride 2002) generalizes the

standard equality relation and allows us to state equalities between terms of different

types, even though its only constructor still only allows us to prove equality between

terms of the same type:

(e : T)
T ,T (e : T)
JM-Refl

To prove (e1 : T1)
T1 ,T2
(e2 : T2) we must first show that T1 = T2 and then that

e1 = e2, at which point JM-Refl finishes the proof.

Unfortunately, given some property P : ∀(A : Set), A → Prop and e1
T1 ,T2
e2,

proving PT2
e2 given PT1

e1 is not entirely straightforward: simply replacing e1 by e2

in PT1
e1 would yield the ill-typed term PT1

e2. Instead, the proof usually looks like

PT1
e1 → PT2

e2

{ generalize over the proof that e1
T1 ,T2
e2 }

⇐ ∀(pf : e1
T1 ,T2
e2), PT1

e1 → PT2
e2

{ generalize over e1 }
⇐ ∀(x : T1)(pf : x
T1 ,T2

e2), PT1
x → PT2

e2

{ replace T1 by T2 }
= ∀(x : T2)(pf : x
T2 ,T2

e2), PT2
x → PT2

e2

The final case is easily proved, as we can use pf to replace x by e2, which now both

have type T2.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

224 W. Verbruggen et al.

When terms get larger it is not always obvious what we need to generalize over

and in which order. Moreover, suppose we have some dependent type D : T → Set,

a function f : ∀(t : T), D t → T ′, two elements t1, t2 : T and d1 : D t1, d2 : D t2, and

that we know that d1
D t1 ,D t2 d2 (but t1 �= t2). It may be the case that f uses its first

argument only to determine the type of the second argument, i.e. f is parametric in

its first argument, in which case we should be able to show that

f t1 d1 = f t2 d2

but this will not hold generally for arbitrary f. Depending on the structure of f and

its argument, this equality may or may not be difficult to prove.

In particular, one common function that we will use in the proofs is

convert : ∀A B : Set, A = B → A → B

Given an element of type A this function converts it into an element of type B,

provided that we pass in a proof that A = B. To aid readability, we will assume that

the arguments A and B are implicit. Associated with convert is a lemma proving

that this conversion does not change the actual element, only its type:

Lemma 1 (Convert Identity)

∀(A B : Set) (x : A) (p : A = B), x
A,B convert p x

However, even armed with Lemma 1, proofs about heterogeneous equality are not

straight-forward as convert p x cannot simply be replaced by x since this would

yield ill-formed terms. For example, proving that

f t1 d1 = f t2 (convert d1)

may be difficult: it needs to be proved as a property of f, but if f is defined

by structural induction on its second argument the occurrence of convert on the

right-hand side might make it near impossible to do a proof by induction. In such

cases, it is often better to “push down” converts deeper into terms to facilitate

induction. For example, if d1 is a list, convert each element of the list rather than

converting the list itself.

3 Definition of the Generic View

In Generic Haskell, generic functions are defined by induction on the structure

of datatypes. While types are first-class in Coq, we cannot inspect or discriminate

them. Instead we define an inductive datatype, a type of codes, whose elements are

interpreted as types. This allows us to define specialization of generic functions by

induction on the structure of these codes.

For example, tprod is a code in the universe that corresponds to the Coq product

type. If we want to specialize the polytypic map function to products, we pass

tprod as an argument to term specialization, and term specialization is defined by

induction on the structure of this argument.

However, the result of term specialization should be a function on the actual Coq

datatype for products. To accomplish this, we need a mapping from codes to Coq

datatypes, such a mapping is known as a decoder.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 225

(* Codes for kinds *)
Inductive kind : Set :=
| star : kind
| karr : kind → kind → kind.

(* Kind environment for free variables *)
Definition envk (nv : nat) : Set := tupleS kind nv.

(* Grammar for type constants *)
Inductive type_constant : kind → Set :=
| tc_unit : type_constant star
| tc_int : type_constant star
| tc_prod : type_constant (karr star (karr star star))
| tc_sum : type_constant (karr star (karr star star)).

(* Codes for types *)
Inductive type : ∀ (nv : nat), envk nv → kind → Set :=
| tconst : ∀ nv ek k, type_constant k → type nv ek k
| tvar : ∀ nv ek i, type nv ek (getS i ek)
| tapp : ∀ nv ek k1 k2,

type nv ek (karr k1 k2) → type nv ek k1 → type nv ek k2
| tlam : ∀ nv ek k1 k2,

type (S nv) (k1, ek) k2 → type nv ek (karr k1 k2).
Implicit Arguments type [].
Implicit Arguments tconst [nv ek k].
Implicit Arguments tvar [].
Implicit Arguments tapp [nv ek k1 k2].
Implicit Arguments tlam [nv ek k1 k2].

(* Syntactic sugar for types with no free variables *)
Definition closed_type (k : kind) : Set := type 0 tt k.

(* Syntactic sugar for type constants *)
Definition tunit := tconst 0 tt tc_unit.
Definition tint := tconst 0 tt tc_int.
Definition tprod := tconst 0 tt tc_prod.
Definition tsum := tconst 0 tt tc_sum

Fig. 2. Generic view.

Similarly, we need to encode kinds and provide the associated decoder. The codes

for types and kinds are often called a generic view or a universe. The definitions

for our generic view are given in Figure 2, and the decoders for kinds and types

are defined in Figure 3. Our universe for types encodes only well-kinded types;

this is explained in Section 3.1. The decoders for kinds and types are discussed in

Sections 3.2 and 3.3, and we conclude with a few examples in Section 3.4.

3.1 Kinding derivations

In our definition of the generic view, we do not define a datatype that encodes the

grammar of types, but rather encode kinding derivations to make sure that only

well-kinded types can be represented. An element

T : type nv ek k

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

226 W. Verbruggen et al.

(* Decoder for kinds *)
Fixpoint decK (k : kind) : Type :=
match k with
| star ⇒ Set
| karr k1 k2 ⇒ decK k1 → decK k2
end.

(* Decoder for types *)
Fixpoint decT (nv : nat) (k : kind) (ek : envk nv) (t : type nv ek k)
: envt nv ek → decK k :=
match t in type nv ek k return envt nv ek → decK k with
| tconst nv ek k tc ⇒

fun et ⇒ match tc in type_constant k return decK k with
| tc_unit ⇒ unit (* Coq unit type *)
| tc_int ⇒ Z (* Coq type of integers *)
| tc_prod ⇒ prod_set (* Coq product type in Set *)
| tc_sum ⇒ sum_set (* Coq sum type in Set *)
end

| tvar nv ek i ⇒ fun et ⇒ ggetT i et
| tapp nv ek k1 k2 t1 t2 ⇒ fun et ⇒ (decT t1 et) (decT t2 et)
| tlam nv ek k1 k2 t’ ⇒ fun et arg ⇒ (decT t’ (arg, et))

end.
Implicit Arguments decT [nv k ek].

Fig. 3. Decoders.

is a type of kind k with at most nv free variables, whose kinds are defined in the

kind environment ek . This corresponds to a kinding derivation

ek
 T : k

The type of the environment ek is envk nv , which is an nv -tuple of kinds (see

Figure 2). As an example, the rule tlam for lambda abstraction encodes the kinding

derivation

(k1, ek)
 T : k2

ek
 ΛT : k1 → k2
Lam

We use de Bruijn indices to represent variables (de Bruijn 1972). The indices in

a type of nv free variables cannot be out of bounds since their type is index nv

(Section 2.4).

3.2 Decoding kinds

The decoder decK for kinds is straightforward except for a subtlety in the choice of

Set for kind �. During type specialization (Section 5), we will construct types of the

form

(∀(α : decK star), . . .) : decK star

Since the bound variable α ranges over the very type that is defined, the type of α must

be impredicative. As we have seen in Section 2.6, Type in Coq is not impredicative

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 227

so that using Type for (decK star) will result in a universe inconsistency. Hence,

we choose Set instead, enabling the impredicative Set option1.

Another way to solve the impredicativity problem is to stratify kinds themselves,

i.e. to assign different levels to kind � depending on nesting depth. We would then

get something of the form

(∀(α : decK stari)) : decK starj

Here it is possible to use Type as the decoding of kind �, with different universe

levels assigned to the different nesting levels of the kinds. We have opted to use

impredicative Set instead, because we did not want to complicate the kind universe.

It would be interesting to see how the infrastructure would change if we used

stratified kinds.

3.3 Decoding types

The decoder decT for types is more involved. To decode a type T with nv free

variables, we must know the decoded types of the free variables in T. Hence, we

need an environment et of type envt that associates a decoded type Ti with every

free variable i in T. Since the kind of Ti depends on the kind of i, each element in

et has a different type. We therefore calculate envt from the kind environment ek:

Definition envt nv (ek : envk nv) := gtupleT decK ek

using the heterogeneous tuple gtupleT described in Section 2.6.

Armed with the type environment et we define the decoder for types decT as

shown in Figure 3. Type constants map to their Coq counterparts, variables map

to the corresponding elements in the environment et, application maps to Coq type

application and lambda abstraction maps to Coq type-level functions. To decode

the body of a lambda abstraction, we must add the type of the formal parameter to

the type environment.

3.4 Example types

In this section we will consider some examples of types, defined as codes in our

generic view with the associated decoding. We have added some notational shorthand

to make these example types more readable:

Notation "t @ s" := (tapp t s) (at level 30).

Notation "t + s" := (tapp (tapp (tconst tc_sum) t) s).

Notation "t × s" := (tapp (tapp (tconst tc_prod) t) s).

Notation "1" := (tconst tc_unit).

1 Non-impredicative Set is useful mostly for classical reasoning, which we make no use of. Making
Set impredicative therefore does not compromise soundness (Coq Development Team 2008a, 2008b).
Impredicative Set might also be justified since we are interested in doing proofs over Generic Haskell-
style programs, and Haskell supports impredicative types (Vytiniotis et al.2006).

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

228 W. Verbruggen et al.

Unfortunately, the definitions are still a little heavy on notation, especially in dealing

with type variables – var i represents the ith variable – but additional syntactic

sugar is left to future work.

Consider the type fork, defined in Haskell as

data Fork a = MkFork a a

We encode this as a type with one argument ΛA . A × A in our generic view as

Definition fork : closed_type (karr star star) :=

let var := tvar 1 (star, tt)

in tlam (var None × var None).

The type of fork tells us that it is a closed type of kind � → �. We decode fork

to a Coq type using our type decoder decT, where tt represents the empty type

environment:

Eval compute in decT fork tt.

= (fun A : Set ⇒ A × A) : decK (karr star star)

The command Eval r in x performs the reductions specified by r on the term x

and displays the resulting term with its type. In this case we use the tactic compute

to specify the reductions, which represents call-by-value β, δ, ι and ζ-reduction.

We can evaluate the decoding of the kind � → � of fork using the kind decoder

decK in a similar fashion:

Eval compute in decK (karr star star).

= (Set → Set) : Type

As another example, consider the type maybe prod, defined in Haskell as

data MaybeProd a b = NoProd | SomeProd a b

This type has kind � → � → �. We encode it as a type ΛA . ΛB . 1 + A × B as

Definition maybe_prod

: closed_type (karr star (karr star star)) :=

let var := tvar 2 (star, (star, tt)) in

tlam (tlam (1 + (var (Some None) × var None))).

Decoding the type maybe prod gives

Eval compute in decT maybe_prod tt.

= fun A B : Set ⇒ unit + A × B

which gives us a Coq function in two arguments of type Set. Note that unit is

the predefined unit type in Coq, and × and + are the predefined product and sum

types.

Finally, we show the code for apply : (� → �) → � → �. Its Haskell counterpart

is

data Apply f a = MkApply (f a)

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 229

It takes a type constructor F : � → � and a type A : � and applies F to A:

Definition apply

: closed_type (karr (karr star star) (karr star star)) :=

let var := tvar 2 (star, (karr star star, tt)) in

tlam (tlam (var (Some None) @ var None)).

The decoding will again be an actual Coq function:

Eval compute in decT apply tt.

= fun (F : Set → Set) (A : Set) ⇒ F A

4 Defining polytypic functions

In this section, we show how to define polytypic types (Section 4.1) and polytypic

functions (Section 4.2) in our framework, and give a number of examples (Sec-

tions 4.3 and 4.4). Polytypic functions are defined by giving instances for the type

constants in the universe, which we stated in Section 3. We hope that readers familiar

with Generic Haskell or Generic Clean will experience a comforting familiarity

reading our definitions; we will explain specifics pertaining to Coq as they arise. We

will discuss type and term specialization but we will not formalize these concepts

until Sections 5 and 6 respectively.

4.1 Polytypic types

The type of a polytypic function is a type-level function which, given np arguments,

constructs a type of kind �. This is represented by the following record:

Record PolyType (np : nat) : Type := polyType {

typeKindStar : nary_fn np (decK star) (decK star)

}.

Record introduces a record of named fields. PolyType depends on one parameter

(np) and has one field (typeKindStar) of type nary fn np (decK star) (decK

star). The term nary fn n A B denotes the type

A → . . . → A︸ ︷︷ ︸
n

→ B

Argument np, known as the arity of the polytypic function in Generic Haskell,

represents the number of type arguments – it does not refer to the number of

arguments of the specialized function, which varies with the kind of the target type.

Readers familiar with polytypic programming will know that map is a polytypic

function of arity 2; its type is

Definition Map : PolyType 2 := polyType 2 (fun A B ⇒ A → B).

In Generic Haskell we would give the type Map as A → B; whereas in Coq we have

to explicitly state the type arguments A and B. Note also that the record constructor

polyType inherits the arguments to PolyType, so the user must provide the number

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

230 W. Verbruggen et al.

of type arguments np as well as the field typeKindStar. The type of the polytypic

function describes the operation performed at the elements: map transforms elements

of type A to elements of type B. Term specialization lifts this operation to structures

containing elements and type specialization gives the type of the lifted operation.

Informally, type specialization is described as

Pt〈k〉 : k → · · · → k → �

Pt〈�〉 T1 . . . Tnp = (user defined)

Pt〈k1 → k2〉 T1 . . . Tnp = ∀A1 . . . Anp . Pt〈k1〉 A1 . . . Anp → Pt〈k2〉 (T1 A1)

. . . (Tnp Anp).

This is formalized as a function specType (defined in Section 5), so that we can ask

Coq to specialize a polytypic type for us. For example, here is the specialization of

Map〈� → � → �〉 applied to two copies of the product type:

Eval compute in specType tprod Map.

= ∀ A B : Set, (A → B) →
∀ C D : Set, (C → D) → A × C → B × D

4.2 Polytypic functions

To define a polytypic function, the user only needs to provide the definition for the

type constants; term specialization takes care of the remaining types. A nice feature

of an implementation of polytypic programming in a dependently typed language

is that a polytypic function is simply another record which can be passed as an

argument to, or computed as the result of, a function.

We define a polytypic function as

Record PolyFn (np : nat) (Pt : PolyType np) : Type := polyFn {

punit : specType tunit Pt ;

pint : specType tint Pt ;

pprod : specType tprod Pt ;

psum : specType tsum Pt

}.

Implicit Arguments PolyFn [np].

A polytypic function of np arguments has a polytypic type Pt of np arguments

and provides definitions for each of the type constants. The types of these fields are

computed by type specialization, ensuring that ill-typed polytypic functions cannot

be defined. Moreover, as we have seen, we can ask Coq to evaluate these types,

which helps guide us in the construction of a polytypic function. Term specialization

is then informally described as

pfn〈T : k〉 : Pt〈k〉 (�T �1, . . . , �T �np)

pfn〈C : kC〉 = (user defined)

pfn〈A : kA〉 = fA
pfn〈ΛA . T : k1 → k2〉 = λA1 . . . Anp . λfA . pfn〈T : k2〉
pfn〈T U : k2〉 = (pfn〈T : k1 → k2〉) (�U�1, . . . , �U�np) (pfn〈U : k1〉)

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 231

where �T �i replaces each free variable A in T by Ai. This definition of pfn is

formalized as a function specTerm (Section 6). For example, specializing map (defined

in Figure 1) to the datatype fork of kind � → � yields

Eval compute in specTerm fork map.

= fun (A B : Set) (f : A → B) (x : A × A) ⇒
let (a1, a2) := x in (f a1, f a2)

: specType fork Map

Term specialization returns an actual Coq function, which can be applied to further

arguments:

Eval compute in specTerm fork map nat nat (fun x ⇒ x + 1) (3, 5).

= (4, 6)

4.3 Examples of polytypic types and functions

As a first example, we will consider the polytypic function count, which counts the

elements in a data structure:

Definition Count : PolyType 1 :=

polyType 1 (fun A ⇒ A → nat).

Definition count : PolyFn Count :=

polyFn Count

(fun u ⇒ 0)

(fun z ⇒ 0)

(fun (A : Set) (f : A → nat)

(B : Set) (g : B → nat)

(x : A × B) ⇒
let (a, b) := x in (plus (f a) (g b)))

(fun (A : Set) (f : A → nat)

(B : Set) (g : B → nat)

(x : A + B) ⇒
match x with

| inl a ⇒ f a

| inr b ⇒ g b

end).

Types of kind � never contain any elements, so we simply return 0 when counting

units or integers. For other types, we pass in a function that converts each element

into a natural number, and count adds these all up. For example, to count the

number of elements in a list we could pass in the constant function that takes each

element to the number 1; adding these all up count would give us the length of the

list. We specialize both Count and count to the datatype fork:

Eval compute in specType fork Count.

= ∀ A : Set, (A → nat) → A × A → nat

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

232 W. Verbruggen et al.

Definition equal : PolyFn Compare :=
polyFn Compare
(fun x y ⇒ true)
Zeq_bool
(fun (A : Set) (f : A → A → bool)

(B : Set) (g : B → B → bool)
(x : A × B) (y : A × B) ⇒

let (a , b) := x in
let (a’, b’) := y in
f a a’ && g b b’)

(fun (A : Set) (f : A → A → bool)
(B : Set) (g : B → B → bool)
(x : A + B) (y : A + B) ⇒

match (x, y) with
| (inl a, inl a’) ⇒ f a a’
| (inr b, inr b’) ⇒ g b b’
| otherwise ⇒ false
end).

Definition less_than : PolyFn Compare :=
polyFn Compare
(fun x y ⇒ false)
(fun x y ⇒ Zlt_bool x y)
(fun (A : Set) (f : A → A → bool)

(B : Set) (g : B → B → bool)
(x : A × B) (y : A × B) ⇒

let (a, b) := x in
let (a’, b’) := y in
f a a’ && g b b’)

(fun (A : Set) (f : A → A → bool)
(B : Set) (g : B → B → bool)
(x : A + B) (y : A + B) ⇒

match (x, y) with
| (inl a, inl a’) ⇒ f a a’
| (inr b, inr b’) ⇒ g b b’
| otherwise ⇒ false
end).

Fig. 4. Polytypic functions equal and less than.

Eval compute in specTerm fork count.

= fun (A : Set) (f : A → nat) (x : A × A) ⇒
let (a, a’) := x in f a + f a’.

As two further examples, consider equal and less than. These functions compare

their arguments for equality or check that the first is less than the second. The

function less than can be thought of as “pair-wise comparison” or “coordinate-

wise order”. Lexicographical ordering would perhaps be more sensible on arbitrary

data structures, but is a more involved example. We use pair-wise comparison instead

to avoid getting bogged down in the details of the example. These two comparison

functions are quite similar and even share the same polytypic type Compare:

Definition Compare : PolyType 1 :=

polyType 1 (fun A ⇒ A → A → bool),

which, specialized to fork, yields

Eval compute in specType fork Compare.

= ∀ A : Set, (A → A → bool) → A × A → A × A → bool.

Since both less than and equal will return false when their arguments have a

different structure, the definitions of these two polytypic functions are also quite

similar. The only difference is how they compare elements of unit or integer type.

The definitions of these two polytypic functions can be found in Figure 4.

In Section 7.4 we will show that even though less than and equal are very

similar, they do have different properties: we will prove that equality is commutative

but less than is anti-commutative.

4.4 First-class polytypic functions

By reifying the notion of a polytypic function as a record type within Coq, we have

made them first-class citizens. They can be passed as arguments to other functions

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 233

and be computed as results. As an example of such a polytypic combinator, we define

“or poly”, which computes the “disjunction” of two other polytypic functions of

type Compare:

Definition or_poly (pfn1 pfn2 : PolyFn Compare)

: PolyFn Compare :=

polyFn Compare

(fun u v ⇒ punit pfn1 u v || punit pfn2 u v)

(fun i j ⇒ pint pfn1 i j || pint pfn2 i j)

(fun (A : Set) (f : A → A → bool)

(B : Set) (g : B → B → bool)

(x y : A × B),

pprod pfn1 A f B g x y || pprod pfn2 A f B g x y)

(fun (A : Set) (f : A → A → bool)

(B : Set) (g : B → B → bool)

(x y : A + B),

psum pfn1 A f B g x y || psum pfn2 A f B g x y).

Less-than-or-equal-to can now be defined by applying this combinator to the two

polytypic functions equal and less than we defined above:

Definition le : PolyFn Compare := or_poly equal less_than.

When we specialize the polytypic function le to the type T = ΛA . ΛB . A + Z × B,

we get a function which is provably equal to

fun (A : Set) (f : A → A → bool) (B : Set) (g : B → B → bool)

(x y : decT T tt A B) ⇒
match (x, y) with

| (inl a, inl a’) ⇒ f a a’

| (inr (z, b), inr (z’, b’)) ⇒ Zle_bool z z’ && g b b’

| _ ⇒ false

end

The proof that these two are equal can be found in first class.v in the Coq

sources. Although it is not clear how many higher-order polytypic functions we

will be able to define in this fashion, if a function can be so defined then the

infrastructure for proofs we provide in this paper is immediately applicable, which

can be very helpful. For instance, although le can be defined in Generic Haskell

(or indeed using our library) by conjoining the instances of equal and less than

(le〈T 〉 = equal〈T 〉 || less than〈T 〉), this does not have the right shape for our

proof framework so that the support for polytypic proofs is not available. A further

discussion of first-class polytypic functions falls outside the scope of this paper.

5 Type specialization

As observed in Section 4, the polytypic map function has a polytypic type, and the

specialization of map to a type T has a specialized type. In this section, we explain

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

234 W. Verbruggen et al.

(* Environment of the form ((a_1, b_1, ..), .., (a_np, b_np, ..))
to keep track of free variable replacements
in type and term specialization *)

Definition envts (np nv : nat) (ek : envk nv) :=
tupleT (envt nv ek) np.

(* Specialize polytypic type Pt to kind k *)
Fixpoint kit (k : kind) (np : nat) (Pt : PolyType np)
: tupleT (decK k) np → decK star :=
match k return tupleT (decK k) np → decK star with
| star ⇒ uncurry (typeKindStar Pt)
| karr k1 k2 ⇒ fun tup ⇒ quantify_tuple

(fun As ⇒ kit k1 Pt As → kit k2 Pt (apply_tupleT tup As))
end.

Implicit Arguments kit [np].

(* Type specialization for open types *)
Definition specType’ (np nv : nat) (k : kind) (ek : envk nv)
(t : type nv ek k) (Pt : PolyType np) (ets : envts np nv ek)
: decK star :=
kit k Pt (replace_fvs t ets).

Implicit Arguments specType’ [np nv k ek].

(* Type specialization for closed types *)
Definition specType (np : nat) (k : kind) (t : closed_type k)
(Pt : PolyType np) : decK star :=
specType’ t Pt (ets_tt np).

Implicit Arguments specType [np k].

Fig. 5. Type specialization.

how to define type specialization. The full definition of type specialization is given

in Figure 5. This and the next section are technical sections, which can be skipped

by readers who are interested only in the application of our infrastructure.

Type specialization is a two-phase process. We first define the kind-indexed type

kit, where kit k Map corresponds to Pt〈k〉 in the informal definition given in

Section 4.1, by induction on k. We then apply the result to the appropriate tuple of

type arguments.

The case for kind � is supplied by the user (PolyType, see Section 4). We rewrite

the case for arrow kinds as

Pt〈k1 → k2〉 = ΛT1 . . . Tnp . ∀A1 . . . Anp . (. . .)

to make it more obvious that we must return a type-level function which, given np

arguments, returns a universally quantified type. To give a recursive definition of

this type, a simple but helpful insight is that it is easier to work with an uncurried

form (Altenkirch & McBride 2003):

Λ(T1, . . . , Tnp) . ∀A1 . . . Anp . Pt〈k1〉 (A1, . . . , Anp) → Pt〈k2〉 (T1 A1, . . . , Tnp Anp).

It is possible to uncurry the first part of the definition because the function is

never partially applied. We could also leave the second set of arguments – the A’s –

uncurried, but this generates unreadable types.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 235

To construct this function, we first construct the function where both the T ’s and

A’s are uncurried:

Λ(T1, . . . , Tnp) . Λ(A1, . . . , Anp) . Pt〈k1〉 (A1, . . . , Anp) → Pt〈k2〉 (T1 A1, . . . , Tnp Anp)

This definition can be translated to the correct type using the function quantify

tuple (defined in tuples.v in the Coq sources), which takes a function of the form

Λ(A1, . . . , Anp) . T

to the universally quantified type

∀A1 . . . Anp . T .

Paraphrasing, kit k Pt constructs a type that calculates the required specialized

type given a tuple (T1, . . . , Tnp); the second step in type specialization is therefore to

construct this tuple. Hinze (2000) states that specialization of a polytypic function

pfn of type Pt to a type T has type

pfn〈T : k〉 : Pt〈k〉 (�T �1, . . . , �T �np).

The floor operator �T �i replaces all free variables A in T by Ai. For a closed type T

this will have no effect as there are no free variables to replace. To explain this in more

detail, let us consider an example: the type Map specialized to T = ΛA B C . A+B×C

should be

(A1 → A2) → (B1 → B2) → (C1 → C2) → T A1 B1 C1 → T A2 B2 C2

Recall that the polytypic type Map, which describes the type of the operations map

performs at the elements of a structure, is ΛA1 A2 . A1 → A2. When we specialize

map to a specific datatype, we will need an instance of this operation for each of the

arguments of that datatype. Hence, if the datatype has nv parameters, we will need

nv copies of this operation, each of which will need np type arguments. To keep

track of all of these types, we construct an environment ets : envts of the form

((A1, B1, . . .), (A2, B2, . . .), . . . , (Anp , Bnp , . . .))

The floor operation �T �i replaces each free variable in T (each argument of the

datatype) by the ith variable associated with it by extracting the ith tuple from

the environment and then decoding T using this tuple as the type environment

(Section 3.3).

Returning to our example, for every ΛA . · · · we encounter during term special-

ization we will add the elements of the tuple (A1, . . . , Anp) to the front of the tuples

already in ets (Section 6.4), using a function add to ets to accomplish this. The

type of the specialization of the body of the lambda abstractions in T will then be

Pt〈k〉 (�A + B × C�1, . . . , �A + B × C�np)

When we specialize a function to a closed type (nv = 0), ets is the tuple containing

np empty tuples – constructed by ets tt np – and (�T �1, . . . , �T �np) reduces to

(T , . . . , T). From a user’s perspective, this means that all np arguments of a polytypic

function will be initialized to the same type, as most users will only be interested in

specializing to closed types.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

236 W. Verbruggen et al.

The full definition of type specialization is given in Figure 5. The function kit

constructs kind-indexed types and specType’ returns the application of a kind-

indexed type to a tuple (�T �1, . . . , �T �np). This tuple of types is constructed by

replace fvs, whose definition is straightforward and can be found in the Coq

sources.

6 Term specialization

Having seen how to define polytypic functions in Section 4 and how to specialize

their types in Section 5, we are now in a position to define term specialization.

Since the result of term specialization has a specialized type, our implementation is

a formal proof that the result of term specialization is a term of the type computed

by type specialization. The subsections in this section correspond to each of the type

constructors for constants, variables, type application and type abstraction.

A polytypic function is fully specified by giving its type and the cases for each of the

type constants. The cases for the other types can be inferred; an informal definition

of this process pfn〈T : k〉 was given in Section 4.2. In this section, we discuss its

formalization in Coq. The type of term specialization is

specTerm : ∀ (np : nat) (k : kind) (t : closed_type k)

(Pt : PolyType np) (pfn : PolyFn Pt), specType t Pt

The definition is shown in Figure 6; it relies on a number of auxiliary lemmas which

we do not show but will explain below (the full definitions can be found in the Coq

sources).

6.1 Constants

For type constants we have to use the definition provided by the user, but there is a

mismatch in the type of the term provided by the user and the return type of term

specialization. Consider the case for the product constant. As part of the definition

of the polytypic function, the user will have provided a function pprod of type

pprod : specType tprod Pt

Recall from Figure 2 that tprod is syntactic sugar for

tconst 0 tt tc_prod

As described in Section 3, terms of type type encode kinding derivations; tprod

encodes the derivation in the empty environment tt

∅
 tconst tc prod : � → � → �
Const

When tc prod is used inside another type; however, it may well be used in an

environment where there are free variables.2 This arises, for instance, in the use of

2 It is not possible to close the body, because the type assumption corresponds to a real Coq datatype,
whereas the body of the lambda is a code for a type in the universe.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 237

(* Specialize the polytypic function pfn to open type t *)
Fixpoint specTerm’ (np nv : nat) (ek : envk nv) (k : kind)
(t : type nv ek k) (Pt : PolyType np) (pfn : PolyFn Pt)
: ∀ (ets : envts np nv ek) (ef : envf nv ek Pt ets),

specType’ t Pt ets :=
match t in type nv ek k
return ∀ (ets : envts np nv ek),
envf nv ek Pt ets → specType’ t Pt ets
with
| tconst nv ek k tc ⇒ fun ets ef ⇒

match tc return specType’ (tconst tc) Pt ets with
| tc_unit ⇒ convertS convert_tconst_specTerm (punit pfn)
| tc_int ⇒ convertS convert_tconst_specTerm (pint pfn)
| tc_prod ⇒ convertS convert_tconst_specTerm (pprod pfn)
| tc_sum ⇒ convertS convert_tconst_specTerm (psum pfn)
end

| tvar nv ek i ⇒ fun ets ef ⇒ convertT ith_index_f (ggetS i ef)
| tapp nv ek k1 k2 t1 t2 ⇒ fun ets ef ⇒

convertS convert_tapp_specTerm
((instantiate_tuple (replace_fvs t2 ets)
(specTerm’ t1 pfn ets ef)) (specTerm’ t2 pfn ets ef))

| tlam nv ek k1 k2 t’ ⇒
fun ets ef ⇒ dep_curry
(fun As ⇒ kit k1 Pt As →

kit k2 Pt
(apply_tupleT (replace_fvs (tlam t’) ets) As))

(fun As : tupleT (decK k1) np ⇒
(fun fa : kit k1 Pt As ⇒
(convertS (convert_tlam_specTerm _ _ _ _)
(specTerm’ t’ pfn (add_to_ets As ets) (add_to_ef fa ef)))))

end.
Implicit Arguments specTerm’ [np nv ek k Pt].

(* Term specialization for closed types *)
Definition specTerm (np : nat) (k : kind) (t : closed_type k)
(Pt : PolyType np) (pfn : PolyFn Pt) : specType t Pt :=
specTerm’ t pfn (ets_tt np) tt.

Implicit Arguments specTerm [np k Pt].

Fig. 6. Term specialization.

tc prod in the definition of fork in Section 3.4, where instead we have a derivation

of the form

A : �
 tconst tc prod : � → � → �
Const

In general, we need the type encoding

tconst nv ek tc_prod

for a number of free variables nv and the associated kind environment ek.

We could generalize the definition of the polytypic function given in Section 4.2

to

Record PolyFn (np : nat) (Pt : PolyType np) : Type := polyFn {

...

pprod : ∀ (nv : nat) (ek : envk nv) (ets : envts np nv ek),

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

238 W. Verbruggen et al.

specType’ (tconst nv ek tc_prod) Pt ets ;

...

}.

However, this generalization complicates both the definition of a polytypic function

and the instances the user must provide. Fortunately, it turns out that a polytypic

type specialized to tconst nv ek tc prod is the same as that type specialized to

tconst 0 tt tc prod, as proved by the following weakening lemma.

Lemma 2 (convert tconst specTerm)

∀ nv ek tc Pt ets,

specType (tconst 0 tt tc) Pt =

specType’ (tconst nv ek tc) Pt ets

Proof. Unfolding definitions (Figure 5), we find that we have to prove

(�tconst 0 tt tc�1, . . .) = (�tconst nv ek tc�1, . . .)

This holds as decoding a type constant is independent of the environment

provided. �

6.2 Variables

Recall from the informal definition of term specialization (Section 4.2) that in the

case for variables we return the function fA constructed in the clause for lambda

abstraction; in the formalization we will use an environment ef containing the

appropriate function for each free variable. The interesting part is to assign a type

envf to ef, since each element in ef has a different type. We define envf as a

heterogeneous tuple (Section 2.6).

Definition envf np nv ek Pt ets :=

gtupleS (fun i ⇒ specType’ (tvar nv ek i) Pt ets)

(elements_of_index nv)

The type of the ith function is the specialized type of the ith free variable. Thus,

we map specType’ across the tuple containing all possible indices of type index

nv constructed by elements of index. Given ef, we simply return the ith element

in ef as the specialized term for variable i. However, due to the way we calculate

envf we do need one technical lemma in the case for variables: ith index f states

that applying a function f to the ith element of elements of index is the same as

applying f to i, which results in a proof that the ith element will always be the index

i itself, as elements of index is a tuple of indices. The construction of ef will be

considered in the case for lambda abstraction (Section 6.4).

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 239

6.3 Application

To specialize a polytypic function pfn of type Pt to a type application (T U), we

first specialize to T : k1 → k2, which will create a term of the form

specTerm’ T pfn ets ef :

∀A1 . . . Anp , kit k1 Pt (A1, . . . , Anp) → kit k2 Pt (�T�1 A1, . . . , �T�np Anp)

We instantiate the type variables A1 . . . Anp to the elements of the tuple (�U�1, . . . , �U�np)

using the following function:

instantiate_tuple (A : Type) (n : nat) :

∀ (args : tupleT A n) (X : tupleT A n → Set),

quantify_tuple X → X args

(see Coq source for a full definition). This leaves us with the following term:

(specTerm’ T pfn ets ef) �U�1 . . . �U�np

: kit k1 Pt (�U�1, . . . , �U�np) → kit k2 Pt (�T�1 �U�1, . . . , �T�np �U�np)

We apply this term to the polytypic function specialized to the type U, which

serendipitously has exactly the right type, and get a term of type

kit k2 Pt (�T�1 �U�1, . . . , �T�np �U�np).

Since we are specializing to the application (T U), the return type we expect here

is

specType’ (tapp T U) Pt ets.

We then use the following lemma to complete the definition for application.

Lemma 3 (convert tapp specTerm)

∀np k1 k2 Pt ets (T : k1 → k2) (U : k1),

kit k2 Pt (�T�1 �U�1, . . . , �T�np �U�np) = specType’ (tapp T U) Pt ets

Unfolding definitions (Figure 5), we find that we have to prove that

(�T�1 �U�1, . . . , �T�np �U�np) = (�T U�1, . . . , �T U�np)

This holds as replacing free variables before or after application gives the same

result. �

6.4 Lambda abstraction

In this section, we will look at the specialization of a polytypic function pfn of type

Pt to a lambda abstraction (ΛA . T). The type of this specialization must be

specTerm’ (tlam T) pfn ets ef : specType’ (tlam T) Pt ets

which can be unfolded to

∀A1 . . . Anp , kit k1 Pt (�tlam T�1, . . . , �tlam T�np) →
kit k2 Pt (�tlam T�1 A1, . . . , �tlam T�np Anp).

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

240 W. Verbruggen et al.

We will construct this term in two steps. We use the specialization of pfn to T

to construct the body of the expression and use currying to get arguments of the

correct type.

6.4.1 Dependent currying

We will construct the required term by first defining a function of the form

fun (A1, . . . , Anp) fA ⇒ . . .

which we then curry to get

fun A1 . . . Anp fA ⇒ . . .

We cannot use the standard definition of currying, however. The type of the body

is

kit k2 Pt (�tlam T�1 A1, . . . , �tlam T�np Anp)

and depends on the actual argument tuple that is supplied. We therefore need a

dependent curry function, which can be defined as

Fixpoint dep_curry (A : Type) (n : nat)

: ∀ (C : tupleT A n → Set) (f : ∀ (x : tupleT A n), C x),

quantify_tuple C :=

match n return ∀ (C : tupleT A n → Set)

(f : ∀ (x : tupleT A n), C x), quantify_tuple C

with

| O ⇒ fun _ f ⇒ f tt

| S m ⇒ fun c f a ⇒
dep_curry A m (fun args ⇒ c (a, args))

(fun args ⇒ f (a, args))

end.

Implicit Arguments dep_curry [A n].

6.4.2 Specialization to T

To construct the body of the result, we use the specialization of pfn to T:

specTerm’ T pfn (add to ets (A1, . . . , Anp) ets)(add to ef fA ef)

: specType’ T Pt (add to ets (A1, . . . , Anp) ets)

This term does not have the correct type, so we need the following conversion

lemma.

Lemma 4 (convert tlam specTerm)

∀k2 T Pt ets (A1, . . . , Anp),

specType’ T Pt (add to ets (A1, . . . , Anp) ets)

= kit k2 Pt (�tlam T�1 A1, . . . , �tlam T�np Anp).

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 241

Unfolding definitions (Figure 5), we find that we have to prove that

(�T�1, . . . , �T�np) using (add to ets (A1, . . . , Anp) ets)

= (�tlam T�1 A1, . . . , �tlam T�np Anp) using ets

This holds as decoding a lambda abstraction and applying it to A is the same as

decoding the body of the lambda abstraction with A added to the front of the type

environment. �

6.4.3 Adding fA to the function environment

The current environment ef has an entry for each free variable in tlam T, but

variable i in tlam T becomes variable Some i (i + 1) in the body T. Therefore, the

function fX associated with the ith variable X in the old environment

fX : specType’ (tvar nv ek i) Pt ets

should have type

fX : specType’ (tvar (S nv) (k1, ek) (Some i)) Pt

(add to ets (A1, . . . , Anp) ets)

in the new environment. The following lemma proves that these two types are equal.

Lemma 5 (convert envf)

∀ nv ek k1 i Pt ets (A1, . . . , Anp),

specType’ (tvar nv ek i) Pt ets

= specType’ (tvar (S nv) (k1, ek) (Some i)) Pt

(add to ets (A1, . . . , Anp) ets)

Proof. Unfolding definitions (Figure 5), we find that we have to prove

(�tvar nv ek i�1, . . .) using ets

= (�tvar (S nv) (k1, ek) (Some i)�1, . . .) using (add to ets (A1, . . . , Anp) ets).

To decode variable i we take the ith element from the environment, which is the same

as taking the element Some i from an environment containing one extra element. �
When the type of every function in ef has been shifted in this way, we can add

the argument to the lambda abstraction fA to the start of ef. We need one more

lemma.

Lemma 6 (convert envf elem)

∀ nv ek k1 Pt ets (A1, . . . , Anp),

kit k1 Pt (A1, . . . , Anp) = kit k1 Pt (�tvar (S nv) (k1, ek) None�1, . . .)

It suffices to prove

(A1, . . . , Anp)

= (�tvar (S nv) (k1, ek) None�1, . . .) using (add to ets (A1, . . . , Anp) ets).

This is trivially true, because decoding the first variable takes the first element from

the type environment, which will always be an element from the tuple of A’s. �

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

242 W. Verbruggen et al.

7 Polytypic Properties and Proofs

In Sections 3–6 we discussed the infrastructure needed for specializing polytypic types

and polytypic functions. We now turn to proofs over polytypic functions. We discuss

how properties of polytypic functions can be stated (Sections 7.1 and 7.2), what

polytypic proofs will look like (Section 7.3) and give a few examples (Section 7.4).

We conclude with a discussion of alternative formalizations of polytypic properties

(Section 7.5); this can be skipped if desired. The formalization of property and proof

specialization will be the topic of Sections 8 and 9.

As an introductory example, we will see how to prove that map preserves identity

and composition. These two laws are known as the “functor laws”, in reference to

the laws that a functor must satisfy in category theory. In the case of a unary type

constructor, such as fork : � → � (Section 3.4), the functor laws for map take the

form:

map〈fork〉 id = id

map〈fork〉 (f ◦ g) = map〈fork〉 f ◦ map〈fork〉 g.
However, given a type constructor of two arguments such as maybe prod :� → � → �,

the functor laws take a different shape:

map〈maybe prod〉 id id = id

map〈maybe prod〉 (f ◦ g) (h ◦ k) = map〈maybe prod〉 f h ◦ map〈maybe prod〉g k.

The shape of these properties therefore depends on the kind of the datatype we

specialize to. Fortunately, we can state and prove such properties in much the same

way as we type and define polytypic functions.

We have seen how we can formally interpret the informal notation pfn〈T 〉 for the

specialization of a polytypic function pfn to a datatype T and the notation Pt〈k〉
for the specialization of a polytypic type Pt to a kind k. To aid readability, we will

now feel free to switch back to the informal notation and trust that the reader will

understand the interpretation of the informal notation as explained previously.

7.1 Stating polytypic properties

To specify a polytypic property we have to give the types of the functions that the

property ranges over and the property itself. Take the example that map preserves

identity: this property ranges over functions of type Map; since Map is kind-indexed,

it follows that the property itself is kind-indexed:

Id〈k〉 T : Map〈k〉 T T → Prop.

In the case for kind �, the type Map〈�〉 T T specializes to the function type T → T

and the corresponding property is that the function must itself be the identity

function:

Id〈�〉 T : (T → T) → Prop

Id〈�〉 T = λf : T → T . ∀x : T . f x = x.

Like stating polytypic types, stating polytypic properties is not always trivial. The

intuition for this example is that given identity functions f1, . . . , fn, (map f1 . . . fn)

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 243

must also be an identity function. In the degenerate case where there are no fi, i.e.

the case for kind �, we simply have that map must be the identity.

To prove that the property Id〈�〉 holds for the polytypic map function specialized

to a type T , we must prove that Id〈�〉 T map〈T 〉 holds, i.e.

∀x : T . map〈T 〉 x = x.

From the definition of the type of the property and the case for kind �, we are

able to derive the property for other kinds. The informal definition of property

specialization is very similar to that of type specialization given in Section 5:

Pp〈�〉 T1 . . . Tnt = (user defined)

Pp〈k1 → k2〉 T1 . . . Tnt = λ(f1, . . . , fnx) . ∀A1 . . . Ant : k1 . ∀(g1, . . . , gnx) .

Pp〈k1〉 (A1, . . . , Ant) (g1, . . . , gnx) →
Pp〈k2〉 (T1 A1, . . . , Tnt Ant) (app fs (f1, . . . , fnx) (g1, . . . , gnx))

For example, the instance of Id for kind � → � will be

Id〈� → �〉 T : (∀A1 A2 : � . (A1 → A2) → T A1 → T A2) → Prop

Id〈� → �〉 T = λf . ∀(A : �) (g : A → A) . Id〈�〉 A g → Id〈�〉 (T A) (f A A g)

= λf . ∀(A : �) (g : A → A) . (∀y : A . g y = y)

→ ∀x : T A . f A A g x = x

Instantiating f by map〈T 〉 gives the property we would expect:

∀(A : �) (g : A → A) . (∀y : A . g y = y) → ∀x : T A . map〈T 〉 A A g x = x

The property that map preserves composition is more complicated: composition

ranges over three functions of type Map, each instantiated at different types:

Comp〈k〉 T1 T2 T3 : Map〈k〉 T2 T3 × Map〈k〉 T1 T2 × Map〈k〉 T1 T3 → Prop.

In the case for kind �, the type Map〈�〉 T1 T2 specializes to the function type

T1 → T2, and the property is defined as

Comp〈�〉 T1 T2 T3 : (T2 → T3) × (T1 → T2) × (T1 → T3) → Prop

Comp〈�〉 T1 T2 T3 = λ(f1, f2, f3) . ∀x : T1 . f1 (f2 x) = f3 x

As before, the definition of the property for other kinds can now be derived. For

example

Comp〈� → �〉 T1 T2 T3 :

Map〈� → �〉 T2 T3 × Map〈� → �〉 T1 T2 × Map〈� → �〉 T1 T3 → Prop

Comp〈� → �〉 T1 T2 T3 = λ(f1, f2, f3) . ∀A1 A2 A3 (g1, g2, g3) .

Comp〈�〉 A1 A2 A3 (g1, g2, g3) →
Comp〈�〉 (T1 A1) (T2 A2) (T3 A3) (f1 A2 A3 g1, f2 A1 A2 g2, f3 A1 A3 g3)

= λ(f1, f2, f3) . ∀A1 A2 A3 (g1, g2, g3) . (∀y : A1 . g1 (g2 y) = g3 y) →
∀x : T1 A1 . f1 A2 A3 g1 (f2 A1 A2 g2 x) = f3 A1 A3 g3 x

The property applied to three instances of map〈T 〉 will then be

Comp〈� → �〉 T T T (map〈T 〉, map〈T 〉, map〈T 〉) =

∀A1 A2 A3 (g1, g2, g3) . (∀y : A1 . g1 (g2 y) = g3 y) →
∀x : T A1 . map〈T 〉 A2 A3 g1 (map〈T 〉 A1 A2 g2 x) = map〈T 〉 A1 A3 g3 x

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

244 W. Verbruggen et al.

This is a generalization of the usual property, which we obtain by instantiating g3 by

g1 ◦ g2. We need to generalize the property because in (map f) ◦ (map g) = map(f ◦ g)

we have three different instantiations of map: once with f, once with g, and once

with f ◦ g.

7.2 Polytypic properties, formally

We define a polytypic property using the following record type:

Record PolyProp (nt nx np : nat) (Pt : PolyType np) : Type :=

polyProp {

idxs : tupleT (tupleT (index nt) np) nx;

propKindStar : ∀ (types : tupleT (decK star) nt),

gtupleTS (kit star Pt) (reindex_tuple idxs types) → Prop

}.

Implicit Arguments PolyProp [np].

The record contains two fields: idxs provides information about the type of the

property, and propKindStar gives the property for kind �. The record is dependent

on four arguments, where np is implicit in the type of Pt:

Id Comp

nt number of type arguments of the property 1 3

nx number of function arguments of the property 1 3

np number of type arguments of the polytypic type 2 2

Pt polytypic type the property ranges over Map Map

Hopefully, two examples will go a long way towards clarifying this definition. The

property that map preserves identity is stated using our library in Coq as

Definition Id : PolyProp 1 1 Map :=

polyProp 1 1 Map ((1, 1)) (fun T f ⇒ ∀ x : T, f x = x).

Similarly, the property that map preserves composition is stated as

Definition Comp : PolyProp 3 3 Map :=

polyProp 3 3 Map ((2, 3), (1, 2), (1, 3))

(fun (T1, T2, T3) (f1, f2, f3) ⇒ ∀ x : T1, f1 (f2 x) = f3 x).

We have taken some liberties with notation to keep things simple: we use natural

numbers for indices, and assume that we can decompose tuples as part of a function

definition. Such syntactic sugar might be added to the Coq library as well, but we

have left this to future work for now.

Let us have a look at the type of Pp: given nt type arguments T1 . . . Tnt , the type

of a polytypic property indexed by a kind k generally looks like

Pp〈k〉 T1 . . . Tnt : Pt〈k〉 (T1, . . . , Tnt)
�����������1

× · · · × Pt〈k〉 (T1, . . . , Tnt)
�����������nx

→ Prop

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 245

where (T1, . . . , Tnt)
�����������i

takes the correct np type arguments for the ith occurrence of

Pt from the tuple of type arguments (T1, . . . , Tnt) associated with the property; e.g.

for the case of preservation of composition for map, we have that (T1, T2, T3)
����������1

=

(T2, T3), (T1, T2, T3)
����������2

= (T1, T2) and (T1, T2, T3)
����������3

= (T1, T3); compare to the type of

Comp, above. This mapping of type arguments is given by idxs in the description

of the polytypic property. This representation of polytypic properties limits their

expressiveness somewhat, as they can only refer to a single polytypic type. This makes

it impossible to state the interaction between a polytypic encoder and decoder,

for example. A generalization should not be too difficult, but is left as future

work.

The property for kind � is given by propKindStar applied to the same tuple of

type arguments (T1, . . . , Tnt), and a tuple containing nx function arguments:

(g1 : Pt〈�〉 (T1, . . . , Tnt)
�����������1

, . . . , gnx : Pt〈�〉 (T1, . . . , Tnt)
�����������nx

).

The type of polytypic properties is less straightforward than the type of polytypic

types, which was simply k → · · · → k → �. Therefore, our choice of record

fields might also be a little less obvious. In Section 7.5 we explain why we

use idxs to determine the type of Pp rather than asking the user for the type

directly.

7.3 Polytypic proofs

When we define a polytypic function, it suffices to give the implementation for the

type constants; all other cases can be derived. Likewise, in a polytypic proof it

suffices to prove the property for the type constants. Our development should be

regarded as a formal proof that providing proofs for the type constants is indeed

sufficient. The definition of a polytypic proof mirrors the definition of a polytypic

function (Section 4.2):

Record PolyProof (nt nx np : nat) (Pt : PolyType np)

(pfn : PolyFn Pt) (Pp : PolyProp nt nx Pt) : Type :=

polyProof {

prfUnit : specPropTo tunit Pp pfn ;

prfInt : specPropTo tint Pp pfn ;

prfProd : specPropTo tprod Pp pfn ;

prfSum : specPropTo tsum Pp pfn

}

Implicit Arguments PolyProof [nt nx np Pt].

In a polytypic proof we state the polytypic function pfn and the property Pp we

want to prove, and give proofs for each of the type constants. Figure 7 gives an

example: the proof that map preserves composition. To be able to understand the

proof, the reader needs to know about Coq’s tactic language Ltac, and run the proof

in Coq. The details of the proof are beyond the scope of this paper. The important

point is that the proof is short and easy.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

246 W. Verbruggen et al.

Lemma map_Comp : PolyProof map Comp.

Proof.

(* split into subgoals and unfold definitions *)

apply (polyProof map Comp); compute;

(* tint and tunit solved automatically *)

auto; intros.

(* tprod: apply hypothesis about the components of the pair (H, H0) *)

destruct x ; rewrite H ; rewrite H0 ; auto.

(* tsum: apply appropriate hypothesis (H for inl, H0 for inr) *)

destruct x ; [rewrite H | rewrite H0] ; auto.

Defined.

Fig. 7. Example polytypic proof: Map preserves composition.

The polytypic proof that map preserves identity is very similar, and it should be

possible to write a Coq tactic (proof search algorithm) to automate parts of these

proofs. We have left this to future work.

Informally, proof specialization is defined as

prf〈T : k〉 : Pp〈k〉 (�T �1, . . . , �T �nt) (pfn〈T 〉1, . . . , pfn〈T 〉nx)

prf〈C : kC〉 = (user defined)

prf〈A : kA〉 = pA
prf〈ΛA . T : k1 → k2〉 = λA1 . . . Ant . λpA . prf〈T : k2〉
prf〈T U : k2〉 = (prf〈T : k1 → k2〉) (�U�1, . . . , �U�nt)

(pfn〈U〉1, . . . , pfn〈U〉nx) (prf〈U : k1〉).

This will be formalized in Section 9. Here we show that we are now able to

prove that map specialized to fork preserves composition simply by applying proof

specialization to the lemma map Comp:

Lemma mapCompFork : specPropTo fork Comp map.

Proof (specProof fork map_Comp).

7.4 Polytypic property and proof examples

In this section we will show that while the two comparison functions defined in

Section 4.3 share the same type, they do not necessarily have to satisfy the same

properties as well. We will prove that equal is commutative while less than is

anti-commutative.

The polytypic property that describes commutativity of polytypic functions of

type Compare is defined as

Definition Commutative : PolyProp 1 1 Compare :=

polyProp 1 1 Compare ((1)) (fun T f ⇒ ∀ x y : T, f x y = f y x).

We want to prove that this property holds for f instantiated to equal〈T〉:

∀ x y : T , equal〈T〉 x y = equal〈T〉 y x.

Specializing the Commutative property to fork and applying it to instances of equal

gives us exactly what we would expect: provided that the function f on the elements

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 247

of the pair is commutative, the equality function for the pair is also commutative:

Eval compute in specPropTo fork Commutative equal.

= ∀ (A : Set) (f : A → A → bool), (∀ x y : A, f x y = f y x) →
∀ x y : A * A, equal〈fork〉 A f x y = equal〈fork〉 A f y x.

To prove commutativity of equality, we need to establish the property for the type

constants. This is the importance of the following lemma, whose proof can be found

in the file examples polyprop.v in the Coq sources.

Lemma eq_Comm : PolyProof equal Commutative.

We have shown that the polytypic function equal is commutative, but the opposite

property holds for less than: if x < y then not y < x. Anti-commutativity is

represented by the polytypic property AntiCommutative:

Definition AntiCommutative : PolyProp 1 1 Compare :=

polyProp 1 1 Compare ((0))

(fun T f ⇒ ∀ x y : t, f x y = true → f y x = false).

Specializing AntiCommutative to fork and applying it to instances of less than

gives us the property we would expect:

Eval compute in specPropTo fork AntiCommutative less than.

= ∀ (A : Set) (f : A → A → bool),

(∀ x y : A, f x y = true → f y x = false) →
∀ x y : A * A, less than〈fork〉 A f x y = true →
less than〈fork〉 A f y x = false.

To prove that less than is anti-commutative, we need to prove the lemma lt

AntiComm:

Lemma lt_AntiComm : PolyProof less_than AntiCommutative.

The proof of this lemma, as well as some additional examples of polytypic properties

and their proofs, can be found in the Coq sources.

7.5 Alternative definitions

To specify a property using our formalization, the user must give the type of the

property by means of the idxs tuple of tuples of indices and the property for kind

�. This mechanism for specifying the type of the property may not be the most

obvious choice, so in this section we give the rationale for choosing this particular

approach.

In the definition of a polytypic type (PolyType, Section 4.1), we do not ask the

user to specify the kind of the polytypic type. We do not need to because it has a

very simple form:

k → k → · · · → k︸ ︷︷ ︸
np

→ �

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

248 W. Verbruggen et al.

Unfortunately, properties are more complicated: as mentioned in Section 7.2, the

type of a property looks like

Pt〈k〉 (T1, . . . , Tnt)
�����������1

× · · · × Pt〈k〉 (T1, . . . , Tnt)
�����������nx

→ Prop

where the problem is to find the mapping (T1, . . . , Tnt)
�����������i

for each occurrence of Pt.

The most obvious solution is to simply ask the user to provide the complete

type of the property, given the tuple (T1, . . . , Tnt). However, this is far too liberal:

specialization relies on a particular shape of the type of the property (see Section 8).

Intuitively, the more leeway we give to the user, the less we are able to assume about

the type of the property and the more difficult it becomes to derive properties for

kinds other than �, much less automate the derivation of the corresponding proofs.

One possible alternative is to ask the user for a tuple of tuples of types, rather

than the tuple of tuples of indices idxs:

fnTypeArgs : ∀ k : kind, tupleT (decK k) nt →
tupleT (tupleT (decK k) np) nx

Temporarily denoting this function by �·�, during the development of property

specialization, we need a lemma that says that

�(T1, . . . , Tn)� �(A1, . . . , An)� = �(T1 A1, . . . , Tn An)�

In other words, fnTypeArgs should only “shuffle” its input arguments. Since this

is not true for an arbitrary function fnTypeArgs, we would have to require it as a

separate lemma in the record. We felt it was simpler to ask for the indices and do

the shuffling ourselves.

We attempted to avoid the problem altogether by leaving the shuffling of type

arguments to the case for kind �. The type of the property would then become

(∀Ts : knp . Pt〈k〉 Ts) × · · · × (∀Ts : knp . Pt〈k〉 Ts) → Prop

where kn is the tuple of n types of kind k. Again, this definition of a polytypic property

does not give us enough information for property specialization. In particular, when

specializing the property to kind k1 → k2, we need to construct the property for

kind k2 given the property for kind k1. As part of the property, we need to construct

the function arguments to the property; if the function argument for kind k1 → k2 is

f (e.g. map) and the function argument for kind k1 is x (e.g. the function that we are

mapping across the data structure), then the function argument for kind k2 is f x.

To be able to apply f to x, we need to find the right type parameters to instantiate

f. However, when we leave the shuffling of type parameters to the case for kind �,

this information is not available and we cannot instantiate f.

8 Property specialization

Section 7.2 explains the general form of a polytypic property. For a specific property,

the user specifies the type of the property and gives the property for kind �; the

case for kind k1 → k2 is then derived using property specialization. In this section,

we discuss the formal definition of property specialization.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 249

The informal definition of property specialization was given in Section 7.1. When

we compare the informal definition of property specialization with that of type

specialization (Section 4.1), we see that the only significant difference other than its

type is that the kind-indexed property takes an extra tuple of function arguments

(f1, . . . , fnx).

Consider the property of preservation of composition, specialized to kind � → �

(Comp, Section 7.1):

∀g1 g2 g3 . (g1 ◦ g2) = g3 → f1 g1 ◦ f2 g2 = f3 g3

To prove preservation of composition for the polytypic function map specialized

to fork, we will instantiate the property as follows: nx = 3, the functions in

the tuple (f1, f2, f3) will all be instantiated to map〈fork〉, and the tuple (g1, g2, g3)

corresponds to the three functions in the informal statement of the property. The

statement

app fs (f1, . . . , fnx) (g1, . . . , gnx)

corresponds to the application of map〈fork〉 to each of (g1, g2, g3). The function

app fs is however not quite simple application. The types of each fi and gi are

fi : Pt〈k1 → k2〉 (T1, . . . , Tnt)
�����������i

gi : Pt〈k1〉 (A1, . . . , Ant)
�����������i

From Section 5 we know that a polytypic type specialized to an arrow kind k1 → k2

takes the form

∀A1 . . . Anp : k1 . Pt〈k1〉 (A1, . . . , Anp) → · · ·
Hence, we first instantiate A1 . . . Anp in fi by (A1, . . . , Ant)

�����������i
to get a term of type

Pt〈k1〉 (A1, . . . , Ant)
�����������i

→ Pt〈k2〉 (T1 A1, . . . , Tnt Ant)
����������������� i

We see that the argument expected here matches the type of gi exactly, so we apply

the term to gi to get a term of type

Pt〈k2〉 (T1 A1, . . . , Tnt Ant)
����������������� i

The function app fs does exactly this: instantiate fi with the appropriate type

arguments and then apply it to gi (the definition can be found in the Coq sources).

Given Pp〈k〉, we define property specialization by applying it to the correct type

arguments:

Pp〈k〉 (�T �1, . . . , �T �nt).

This construction of property specialization and its application to a number of

type arguments follows type specialization (Section 5) exactly. The corresponding

Coq definition is given as specProp’ in Figure 8 and like specType, specProp

instantiates specProp’ to closed types.

We now have a way to specialize properties to a particular type. For example, we

can specialize the property Id of preservation of identities to the integer type:

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

250 W. Verbruggen et al.

(* Specialize polytypic property Pp to kind k *)
Fixpoint kip (k : kind) (nt nx np : nat) (Pt : PolyType np)
(Pp : PolyProp nt nx Pt) : ∀ types : tupleT (decK k) nt,
gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) types) → Prop :=

match k
return ∀ types : tupleT (decK k) nt,
gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) types) → Prop
with
| star ⇒ fun types fns ⇒ propKindStar Pp types fns
| karr k1 k2 ⇒ fun types fns ⇒ quantify_tuple_Prop

(fun types’ : tupleT (decK k1) nt ⇒
∀ fns’ : gtupleTS (kit k1 Pt) (reindex_tuple (idxs Pp) types’),
kip k1 Pp types’ fns’ →
kip k2 Pp (apply_tupleT types types’) (app_fs fns fns’))

end.
Implicit Arguments kip [nt nx np Pt].

(* Property specialization for open types *)
Definition specProp’ (nt nx np nv : nat) (k : kind)
(ek : envk nv) (t : type nv ek k) (Pt : PolyType np)
(Pp : PolyProp nt nx Pt) (ets : envts nt nv ek) :
gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) (replace_fvs t ets))) → Prop
:= kip k Pp (replace_fvs t ets).
Implicit Arguments specProp’ [nt nx np nv k ek Pt].

(* Property specialization for closed types *)
Definition specProp (nt nx np : nat) (k : kind)
(t : closed_type k) (Pt : PolyType np) (Pp : PolyProp nt nx Pt) :
gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) (replace_fvs t (ets_tt nt)))
→ Prop :=

specProp’ t Pp (ets_tt nt).
Implicit Arguments specProp [nt nx np k Pt].

(* Property specialized applied to the correct tuple *)
Definition specPropTo (nt nx np : nat) (k : kind)
(t : closed_type k) (Pt : PolyType np) (Pp : PolyProp nt nx Pt)
(pfn : PolyFn Pt) : Prop :=
specProp t Pp (cst_closed t pfn (idxs Pp)).

Implicit Arguments specPropTo [np nt nx k Pt].

Fig. 8. Property specialization.

Eval compute in specProp tint Id.

= fun fns : (Z → Z) × unit ⇒
∀ x : Z, let f := fst fns in f x = x

When we start doing proofs, we want to prove this property for a particular

instantiation of the tuple fns. Given a polytypic property, a polytypic function and

the type we want to specialize it to, the functions cst closed and cst create the

appropriate tuple to be applied.

We have added an abstraction called specPropTo (see Figure 8 for the definition)

which takes a type, property, and polytypic function and returns the specialized

property applied to the appropriate tuple of functions. For example, the property

that map preserves identities specialized to the type for integers is evaluated by the

expression

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 251

Eval compute in specPropTo tint Id map.

= ∀ (x : Z), x = x

9 Proof specialization

Having seen how to do property specialization in Section 8, we now discuss how to

do proof specialization. Since proof specialization constructs a proof of the property

defined by property specialization, our formalization of proof specialization is a

formal proof that giving a proof for each of the type constants is indeed sufficient.

As for term specialization, the subsections in this section correspond to the type

constructors for constants, variables, application and abstraction.

The informal definition of proof specialization was given in Section 7.3. This

definition of proof specialization is very similar to the informal definition of term

specialization that we gave in Section 4.2, except that proofs need an additional

tuple of arguments

(pfn〈T 〉1, . . . , pfn〈T 〉nx)

corresponding to the specialized instances of the polytypic function for which we

want to prove the property.

In the informal definition of proof specialization, many details are omitted. In

particular, since T might be an open type, we need some information about these

free variables, which is provided by three environments:

ets For each of the nt type arguments to the property, this environment contains

a mapping ets i (1 � i � nt) from the free variables in T to Coq datatypes so that

we can define the decoding �T �i of T . As explained in Section 5, the type of each

function argument pfn〈T 〉j (1 � j � nx) requires a similar mapping for each of

its np type arguments; this environment is given by (ets)
���� j

.

efs As explained in Section 6, each function argument pfn〈T 〉j requires an

environment ef containing functions for the free variables in T ; efs is a tuple of

nx such environments, one for each argument pfn〈T 〉j .
ep Finally, the definition of proof specialization assumes the existence of a proof

pA for each free variable A. In the formalization, environment ep contains a proof

that the property holds at type A for each free variable A in T .

Figure 9 shows the formal statement specProof’ that given an open type T, a

polytypic proof prf over a polytypic function pfn, and given the environments ets,

efs and ep, we can specialize the proof to T. The proof is by induction on T, as

expected. We do not show the full Coq proof here. Instead, we will discuss the

individual cases of the proof below.

Since users will mostly be interested in proofs over closed types, we also provide

a lemma specProof which states that for a closed type T and a polytypic proof prf

over a polytypic function pfn, we can specialize the proof to the type T; specProof

simply calls specProof’ with the appropriately constructed empty environments.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

252 W. Verbruggen et al.

(* Environment containing proofs for all free variables *)
Definition envp (nt nx np nv : nat) (ek : envk nv) (Pt : PolyType np)
(Pp : PolyProp nt nx Pt) (ets : envts nt nv ek)
(fns_i : ∀ i, gtupleTS (kit (getS i ek) Pt)
(reindex_tuple (idxs Pp) (replace_fvs (tvar nv ek i) ets))) :=

gtupleS (fun i ⇒ specProp’ (tvar nv ek i) Pp ets (fns_i i))
(elements_of_index nv).

Implicit Arguments envp [nt nx np nv ek Pt ets].

(* Proof specialization for open types *)
Lemma specProof’ (nt nx np nv : nat) (k : kind) (ek : envk nv)
(t : type nv ek k) (Pt : PolyType np) (pfn : PolyFn Pt)
(Pp : PolyProp nt nx Pt) (prf : PolyProof pfn Pp) (ets : envts nt nv ek)
(efs : gtupleTS (fun x’ ⇒ envf nv ek Pt x’)
(reindex_tuple (idxs Pp) ets))

(ep : envp Pp (fun i ⇒ cst (tvar nv ek i) pfn (idxs Pp) ets efs))
: specProp’ t Pp ets (cst t pfn (idxs Pp) ets efs).

Proof.
(* See Coq sources; the individual cases are explained in the text. *)

Defined.
Implicit Arguments specProof’ [nt nx np nv k ek Pt pfn Pp].

(* Proof specialization for closed types *)
Definition specProof (nt nx np : nat) (k : kind) (t : closed_type k)
(Pt : PolyType np) (pfn : PolyFn Pt)
(Pp : PolyProp nt nx Pt) (prf : PolyProof pfn Pp)
: specProp t Pp (cst_closed t pfn (idxs Pp)) :=
specProof’ t prf (ets_tt nt)
(create_empty_gtup (envts np 0 tt) nx
(reindex_tuple (idxs Pp) (ets_tt nt))) tt.

Implicit Arguments specProof [nt nx np k Pt pfn Pp].

Fig. 9. Proof specialization.

9.1 Constants

The case for constants is given by the user except that, as in Section 6.1, we need

a weakening lemma. This weakening lemma is a good example of dealing with

heterogeneous equalities, so we will spell the proof out in some detail.

Lemma 2 in Section 6.1 proved that

Pt〈k〉 (�∅
 C : k�1, . . . , �∅
 C : k�n) = Pt〈k〉 (�Γ
 C : k�1, . . . , �Γ
 C : k�n).

We proved this lemma by showing that both argument tuples are the same; since

type constants contain no free variables, both tuples evaluate to (C∗, . . . , C∗) where

C∗ is the Coq type that corresponds to C , i.e. the decoding of C . The specialization

of a polytypic function for a type constant then is the definition given by the user

converted using the proof p of the above equality:

convert p (user definition).

For proof specialization we have to prove a similar lemma:

Lemma 7 (convert tconst specProof)

Pp〈k〉 (�∅
 C : k�0, . . .) (pfn〈∅
 C : k〉, . . .) = Pp〈k〉 (�Γ
 C : k�0, . . .) (pfn〈Γ
 C :

k〉, . . .).

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 253

We again show that the two argument tuples are the same. We already proved this

about the first argument tuples as part of Lemma 2; it remains to show that the

second argument tuples are identical.

Since terms of the form pfn〈∅
 C : k〉 have type Pt〈k〉 (�∅
 C : k�1, . . . , �∅
 C :

k�np) but terms of the form pfn〈Γ
 C : k〉 have type Pt〈k〉 (�Γ
 C : k�1, . . . , �Γ

C : k�np), we will need to use heterogeneous equality:

Lemma 8

pfn〈∅
 C : k〉
Pt〈k〉 (�∅
C:k�0 ,...),Pt〈k〉 (�Γ
C:k�0 ,...)
pfn〈Γ
 C : k〉.

The specialization of a polytypic function to a type constant simply returns the

definition that was given by the programmer converted using a weakening lemma

(Lemma 2). Hence, both sides of the equality reduce to

convert (lemmaa 2 at ∅) (user definition)

 Pt〈k〉 (�∅
C:k�0 ,...),Pt〈k〉 (�Γ
C:k�0 ,...)

convert (lemmaa 2 at Γ) (user definition)

which follows from Lemma 1. We then prove Lemma 7 using the method that

we sketched in Section 2.7: generalize over Lemma 8, rewrite with Lemma 2, and

complete the proof.

9.2 Variables

Recall from Section 3 that variables in our universe are represented by de Bruijn

indices. To construct the proof for a free variable i, we simply look up the ith

element in environment ep. As for term specialization (Section 6), the difficulty in

specializing the case for variables is the definition of the type of the environment,

in this case ep. Informally, the ith element in ep, corresponding to the proof for the

ith variable, has type

Pp〈k〉 (�i�1, . . . , �i�nt) (pfn〈i〉1, . . . , pfn〈i〉nx)

The formal definition of the type of ep, called envp, is given in Figure 9. The

construction of ep will be considered when we discuss lambda abstraction in

Section 9.4.

9.3 Application

For the specialization of a proof prf of the property Pp to an application (T U),

we obtain two induction hypotheses for the types T and U:

IHT : ∀(A1, . . . , Ant) (g1, . . . , gnx) . Pp〈k1〉 (A1, . . . , Ant) (g1, . . . , gnx) →
Pp〈k2〉 (�T �1 A1, . . . , �T �nt Ant) (app fs (pfn〈T 〉1, . . . , pfn〈T 〉nx) (g1, . . . , gnx))

IHU : Pp〈k1〉 (�U�1, . . . , �U�nt) (pfn〈U〉1, . . . , pfn〈U〉nx)

and we need to prove

Pp〈k2〉 (�T U�1, . . . , �T U�nt) (pfn〈T U〉1, . . . , pfn〈T U〉nx)

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

254 W. Verbruggen et al.

If we instantiate the tuple (A1, . . . , Ant) by (�U�1, . . . , �U�nt) and the tuple (g1, . . . , gnx)

by the tuple (pfn〈U〉1, . . . , pfn〈U〉nx) in IHT and apply the result to IHU , we get a

term of type

Pp〈k2〉 (�T �1 �U�1, . . . , �T �nt �U�nt)

(app fs (pfn〈T 〉1, . . . , pfn〈T 〉nx) (pfn〈U〉1, . . . , pfn〈U〉nx))

To get the type we actually need, we specify two conversion lemmas. The first

conversion is fairly straightforward, and is a corollary of Lemma 3 in Section 6.3.

Corollary 1

∀ T U, (�T �1 �U�1, . . . , �T �nt �U�nt) = (�T U�1, . . . , �T U�nt)

The second lemma is more interesting.

Lemma 9 (convert tapp specProof)

∀ T U, (app fs (pfn〈T 〉1, . . . , pfn〈T 〉nx) (�U�1, . . . , �U�nt))

(Pt〈k2〉 (�T �1 �U�1 ,...)���������
1

× ···),(Pt〈k1〉 (�T U�1 ,...)�������
1

× ···)

(pfn〈T U〉1, . . . , pfn〈T U〉nx)

The proof involves some manipulation of heterogeneous equalities. Note that

Corollary 1, in addition to proving the first argument tuples equal, also proves

that the two types involved in the heterogeneous equality in Lemma 9 are equal. �

9.4 Lambda abstraction

For the specialization of a lambda abstraction ΛA . T , we get the induction

hypothesis for the body of the abstraction:

IHT : Pp〈k2〉 (�T �1, . . . , �T �nt) (pfn〈T 〉1, . . . , pfn〈T 〉nx)

for suitably extended environments ets, efs and ep (not shown in the informal

notation). We need to prove

Pp〈k1 → k2〉 (�ΛA . T �1, . . . , �ΛA . T �nt) (pfn〈ΛA . T 〉1, . . . , pfn〈ΛA . T 〉nx)

We know that the specialization Pp〈k1 → k2〉 takes the form

∀A1 . . . Ant (g1, . . . , gnx) . Pp〈k1〉 (A1, . . . , Ant) (g1, . . . , gnx) →
Pp〈k2〉 (�ΛA . T �1 A1, . . . , �ΛA . T �nt Ant)

(app fs (pfn〈ΛA . T 〉1, . . . , pfn〈ΛA . T 〉nx) (g1, . . . , gnx))

Recall that for each free variable A in T , we need:

• A set of nt types, given by ets, used to define �T �i (1 � i � nt).

• For each of the nx function arguments to the property, a function that handles

occurrences of terms of type A, given by efs.

• A proof of the property at A, given by ep.

In the body of the abstraction, we have one additional free variable, so we will need

to extend these three environments: we add (A1, . . . , Ant) to ets, (g1, . . . , gnx) to efs

and the proof of the property Pp〈k1〉 (A1, . . . , Ant) (g1, . . . , gnx) to ep.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 255

The original environment ep contains proofs of type

Pp〈k〉 (�i�1, . . . , �i�nt) (pfn〈i〉1, . . . , pfn〈i〉nx)

for each type variable i of kind k, where the decoding is interpreted with respect

to the original environment ets. However, in the body of the lambda abstraction,

each of these variables is shifted and is now known as i+ 1; variable 0 refers to the

variable bound by the lambda. Hence, we need to convert the types of the proofs in

the ep environment to

Pp〈k〉 (�i + 1�1, . . . , �i + 1�nt) (pfn〈i + 1〉1, . . . , pfn〈i + 1〉nx)

where the decoding is now interpreted with respect to the extended environment

ets.

This involves proving that for each variable i of kind k, we have

pfn〈i〉1
Pt〈k〉(�i�1 ,...,�i�nt)��������
1
,Pt〈k〉(�i+1�1 ,...,�i+1�nt)�����������

1

pfn〈i + 1〉1

where the left side of the equality is interpreted with respect to the original

environments ets and efs, and the right side is interpreted with respect to the

extended environments. In the abstraction case for term specialization, we have a

similar but simpler problem, where we needed to prove only that the two types

associated with this heterogeneous equality are equal.

Since there are quite a few calls to conversion lemmas hidden here, proving this

lemma involves a lot of reasoning about various heterogeneous equalities. In fact,

we had to change the formalization of term specialization to apply converts at a

smaller granularity before we were able to prove this lemma (see also Section 2.7).

Once all environments have been extended, we need to apply the induction

hypothesis IHT , but first we will need two conversion lemmas to get a proof of the

correct type. The first lemma is a corollary of Lemma 4 in Section 6.4.

Corollary 2

∀ A1 . . . Ant T , (�ΛA . T �1 A1, . . . , �ΛA . T �nt Ant) = (�T �1, . . . , �T �nt)

where each �T �i is decoded with ets extended as described above.

The second conversion lemma we need deals with the function arguments.

Lemma 10 (convert tlam specProof)
app fs (pfn〈ΛA . T 〉1, . . . , pfn〈ΛA . T 〉nx) (pfn〈A〉1, . . . , pfn〈A〉nx)

(Pt〈k1→k2〉 (�ΛA . T �1 A1 ,...)�����������
1

× ···),(Pt〈k1→k2〉 (�T �1 ,...)�����
1

× ···)

(pfn〈T 〉1, . . . , pfn〈T 〉nx)

Again, this proof is mostly a matter of juggling with heterogeneous equalities. �

10 Recursion

We have come a long way. We showed how to define polytypic types and functions

in Section 4, how to do type and term specialization in Sections 5 and 6, how to

specify properties of polytypic functions and give polytypic proofs in Section 7 and

how to specialize properties and proofs in Sections 8 and 9.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

256 W. Verbruggen et al.

However, so far we have not discussed recursive datatypes. Unfortunately, we

cannot simply add recursion directly to our type universe, as Hinze (2000) does:

since Coq does not support general recursion at the type level, we would not be

able to define a type decoder for such a universe. Moreover, since all functions in

Coq must be total, the specialization of polytypic functions must also be total.

In this section we discuss how to define corecursive polytypic functions in our

framework. Since datatypes in Haskell have both finite and infinite inhabitants, we

will focus on corecursion rather than recursion. Unfortunately, corecursion requires

some manual work on behalf of the programmer or the prover, and the approach is

limited because of restrictions posed by the Coq guardedness checker. Nevertheless,

our proof of concept demonstrates that the Generic Haskell approach is feasible in

a formal setting.

Like our universe, the universe in Generic Haskell or Generic Clean does not include

a general recursion operator either, as discussed by Löh (2004) in Section 7.5.1 and

Alimarine (2005) in Chapter 2. Instead, recursion happens at the term level during

the translation to and from the structural representation of the datatype. We would

like to use a similar solution to recursion in our system. As an example, let us have

a look at the coinductive type list:

CoInductive list (A : Set) : Set :=

| nil : list A

| cons : A → list A → list A.

Definition list_kind : kind := karr star star.

Definition list_struct : type 1 (list_kind, tt) list_kind :=

let var := tvar 2 (star, (list_kind, tt))

in tlam (1 + var None × var (Some None) @ var None).

Definition list’ (A : Set) : Set :=

decT list_struct (list, tt) A.

Although the notation would benefit from some syntactic sugar, hopefully it is clear

that list struct corresponds to the structural type λA . 1 +A × B A, where B is a

free variable of kind � → �.

We decode list struct to an actual Coq type using our type decoder, where we

pass the coinductive list type as the decoding of the free variable B. In other words,

the decoded type list’ corresponds to the type λA . 1 +A× list A. The two types

list and list’ are isomorphic, and this isomorphism is witnessed by an embedding-

projection pair (fromList, toList) where we prove that fromList ◦ toList = id =

toList ◦ fromList.

Given such a structural representation for lists, we apply our existing definition of

term specialization to get the polytypic map function specialized to the list struct

type:

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 257

Definition mapList’ :=

specTerm’ list_struct map ((list, tt), ((list, tt), tt)).

Coq is now able to tell us that the type of mapList’ is3

(∀ A B : Set, (A → B) → list A → list B) →
∀ A B : Set, (A → B) → list’ A → list’ B.

We then use this definition of mapList’ to coinductively define map specialized to

list:

CoFixpoint mapList (A B : Set) (f : A → B) (l : list A)

: list B :=

toList (mapList’ mapList f (fromList l)).

This is exactly the sort of definition that would be used in Generic Haskell or

Generic Clean, but unfortunately the definition is rejected by Coq.

As we have seen, recursive functions must terminate, and Coq guarantees termi-

nation by posing a syntactic restriction on the way functions may be defined: they

have to be “guarded-by-destructors”. Intuitively, this constraint imposes a bound on

the number of possible recursive calls using the size of the term given as input. For

functions that produce terms in coinductive types, restrictions are instead placed on

the way the output data are produced. A corecursive call is accepted only if some

information has been produced in the result in the form of a constructor. Calls must

be “guarded-by-constructors” (Bertot 2005). Guardedness can be described in two

steps (Bertot & Komendantskaya 2008):

1. A position is pre-guarded if it occurs as the root of the function body, or if it

is a direct subterm of a pattern-matching construct or a conditional statement,

which is itself in a pre-guarded position.

2. A position is guarded if it occurs as a direct subterm of a constructor for

the coinductive type that is being defined and if this constructor occurs in a

pre-guarded or guarded position.

A corecursive function is guarded if all of its corecursive calls occur in guarded

positions. Unfortunately, the definition of mapList above is not (obviously) guarded

since mapList appears in a non-guarded position, and Coq rejects its definition.

However, the only reason that it does not pass Coq’s guardedness check is because

Coq does not sufficiently unroll its definition. Coq’s guardedness checker reduces

the definition of mapList to

match

match

match l with

| nil ⇒ inl _ tt

3 The function mapList’ actually requires an environment containing the map function on list as its
first argument. To aid readability, we will assume here that its first argument is simply this function,
not wrapped in any environment.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

258 W. Verbruggen et al.

| cons a l’ ⇒ inr _ (a, l’)

end

with

| inl _ ⇒ inl _ tt

| inr (a, l’) ⇒ inr _ (f a, mapList f l’)

end

with

| inl _ ⇒ nil

| inr (a, l’) ⇒ cons a l’

end.

Intuitively, this can be reduced to

match l with

| nil ⇒ nil

| cons a l’ ⇒ cons (f a) (mapList f l’)

end

and we see that mapList is in fact guarded. Unfortunately, the Coq guardedness

checker is not sophisticated enough to see it.

10.1 CPS transforms

One way to convince Coq that the above coinductive definition of mapList is

guarded is to use CPS transforms (Plotkin 1975). A function is in continuation-

passing style (CPS) if instead of returning a value it takes an explicit continuation

function which is applied to the result of the function.4

We must modify mapList’ slightly so that it does not return the resulting list’ B

directly, but instead applies a continuation K. We then move the application of K into

the branches of the match construct, ensuring that Coq will unfold the application

of K.

Definition CPS_mapList’

(rec : ∀ A B : Set, (A → B) → list A → list B) (A B R : Set)

(f : A → B) (l : list’ A) (K : list’ B → R) : R :=

match l with

| inl u ⇒ K (inl _ u)

| inr (a, l’) ⇒ K (inr _ (f a, rec f l’))

end.

Implicit Arguments CPS_mapList’ [A B R].

We then use CPS mapList’ to define CPS mapList, much as we did before, except

that we now pass toList as the continuation:

CoFixpoint CPS_mapList (A B : Set) (f : A → B)

(l : list A) : list B :=

CPS_mapList’ CPS_mapList f (fromList l) (@toList B).

4 Thanks to Bruno Barras and Russell O’Connor on the Coq mailing list for this suggestion.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 259

The @-notation in @toList B allows us to implicitly state the type arguments to

toList which would normally be explicit. Because the application of toList is now

moved inside the branches of the match construct associated with CPS mapList’,

Coq is able to reduce the definition of CPS mapList to

CPS_mapList f l =

match

match l with

| nil ⇒ inl _ tt

| cons a l’ ⇒ inr _ (a, l’)

end

with

| inl _ ⇒ nil

| inr (a, l’) ⇒ cons (f a) (CPS_mapList f l’)

end

and this definition is accepted because the corecursive call is clearly guarded by the

cons constructor.

Although the use of CPS transforms enables Coq to sufficiently unroll the term to

verify that it is guarded, the integration of this method with our existing development

causes some problems. In particular, we would need to modify the return type of

term specialization to incorporate the CPS transform.

As discussed in Section 6, the type of term specialization is given by type

specialization:

specTerm (t : closed_type k) (pfn : PolyFn Pt) : specType t Pt.

Type specialization for the polytypic type Map takes the type for kind � as given

by the user:

Definition Map : PolyType 2 :=

polyType 2 (fun A B : Set ⇒ A → B)

and specializes this to kind � → � to get the correct type for map acting on the

structural representation of lists. To incorporate the CPS transform, we need to find

a new type Map which gives us the correct specialized type for lists and the definition

of polytypic types and functions given by the user must change. Moreover, it is not

obvious what the new polytypic type Map for kind � should be. We might consider

the following definition:

Definition Map : PolyType 3 :=

polyType 3 (fun A B R : Set ⇒ A → (B → R) → R).

However, its specialization to the type list’ would be

∀ A B R : Set, (A → (B → R) → R) →
list’ A → (list’ B → list’ R) → list’ R

whereas we would expect a continuation passing version of map to have the

type

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

260 W. Verbruggen et al.

µ-reduction is defined to be the smallest compatible closure of

matchp

(
matchp′ e′ with 〈 f ′1,…〉

)
with 〈 f1,…〉

→µ matchp•p′ e′with 〈(λ x . matchp x with 〈 f1,…〉)• f ′1,…〉

where f •0 e = f e
f •(n+1) (λ x . e) = λ x . (f •n e)

Fig. 10. μ-Reduction.

∀ A B R : Set, (A → (B → R) → R) →
list’ A → (list’ B → R) → R

Unfortunately, there does not seem to be a definition of Map that specializes to

the correct type for CPS mapList’, so we cannot easily modify type and term

specialization to integrate CPS transforms.

10.2 μ-Reduction

Coq checks guardedness with regard to the input modulo β (function application),

δ (unfolding of constants), ι (pattern matching and unrolling of fixpoints) and ζ

(local definitions) reduction. In this section, we will show how to modify the actual

guardedness checker in the Coq source code in such a way that it reduces the

definition of mapList sufficiently to pass the test. It is important to note, however,

that we do not modify the code that performs the guardedness check itself: the

definition of guardedness does not change. We only apply an additional reduction

before the function is checked for guardedness, which we will call μ-reduction.

Intuitively, μ-reduction can be thought of as the collapsing of nested match

statements, similar to the case-of-case transformation implemented in the Glasgow

Haskell Compiler (see Section 5 of Peyton Jones 1996). For a more formal definition

we will represent the match construct by

matchp e with 〈f1, f2, . . .〉

This is close to the internal representation of match in the Coq source code, modulo

some syntactic differences to aid readability. The attribute p indicates the type of

the match. For a scrutinee e of type t1, p will return the type of the branches; that

is, p takes the form λ(x : t1) . (t2 : Set). A match is dependent if the type of the

branches depends on the value of the scrutinee – in other words, when x occurs free

in t2. If the match is not dependent – the type of each branch is the same – it is

called a simple match.

The branches are represented by the functions f1, f2, . . . , whose arguments cor-

respond to those of the constructor associated with that branch. For example, if

we match on a term of type list A, the branch for the nil constructor will be a

nullary function of type (p nil), and the branch for the cons constructor will be a

binary function of the form λa l . e′, where e′ : p (cons a l).

Figure 10 shows the definition of μ-reduction. It makes use of an operator f •n g
which computes composition of a function f with a function g of arity at least n.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 261

The definition assumes that g is a concrete function; i.e. of the shape λx1 . λx2 . · · ·.
This is sufficient for our purposes. When applying the (•)-operator to a branch, n

will be the arity of the constructor associated with that branch; in our examples

we will leave n implicit. The unrolled definition of mapList that we saw above is

represented internally in Coq as

match
λ : list’ B . list B

match
λ : list’ A . list’ B

match
λ : list A . list’ A l

with 〈inl tt, λa l′ . inr (a, l′)〉
with 〈λu . inl tt, λ(a, l′) . inr (f a,mapList f l′)〉

with 〈λu . nil, λ(a, l′) . cons a l′〉

Applying μ-reduction to this term, as well as the other reductions, results in the

term

match
λ : list A . list B

l

with 〈nil, λa l′ . cons (f a) (mapList f l′)〉
which corresponds to the definition of mapList that we would expect.

When we modify Coq to check guardedness with respect to μ-reduction in addition

to the other reduction relations, Coq will be able to verify that the corecursive call

in mapList is in fact guarded. The diff file detailing our modifications to the Coq

source code can be found online (Verbruggen 2009).

10.3 Proofs

In Section 10.2, we have shown how coinduction can be used to define the

specialization of a polytypic function to a corecursive datatype. This section shows

how to specialize proofs of polytypic properties in the same way.

Let us take a look at the proof that map preserves identities: map Id. Since we

are dealing with potentially infinite lists, we can prove the functor laws only up to

bisimilarity, which we define as

CoInductive bisim_list (A : Set) : list A → list A → Prop :=

| bisim_nil : bisim_list nil nil

| bisim_cons : ∀ (a1 a2 : A) (l1 l2 : list A), a1 = a2 →
bisim_list l1 l2 → bisim_list (cons a1 l1) (cons a2 l2).

Inductive bisim_list’ (A : Set) : list’ A → list’ A → Prop :=

| bisim_inl : ∀ u u’ : unit, bisim_list’ (inl _ u) (inl _ u’)

| bisim_inr : ∀ (a1 a2 : A) (l1 l2 : list A), a1 = a2

→ bisim_list l1 l2

→ bisim_list’ (inr unit (a1, l1)) (inr unit (a2, l2)).

The bisimilarity relation for list’ does not need to be coinductive, because its

proofs will always terminate: we can provide both a proof that the heads of the lists

are equal, and a proof that the tails are bisimilar, using bisim list. We now define

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

262 W. Verbruggen et al.

mapIdList’, a proof that the function mapList’ preserves identities, given that we

have such a proof for the tail of the list:

Lemma mapIdList’ (A : Set) (f : A → A) (l : list’ A)

(rec : ∀ (A : Set) (f : A → A) (l : list A),

(∀ x : A, f x = x) → bisim_list (mapList f l) l)

: (∀ x : A, f x = x) →
bisim_list’ (mapList’ f l (@mapList A A)) l.

Ideally, this property and its proof will be provided by the specialization of the

property Id and its proof map Id to list’. However, since unlike for equality we

cannot give one general definition of bisimilarity that can be used on all datatypes,

we cannot even state the polytypic property, much less give a polytypic proof for it.

This is also the reason that we use equality rather than bisimilarity for the elements

of the list. This can be solved by using type-indexed types, which is discussed in

future work. In this section we will simply assume that mapIdList’ is defined, and

focus on the problem of corecursion only.

Given a proof of preservation of identity for list’, the proof of preservation of

identity for list is approximately

CoFixpoint mapIdList (A : Set) (f : A → A) (Hx : ∀ x : A, f x = x)

(l : list A) : bisim_list (mapList f l) l :=

to_preserves_bisim_list (mapIdList’ mapIdList f Hx (fromList l)).

Although the actual proof is a little more complicated because we need to manually

unroll coinductive definitions, the proof as shown is the proof “up to some

matching on equality”. We can see that the proof follows the structure of mapList

exactly; the only difference is that the result is not guarded by toList but by

to preserves bisim list, which is defined as

Definition to_preserves_bisim (A : Set) (l l’ : list’ A)

(H : bisim_list’ l l’) : bisim_list (toList l) (toList l’) :=

match H in bisim_list’ l l’

return bisim_list (toList l) (toList l’) with

| bisim_inl _ _ ⇒ bisim_nil A

| bisim_inr a b la lb Ha Hl ⇒ bisim_cons Ha Hl

end.

The recursive call to mapIdList occurs as an argument to mapIdList’. Unrolling

the definition of to preserves bisim, we see that the recursive call will match

the argument Hl for the bisim inr constructor. Since Hl only occurs guarded by

bisim cons, the above proof of mapIdList is guarded, provided that we use our

definition of μ-reduction as described in Section 10.2.

10.4 Reflection

Adding μ-reduction to the guardedness checker allows us to define map and various

other examples. This shows that at least in principle it is possible to extend the

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 263

guardedness checker in such a way that we can use the Generic Haskell approach to

recursion. However, checking productivity with a syntactic guardedness check that

relies on unrolling is computationally expensive and remains brittle. For example,

adding μ-reduction is not sufficient to check the guardedness of coinductive proofs

computed by proof specialization, although it is not clear at this point what is

stopping the guardedness checker from unrolling the proof sufficiently. Ultimately, a

semantic approach, possibly type based (Abel 2006, 2009), would be preferable but

such approaches are not currently available for Coq.

11 Related Work

The literature on generic programming is vast and a detailed survey of approaches

to generic programming is beyond the scope of this paper. We refer the reader

to the survey paper by Hinze et al. (2006), or by Rodriguez et al. (2008), which

gives an overview of the numerous “light-weight” generic programming approaches

implemented as libraries in Haskell. Instead, we will limit the discussion to related

work on formal (that is, machine verified) definitions of and proofs about generic

functions.

11.1 PolyP-style generics

The work by Pfeifer & Rueß (1999) is the first formalization of polytypic program-

ming in a dependent language. The paper consists of two parts. The first part of

the paper formalizes the semantic bifunctor-based approach that is known in the

functional programming community as origami programming (Gibbons 2006). The

translation to a dependently typed language is reasonably straightforward and we

do not reproduce it here. However, note that definitions such as map and fold as

they are usually given in PolyP-style of programming

map :: Bifunctor s => (a → b) → Fix s a → Fix s b

map f = In . bimap f (map f) . out

fold :: Bifunctor s => (s a b → b) → Fix s a → b

fold f = f . bimap id (fold f) . out

cannot be used in a dependently typed language that uses structural recursion.

Instead, it is assumed that as part of the proof of the initiality of a datatype a

dependent eliminator (i.e. a fold) is given (Definitions 9 and 10 in Pfeifer & Rueß

1999). The polytypic map function can then of course easily be defined.

The second part of the paper formalizes the syntactic approach familiar from

PolyP (Jansson & Jeuring 1997). The universe that is considered is simpler than that

in PolyP, however, and contains only sums, products, and two distinguished free

variables to denote the type argument and the recursive occurrences of the datatype.

Like in PolyP, a syntactic approach is used to define bimap once and for all for

every datatype that can be represented in the universe. Moreover, the bimap laws –

preservation of identity and composition – are proved, and the proofs are trivial.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

264 W. Verbruggen et al.

Note that here, like in PolyP, the bifunctor is not recursive and does not need to

be: the recursion is handled by an explicit parameter. Moreover, the authors do not

give a definition of the initial algebra induced by these (bi)functors: in other words,

recursion is not handled polytypically.

Benke et al. (2003) continue from the work by Pfeifer & Rueß (1999); although

it seems that Benke et al. do give a decoder for the universe and, for instance, give

a fold operation, well-definedness (termination) of the fold operation is taken for

granted. For their first universe, they define fold exactly as described above as “PolyP

style”. In a type theory such as Coq that relies on “obvious” structural induction,

such a definition will not be accepted.

Benke et al. (2003) continue by extending the first universe in various ways:

first to almost the universe of PolyP and then beyond by supporting mutually

recursive datatypes as well as indexed datatypes. They give a proof of reflexivity

and substitutivity of Boolean equality in the smaller universe.

Compared to the universe we consider in this paper, however, the class of kinds

supported by both is limited to first-order kinds (in the case of Pfeifer & Rueß 1999,

even only kind � → �, like in PolyP).

11.2 Strictly positive types

Morris et al. (2006) find a way to decode a universe of strictly positive types that

includes recursion. The approach relies on a cunning idea: rather than giving a

direct translation from a code to a datatype, the authors give a datatype El which is

indexed by a code: rather than giving the translation to a datatype, they formalize

what it means for a datatype corresponding to a code to be inhabited. We will

discuss why we cannot adopt this approach in Section 6.12.

When we compare their universe with that we use in this paper (Figures 2

and 3), we find many differences. Some seem merely cosmetic; for example, the type

constants and the constructors for selecting specific free variables have been inlined

into the definition of the universe. The authors say that inlining the constructors for

selecting free variables makes proofs easier and avoids some conversion lemmas; it

would be interesting to see if it would have the same effect in our universe. Other

differences are more important: in particular, the universe does not include type

application, and therefore covers only polymorphic types of first-order kind.

Polytypic functions are functions on elements of the decoder datatype El. Polytypic

functions for this universe are quite similar to their Generic Haskell counterpart,

except in how they deal with free variables. It should however be possible to

abstract this out in a similar way that we have done in this paper, by defining a

record comparable to PolyFn and a separate specialization process.

In the paper, Morris et al. (2006) prove the two functor laws “by easy induction”.

So it seems that proofs in their universe do not need the sort of infrastructure we

have given in this paper. It is not obvious what properties of their universe makes

this possible, and it would be interesting to see if we can “backport” some properties

of their approach to make our proofs easier.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 265

On the other hand, the definition of the functor laws is not as direct. For example,

a special composition operator needs to be defined for composition of morphisms

over environments.

Morris et al. (2009) continue with an extension to dependent datatypes, but a

discussion of these “strictly positive families” is beyond the scope of this paper.

11.3 Generic Haskell-style generics

There are a few implementations of Generic Haskell-style generics in a dependent

programming language: Altenkirch & McBride (2003) give an implementation in

the language Oleg (McBride 1999), and Norell (2002) presents a similar design in

Alfa and follows (a preprint of) the first paper closely; Sheard (2007) goes some way

towards a design in Ωmega. None of these do any proofs, polytypic or otherwise,

over polytypic programs.

Since both our implementation in Coq and the implementations in Oleg and

Alfa are based on the work by Hinze, it should come as no surprise that there

are many similarities between the formalizations. Of course, the host language is

different, which inevitably leads to variation in the design. Most notably, Oleg and

Alfa appear to support general recursion, which simplifies the implementation of

polytypic programs but is less suitable to the implementation of polytypic proofs.

An important difference between these designs and our own is that the concept

of a polytypic function is not reified in the host language: there is no data structure

that corresponds to our PolyFn record (Section 4.2). Instead, polytypic functions are

written by direct induction on the universe and there is no separate specialization

process. We think that it is important to identify polytypic functions (and polytypic

proofs) as stand-alone concepts, as we feel it makes functions and proofs easier to

write. Moreover, since it forces polytypic functions to be more uniform as most of the

work is done by specialization, polytypic proofs can also be smaller. Finally, it will

make the formalization more accessible to programmers used to Generic Haskell.

11.4 Containers

Containers (Hoogendijk & de Moor 2000; Abbott et al. 2003; Jay 1995; Backhouse &

Hoogendijk 2003) are a very different view of datatypes. Unfortunately, most of the

literature on containers relies heavily on category theory and is therefore not easily

accessible to people not well-versed in this subject. Section 5 of Altenkirch et al.

(2005) is one notable exception and uses type theory instead.

The basic idea of container types is to separate out the shape of a term, like a list

or a tree, from the values in the term. To interpret a term as a container, we need

three components: a characterization of the shape of the term, a mapping from this

shape to a set of positions within the term, and a mapping from these positions to

the values in the term.

The standard example is the container encoding of a list: the shape of the list is a

natural number, the position in a list of shape n is represented by the set of indices

{0 . . . n− 1}, and the mapping from positions to values is the list indexing operation.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

266 W. Verbruggen et al.

Some definitions and proofs about containers can be done semantically. For

instance, we can easily prove (up to eta-expansion) that every container is a functor.

However, since containers can be built from “constant containers”, “sum containers”,

“product containers”, etc., we can also give syntactic definitions and proofs by

induction on the structure of the container. This makes it possible to define a generic

equality function, for instance. Containers do not generalize easily to higher-order

kinds (C. McBride, 30 August 2009, oral personal communication), but do generalize

to indexed (dependent) datatypes (Morris & Altenkirch 2009). A discussion of

indexed containers is, however, beyond the scope of this paper.

12 Future Work

As discussed in Section 9, a polytypic proof is defined by providing the proofs for

each of the type constants. Since these proofs are relatively straightforward and all

follow a similar structure, it should be possible to automate such polytypic proofs

somewhat.

Quite a bit of machinery is necessary before we can specialize polytypic functions

and proofs to coinductive datatypes. This machinery includes a structural represen-

tation and a corresponding embedding-projection pair for each datatype, the actual

definition of the polytypic function specialized to the coinductive type, and a number

of standard lemmas for each datatype. Most of this infrastructure is also needed

in Generic Haskell, where it is generated by the Generic Haskell preprocessor. It

would be useful to provide tactics that can automatically generate these definitions.

There are a number of ways in which our system can be extended. We would like

to extend the type of polytypic properties to allow properties concerning multiple

polytypic functions of different types, such as the property that the polytypic decode

function is right inverse to the polytypic encode function. Furthermore, to allow

for polytypic functions such as parsers and pretty printers, our universe needs to be

extended to include some meta-information such as constructor names.

Another interesting extension would be the use of type-indexed types. Since we are

working in a dependently typed language one would hope that there is no essential

difference between type-indexed values and type-indexed types. Using type-indexed

types, we can state the preservation of identity law as

Id〈�〉 T = λf . ∀c : closed type � . decT c = T → ∀x : c . f x ≈ 〈c〉 x.

In words, for all types T whose code in the universe is c and for all elements x of

type c, map〈c〉 x is related to x in the bisimilarity relation specialized to c.

Unfortunately, the way we set up the universe in Section 3.2 requires that the

codomain of a polytypic function must be a type in an impredicative universe. This

means that supporting type-indexed types may be more difficult than it should be:

by choosing Set we cannot return a type from a polytypic function and we cannot

simply substitute Type for Set as it is not impredicative.

In Section 10.4 we mention that we cannot use proof specialization if we want

to construct proofs over coinductive datatypes. The proofs returned by proof

specialization are too complex for the Coq guardedness checker to deal with, and it

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 267

will not be able to verify that proofs constructed from these definitions are guarded.

Some careful dissecting of the result of proof specialization is required to find the

cause for this guardedness problem.

The ideal solution to dealing with recursion would be to extend our universe

directly with support for recursion. This extension is a challenging research problem,

however. In particular, it is difficult to see how we could adopt the approach taken

in the definition of the universe of strictly positive types (see Section 11.2). As

explained, Morris et al. (2006) do not give a direct translation from a code in their

universe to a datatype. Instead, they give a datatype which is indexed by a code:

rather than giving the translation to a datatype they formalize what it means for

a datatype corresponding to a code to be inhabited. Although this is an ingenious

idea, it does not easily scale to higher-order kinds. The decoding of a type variable

of a kind other than � will be an uninhabited type. By directly formalizing what

it means for a type corresponding to a code to be inhabited, such type variables

cannot be treated. In particular, we cannot add type application to the universe in

the same way – we cannot define what it means for a type corresponding to a code

F A to be inhabited by defining what it means for the types corresponding to F and

A to be inhabited.

Finally, there are of course semantic differences between Generic Haskell and Coq,

which means that proofs over Generic Haskell-style programs using our framework

do not quite describe the same programs as the programs in Generic Haskell

itself. We feel that the framework we provide will nevertheless be useful to Generic

Haskell programmers, but alternative solutions are also possible. For instance, we

might embed Haskell as a domain specific language within Coq and reason about

its semantics explicitly. This would however be a considerable amount of work and

quite a different approach to that we advocate in this paper.

13 Conclusions

Implementing polytypic programming, kind-indexed or otherwise, within a depen-

dently typed language rather than as a language extension to or preprocessor for a

functional language has significant benefits. Since we formalize type specialization

within the host language, we get type checking of polytypic functions virtually

for free. Furthermore, polytypic functions can be reified within the host language

and are therefore first-class citizens: they can be passed around as arguments and

returned as results. As a consequence, polytypic functions can be defined in terms of

other polytypic functions and it becomes possible to define combinators on polytypic

functions.

Throughout the development, we needed to operate at the boundaries of type

theory: we wrestled with universe inconsistencies and the absence of universe

polymorphism, the need for impredicativity and ubiquitous reasoning about hetero-

geneous equalities. The syntactic checks for guardedness can be difficult to satisfy –

when a proof is defined this way it is accepted, but when a proof is defined that way

it is rejected. Semantic approaches to guardedness would be preferable.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

268 W. Verbruggen et al.

Formalizing polytypic programs and proofs is therefore non-trivial, but once the

infrastructure is in place that is no longer an issue. By reifying polytypic functions as

a datatype PolyFn, Generic Haskell programmers will feel at home in Coq because

they can define polytypic functions in a way that is familiar to them. The process

of specialization is also known from Generic Haskell; the only difference is that

specialization is now an ordinary function within the host language which takes

a PolyFn as input and returns the specialized function as output, which can then

immediately be used in the definition of other functions.

Moreover, we have provided exactly the same infrastructure for proofs. By reifying

polytypic proofs as a datatype PolyProof, the correspondence between polytypic

functions and their polytypic proofs becomes very clear. Programmers need to give

proofs for, and only for, the same cases that they need to give instances for when

they define the polytypic function itself. Although we have to restrain the properties

that can be expressed somewhat so that we can define proof specialization, these

restrictions should not be too limiting in practice.

Acknowledgments

We would like to thank the anonymous reviewers for their detailed comments which

improved the paper considerably.

References

Abbott, M., Altenkirch, T. & Ghani, N. (2003) Categories of containers. In Proceedings of the

6th International Conference on Foundations of Software Science and Computation Structures,

Warsaw, Poland. Lecture Notes in Computer Science, vol. 2620. Springer, pp. 23–38.

Abel, A. (2006) Type-Based Termination: A Polymorphic Lambda-Calculus with Sized Higher-

Order Types. PhD thesis, Fakültat für Mathematik, Informatik und Statistik der Ludwig-

Maximilians-Universität München.

Abel, A. (2009) Type-based termination of generic programs, Sci. Comput. Program., 74 (8):

550–567. Special Issue on Mathematics of Program Construction (MPC’06).

Alimarine, A. (2005) Generic Functional Programming: Conceptual Design, Implementation and

Applications. PhD thesis, Radboud Universiteit Nijmegen, The Netherlands.

Altenkirch, T. & McBride, C. (2003) Generic programming within dependently typed

programming. In Proceedings of the IFIP TC2/WG2.1 Working Conference on Generic

Programming, Schloss Dagstuhl, July 2002. Kluwer, pp. 1–20.

Altenkirch, T., McBride, C. & McKinna, J. (April 2005). Why dependent types matter

[online]. Accessed September 12, 2010. Available at: http://www.cs.nott.ac.uk/∼txa/

publ/ydtm.pdf.

Backhouse, R. & Hoogendijk, P. (2003) Generic properties of datatypes. In Generic

Programming: Advanced Lectures. Lecture Notes in Computer Science, vol. 2793. Springer,

pp. 97–132.

Benke, M., Dybjer, P. & Jansson, P. (2003) Universes for generic programs and proofs in

dependent type theory, Nord. J. Comput., 10 (4): 265–289.

Bertot, Y. (2005) Filters on coinductive streams, an application to eratosthenes’ sieve. In

TLCA’05: Proceedings of the 7th International Conference on Typed Lambda Calculi and

Applications. Lecture Notes in Computer Science, vol. 3461. Nara, Japan: Springer, pp. 102–

115.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

Formal polytypic programs and proofs 269

Bertot, Y. & Castéran, P. (2004) Coq’Art: Interactive Theorem Proving and Program

Development. Springer.

Bertot, Y. & Komendantskaya, E. (2008) Inductive and coinductive components of corecursive

functions in Coq, Electron. Notes Theor. Comput. Sci., 203 (5): 25–47.

de Bruijn, N. G. (1972) A lambda calculus notation with nameless dummies, Indagationes

Math., 34: 381–392.

Coq Development Team. (2008a) Coq frequently asked questions (v8.1) [online].

Accessed September 12, 2010. Available at: http://www.lix.polytechnique.fr/

coq/node/16.

Coq Development Team. (2008b) Coq reference manual (version 8.2) [online]. Accessed

September 12, 2010. Available at: http://www.lix.polytechnique.fr/coq/

refman/.

Gibbons, J. (2006) Datatype-generic programming. In School on Datatype-Generic

Programming. Lecture Notes in Computer Science, vol. 4719. Springer, pp. 1–71.

Harper, R. & Pollack, R. (1991) Type checking with universes, Theor. Comput. Sci., 89:

107–136.

Hinze, R. (2000) Generic Programs and Proofs. Germany: Habilitationsschrift, Universität

Bonn.

Hinze, R. (2006) Generics for the masses, J. Funct. Program., 16: 451–482.

Hinze, R., Jeuring, J. & Löh, A. (2006) Comparing approaches to generic programming in

Haskell. In School on Datatype-Generic Programming. Lecture Notes in Computer Science,

vol. 4719. Springer, pp. 72–149.

Hinze, R. & Löh, A. (2006) Generic programming, now! In School on Datatype-Generic

Programming. Lecture Notes in Computer Science, vol. 4719. Springer, pp. 150–208.

Hinze, R. & Löh, A. (2009) Generic programming in 3D, Sci. Comput. Program., 74: 590–628.

Hinze, R. & Peyton Jones, S. (2001) Derivable type classes, Electron. Notes Theor. Comput.

Sci., 41 (1): 227–236.

Hoogendijk, P. & de Moor, O. (2000) Container types categorically, J. Funct. Program., 10

(2): 191–225.

Hurkens, A. J. C. (1995) A simplification of Girard’s paradox. In TLCA’95: Proceedings of

the Second International Conference on Typed Lambda Calculi and Applications, Edinburgh,

UK. Springer, pp. 266–278.

Jansson, P. & Jeuring, J. (1997) PolyP – A polytypic programming language extension.

In Popl’97: Conference Record 24th ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages, Paris, France. ACM, pp. 470–482.

Jay, C. B. (1995) A semantics for shape. In Selected Papers of ESOP’94, the 5th European

Symposium on Programming. Elsevier, pp. 251–283.

Lämmel, R. & Peyton Jones, S. (2003) Scrap your boilerplate: A practical design pattern for

generic programming. In TLDI’03: ACM SIGPLAN International Workshop on Types in

Language Design and Implementation, New Orleans, Louisiana, USA, vol. 38. ACM, pp. 26–

37.

Lämmel, R. & Visser, J. (2002) Typed combinators for generic traversal. In PADL’02:

Proceedings of the 4th International Symposium on Practical Aspects of Declarative

Languages, Portland, OR, USA. Lecture Notes in Computer Science, vol. 2257. Springer,

pp. 137–154.

Löh, A. (2004) Exploring Generic Haskell. PhD thesis, Instituut voor Programmatuurkunde

en Algoritmiek, Utrecht, The Netherlands.

McBride, C. (1999) Dependently Typed Functional Programs and Their Proofs. PhD thesis,

University of Edinburgh.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

270 W. Verbruggen et al.

McBride, C. (2002) Elimination with a motive. In TYPES’00: Selected Papers from the

International Workshop on Types for Proofs and Programs, Durham, UK. Springer, pp. 197–

216.

Morris, P. & Altenkirch, T. (2009) Indexed containers. In LICS’09: 24th IEEE Symposium in

Logic in Computer Science. Los Angeles, CA, USA.

Morris, P., Altenkirch, T. & McBride, C. (2006) Exploring the regular tree types. In TYPES’04:

Types for Proofs and Programs, France. Lecture Notes in Computer Science, vol. 3839.

Springer, pp. 252–267.

Morris, P., Altenkirch, T. & Ghani, N. (January 2007) Constructing strictly positive families.

In CATS’07: The Australian Theory Symposium. Ballarat, Australia.

Morris, P., Altenkirch, T. & Ghani, N. (2009) A universe of strictly positive families, Int. J.

Found. Comput. Sci., 20 (1): 83–107.

Norell, U. (2002) Functional Generic Programming and Type Theory. MPhil thesis, Computing

Science, Chalmers University of Technology.

Peyton Jones, S. (1996) Compiling Haskell by program transformation: A report from the

trenches. In ESOP’96: Proceedings of the European Symposium on Programming, Linköping,

Sweden. Lecture Notes in Computer Science, vol. 1058. Springer, pp. 18–44.

Pfeifer, H. & Rueß, H. (1999) Polytypic proof construction. In TPHOLs’99: Proceedings of

the 12th International Conference on Theorem Proving in Higher-Order Logics, Nice, France.

Springer, pp. 55–72.

Plotkin, G. (1975) Call-by-name, call-by-value and the λ-calculus, Theor. Comput. Sci., 1:

125–159.

Rodriguez, A., Holdermans, S., Löh, A. & Jeuring, J. (2009) Generic programming with fixed

points for mutually recursive datatypes. In ICFP’09: Proceeding of the 14th ACM SIGPLAN

International Conference on Functional Programming, Edinburgh, UK. ACM, pp. 233–244.

Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O. & d. S. Oliveira, B. C. (2008)

Comparing libraries for generic programming in Haskell. In Haskell’08: Proceedings of

the First ACM SIGPLAN Symposium on Haskell, Victoria, British Columbia, Canada. ACM,

pp. 111–122.

Schrijvers, T., Peyton Jones, S., Sulzmann, M. & Vytiniotis, D. (2009) Complete and

decidable type inference for GADTs. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN

International Conference on Functional Programming, Edinburgh, UK. ACM, pp. 341–352.

Sheard, T. (2007) Generic programming in Ωmega. In Spring School on Datatype-Generic

Programming. Lecture Notes in Computer Science, vol. 4719. Springer, pp. 258–284.

Sørensen, M. H. & Urzyczyn, P. (2006) Lectures on the Curry-Howard Isomorphism. Elsevier.

Verbruggen, W. (2009) Coq Sources [online]. Accessed November 23, 2010. Available at:

http://www.wendyverbruggen. net/publications.

Vytiniotis, D., Weirich, S. & Peyton Jones, S. (2006) Boxy types: Inference for higher-rank types

and impredicativity. In ICFP’06: Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming, Portland, Oregon. ACM, pp. 251–262.

https://doi.org/10.1017/S0956796810000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000158

