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The field of research in two-dimensional (2D) materials, which possess valuable properties for many 
applications, has experienced extraordinary growth during the past decade [1,2]. To understand the 
structure-property relationship of 2D materials and heterostructures at the fundamental level, we must 
know their 3D atomic structure and crystal defects with high precision. Here, we developed scanning 
atomic electron tomography (sAET) to localize the 3D atomic coordinates in 2D materials and 
heterostructures with picometer precision. AET allows the determination of 3D atomic structure of 
crystal defects and disorder systems [4-9], and has recently been advanced to capture nucleation at 4D 
atomic resolution [10]. However, AET has thus far been limited to metallic nanoparticles and needle-
shaped samples. Application of AET to 2D materials and heterostructures would open a new frontier in 
3D atomic structure characterization, but requires overcoming three obstacles. First, these materials are 
electron beam sensitive and the experiments must be performed with low electron doses. Second, the 3D 
precision of experimental atomic coordinates must be on the picometer scale so that they can be used as 
direct input to quantum mechanical calculations to determine physical, material and electronic 
properties. Third, due to the geometric constraint of 2D materials and heterostructures, the tilt range of 
data acquisition is limited by the reduced depth of focus of aberration-corrected electron microscopy.  
 
Using a Re-doped MoS2 monolayer, we demonstrated a general sAET method to overcome these 
limitations and determined the 3D coordinates of individual atoms with high precision. We identified 3D 
crystal defects such as dopants, vacancies and atomic-scale ripples and measured the 3D atomic 
displacement and the full strain tensor of the 2D material. Furthermore, the experimental 3D atomic 
coordinates were used as direct input to DFT to correlate crystal defects with the electronic band 
structure at the single-atom level. We observed stark differences between the band structures obtained 
from the experimental and relaxed atomic models. We anticipate that sAET is not only generally 
applicable to the determination of the 3D atomic coordinates of 2D materials, heterostructures and thin 
films, but also could transform ab initio calculations by using experimental atomic coordinates as direct 
input to reveal more realistic physical, material, chemical and electronic properties [12].  
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Figure 1. Example of reconstruction of 2D materials. (A) STEM image single layer Re-doped MoS2.  
Polygon shows the region of interest. Scale bar: 2 nm. (B) 3D atomic structure of the region in (A). (C) 
Displacement map of the Mo-Re layer showing the non-flatness of the sample with picometre precision. 
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