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Theoretical study of a φ-Hilfer fractional
differential system in Banach spaces

Oualid Zentar, Mohamed Ziane , and Mohammed Al Horani

Abstract. In this work, we study the existence of solutions of nonlinear fractional coupled system of
φ-Hilfer type in the frame of Banach spaces. We improve a property of a measure of noncompactness
in a suitably selected Banach space. Darbo’s fixed point theorem is applied to obtain a new existence
result. Finally, the validity of our result is illustrated through an example.

1 Introduction

In recent decades, fractional differential equations are receiving great attention as a
significant tool in pure and applied mathematics, finding applications in various fields
such as propagation in complex mediums, epidemiology, biological tissues, computer
vision (a survey), and the theory of viscoelasticity (see, for example, [9, 29]). Some
basic results can be found in [1, 20, 37].

The concept of the fractional derivative (FD) with regard to another function in
the sense of Riemann–Liouville was presented by Kilbas et al. in [20]. The authors
in [30] proposed a φ-Hilfer FD and extended the work dealing with the Hilfer’s FD
in [17]. The φ-Hilfer’s FD significance stems from the fact that it has as its special
instances a number of widely used FD operators. As a matter of fact, the weakly
singular kernel function in the fractional operator definition can be freely selected. In
other words, it covers a wide range of cases for a specific function φ. For some recent
developments, see [7–8, 27, 31, 33–35]. This kind of FD has been widely used in practi-
cal applications, such as, several anomalous diffusions, including ultra-slow processes
[21], financial crisis [27], and random walks [16]. On the other side, the modeling of
various natural phenomena in chemistry, biology, computer networks, and physics
often involves different types of coupled fractional differential systems, as evidenced
by references [28, 36]. Therefore, investigating of coupled systems within the context
of the φ-Hilfer FD framework became recently crucial, for more background, see
[2, 4, 24].
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This study investigates the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HD
α1 ,β1 ;φ
a+ y1(t) = g1(t, y1(t), y2(t)), t ∈ I′ ∶= (a, b],

HD
α2 ,β2 ;φ
a+ y2(t) = g2(t, y1(t), y2(t)), t ∈ I′ ∶= (a, b],

limt→a+φ(t, a)1−γ1 y1(t) = ξ1 ,

limt→a+φ(t, a)1−γ2 y2(t) = ξ2 ,

(1.1)

where HD
α i ,β i ;φ
a+ (for i = 1, 2) denotes the φ-Hilfer FD of order 0 < α i < 1 and type 0 ≤

β i ≤ 1, 0 < γ i = α i + β i(1 − α i) < 1, 1 −max1≤i≤2{γ i} < α i − μ i , 0 < μ i < α i , (E, ∥ ⋅ ∥)
is a Banach space and g i ∶ [a, b] ×E ×E→ E (i = 1, 2) satisfies some certain condi-
tions, specified later, ξ1 , ξ2 ∈ E, and φ(t, a) = φ(t) − φ(a), where φ be increasing and
differentiable with φ′(t) /= 0, for all t ∈ [a, b].

In [6, 19, 37], the authors investigated some classes of coupled systems in the frame
of φ-Hilfer FD. They obtained some quantitative and qualitative results by means of
some classical fixed point theorems where the Lipschitz condition on the considered
system is required. The proof of our existence theorem combines results from measure
of noncompactness (MNC) and Darbo’s fixed point theorem under fairly reasonable
assumptions on the forcing terms taking values on infinite-dimensional Banach space.
Some interesting features of this work are as follows:
• The MNC expression is rigorously characterized in the functional space on which

we work, allowing us to provide a unified approach for treating various differential
systems regardless of the kind of the singularity generated by the initial condition.

• Under rather general assumptions, namely, when the nonlinearities fulfill an Lp-
Carathéodory type condition, a new existence criterion is proved.

• The results obtained in this work extend, refine, and generalize various related
results appearing in the literature (see [13, 14, 32]).

• An illustrative example is discussed to show the applicability of our abstract results
in treating differential systems in infinite-dimensional spaces driven by fractional
derivatives [25].
This work is divided into three sections. Section 2 recalls some theoretical concepts

which are used throughout this work. In particular, a reconstruction of the MNC
in a suitably selected Banach space is established. A new existence result is stated
and demonstrated in Section 3. The last section provides an example illustrating the
validity of our results.

2 Preliminary results

Let I ∶= [a, b]. Throughout this work, C(I,E) denotes all E-valued continuous func-
tions on I with the sup norm

∥z∥∞ = sup
t∈I
∥z(t)∥.
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744 O. Zentar, M. Ziane, and M. Al Horani

We endow the space Lp
φ(I,E), 1 ≤ p < ∞, of Bochner integrable functions z on I

for which ∥z∥L p
φ
< ∞, with the norm ∥z∥L p

φ
= (∫

b

a
φ′(s)∥z(s)∥pds)

1
p

. If φ(t) = t, the

space Lp
φ(I,E) coincides with the usual Lp(I,E) space.

If p = ∞, L∞(I,E) is the Banach space of all equivalence classes of essentially
bounded measurable functions on I equipped with the norm

∥z∥L∞ = ess sup
t∈I

∥z(t)∥ = inf{M > 0; ∥z(t)∥ ≤ M for almost every t ∈ I}.

We also define

S
1,+
a+ (I,R) = {φ ∶ φ ∈ C1(I,R) and φ′(t) > 0 for all t ∈ I}.

For φ ∈ S1,+
a+ (I,R) and t, s ∈ I, (t > s), we pose

(φ(t) − φ(s))α = φ(t, s)α , for α ∈ R.

Definition 2.1 [15] For α, β ∈ (0,+∞), the gamma and beta functions are given by

�(α) = ∫
∞

0
tα−1e−tdt, B(α, β) = ∫

1

0
tα−1(1 − t)β−1dt.

Lemma 2.2 [26] Let ψ ∈ S1,+
a+ (I,R), 0 < α < 1, 0 ⩽ β < α, a ≤ τ ≤ ζ ≤ t ≤ b, and let

Θα ,β(τ, ζ , t, φ) = ∫
ζ

τ
φ(t, s)α−1φ(s, a)−β φ′(s)ds.

Then, for all t ∈ I, we have

Θα ,β(a, t, t, φ) = φ(t, a)α−β B(α, 1 − β)

and

0 ≤ Θα ,β(τ, ζ , t, φ) ≤ (2β

α
+ 21−α

1 − β
)max{1, φ(b, a)α−β}φ(ζ , τ)min{α ,1−β ,α−β}.

Remark 2.3 [26] From Lemma 2.2, one has:
(i) Θα ,β(a, t, t, φ) ≤ Θα ,β(a, b, b, φ) for t ∈ I,
(ii) Θα ,β(τ, ζ , t, φ) → 0 as ∣ζ − τ∣ → 0.

Remark 2.4 By Lemma 2.2, we get

ψ(t, ⋅)α i−1ψ(⋅, a)γ j−1ψ′(⋅) ∈ L1(I,R), i , j = 1, 2.

So it is possible to choose ℵ such that

Li , j(ℵ) ∶= sup
t∈I

2∥η i , j∥L∞φ(b, a)1−γ i

�(α i) ∫
t

a
φ′(s)φ(t, s)α i−1φ(s, a)γ j−1e−ℵ(t−s)ds

(2.1)

< 1/4.
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Definition 2.5 The left-sided φ-fractional integral of a function f of order α > 0 is
defined as

(Iα ,φ
a+ f ) (t) = 1

�(α) ∫
t

a
φ(t, s)α−1φ′(s) f (s)ds, t > a,

with φ ∈ S1,+
a+ (I,R).

Definition 2.6 Let n − 1 < α ≤ n with n ∈ N, φ ∈ S1,+
a+ (I,R). The left-sided φ-Hilfer

FD of a function f of order α and type 0 ≤ β ≤ 1 is defined as

(HD
α ,β;φ
a+ f ) (t) = (Iβ(n−α),φ

a+ ( 1
φ′(t)

d
dt
)

n

(I(1−β)(n−α),φ
a+ f )) (t).

To define a solution of the system (1.1), for each i = 1, 2, we consider the Banach
space

C
φ
1−γ i

(I,E) = {z ∈ C(I′ ,E) ∶ φ(⋅, a)1−γ i z(⋅) ∈ C(I,E)} ,

normed by

∥z∥Cφ
1−γi

= sup
t∈I

φ(t, a)1−γ i ∥z(t)∥.(2.2)

Also, by C
φ
1−γ1

(I,E) × C
φ
1−γ2

(I,E) we denote the product weighted space with the
norm

∥(z1 , z2)∥Cφ
1−γ1
×C

φ
1−γ2

= ∥z1∥Cφ
1−γ1

+ ∥z2∥Cφ
1−γ2

.

Henceforth, for a subset U of the space Cφ
1−γ i

(I,E), define Uγ i by

Uγ i = {zγ i ∶ z ∈ U},

where

zγ i (t) =
⎧⎪⎪⎨⎪⎪⎩

φ(t, a)1−γ i z(t), t ∈ I′ ,

limt→a+ φ(t, a)1−γ i z(t), t = a.
(2.3)

It is clear that zγ i ∈ C(I,E).

Definition 2.7 [10] The Hausdorff MNC is the map Λ ∶ P(E) → [0,∞) defined by

Λ(U) = inf {ε > 0 ∶ U has a finite ε − net in E} ,

where P(E) denotes the family of all bounded subsets of E.

Lemma 2.8 [10] Let E be a real Banach space and U0 ,U1 ,U2 ∈ P(E). Then the
following properties are satisfied:
(1) Λ (U0) ≤ Λ (U1) if U0 ⊂ U1,
(2) Λ({a} ∪U) = Λ(U) for every a ∈ E,
(4) Λ(U) = Λ(convU), where convU is the closed convex hull of U,
(4) Λ(μU) = ∣μ∣Λ(U), where μ ∈ R,
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746 O. Zentar, M. Ziane, and M. Al Horani

(5) Λ(U) = 0 if and only if U is relatively compact,
(6) Λ (U2 ∪U1) = max (Λ (U2) , Λ (U1)),
(7) Λ (U2 +U1) ≤ Λ (U2) + Λ (U1).

Lemma 2.9 [11] Let B ⊆ C(I,E) be a bounded set. Then, for all t ∈ I,

Λ(B(t)) ≤ Λc(B),

where B(t) = {u(t) ∶ u ∈ B}. Furthermore, if B is equicontinuous on I, then Λ(B(⋅))
is continuous on I and

Λc(B) = sup
t∈I

Λ(B(t)),(2.4)

where Λc is the Hausdorff MNC in C(I,E).

Next, we extend the result of Lemma 2.9 to the space C
φ
1−γ(I,E). Let us confirm

that, in general, the expression (2.4) may not be well-defined, since bounded sets in
C

φ
1−γ(I,E) are not necessarily bounded in C(I,E). Consider, for instance, the set

Q̃(t) = {φ(t, a)γ−1z(t), z ∈ Q} ,

where Q is bounded in C(I,E). Obviously, Q̃ is unbounded in C(I,E), this indicates
that the map t ↦ Λ(Q̃(t)) is not well-defined, therefore it is wrong to consider the
expression (2.4). However, clearly the set Q̃ is bounded with respect to the norm (2.2)
(i.e., Q̃ ⊂ C

φ
1−γ(I,E)).

Lemma 2.10 Let B ⊆ C
φ
1−γ(I,E) be a bounded set. Then, for all t ∈ I, we have

Λ(Bγ(t)) ≤ ΛC
φ
1−γ
(B).

Additionally, assume that B is equicontinuous on I, then Λ(Bγ(⋅)) is continuous on I
and

ΛC
φ
1−γ
(B) = sup

t∈I
Λ(Bγ(t)).

Proof For every ε > 0, there exists Bi ⊆ C
φ
1−γ(I,E), (i = 1, . . . , n) such that

B =
n
⋃
i=1

Bi and

δ(Bi) ≤ 2Λ(B(t)) + 2ε, i = 1, . . . , n,(2.5)

where δ(⋅) denotes the diameter of a bounded set in C
φ
1−γ(I,E). So, we have

B(t) =
n
⋃
i=1

Bi(t) for each t ∈ I

and

∥uγ(t) − vγ(t)∥ ≤ ∥u − v∥γ ≤ δ(Bi), for u, v ∈ Bi , i = 1, . . . , n.(2.6)
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From (2.5) and (2.6), it follows that

2Λ(Bγ(t)) ≤ δ(Bi(t)) ≤ δ(Bi) ≤ 2Λ(B(t)) + 2ε.

Since ε is arbitrary, one has

Λ(Bγ(t)) ≤ Λ(B(t)), for every t ∈ I.

Consequently, we have

sup
t∈I

Λ(Bγ(t)) ≤ ΛC
φ
1−γ
(B).

Now, let us prove the converse inequality. Assume that B is a bounded subset in
C

φ
1−γ(I,E) and equicontinuous on I. Obviously, Bγ is a bounded subset in C(I,E)

and equicontinuous on I. From Lemma 2.9, we obtain that

Λ(Bγ) ≤ sup
t∈I

Λ(Bγ(t)).

Consider the isometric map Υ ∶ Cφ
1−γ(I,E) → C(I,E) defined by z ↦ zγ . Then, we get

ΛC
φ
1−γ
(B) = sup

t∈I
Λ(Bγ(t)),

and the result is reached. ∎

Lemma 2.11 [18] Let {xn}+∞n=1 belongs to L1(I,E) such that ∥xn(t)∥ ≤ ς(t)
almost everywhere on I(n = 1, 2, . . . ) for some ς ∈ L1(I,R+). Then, the map
t ↦ Λ({xn(t)}+∞n=1) is integrable on R+ and

Λ({∫
t

0
xn(s)ds }

+∞

n=1
) ≤ 2∫

t

0
Λ({xn(s)}+∞n=1)ds.(2.7)

Lemma 2.12 [3] Let B ∈ P(E). Then for each ε > 0, there exists a sequence
{xn}+∞n=1 ⊆ B, satisfies

Λc (B) ≤ 2Λc({xn}+∞n=1) + ε.(2.8)

Theorem 2.13 (Darbo[12]) Let E be a Banach space, let V ⊂ E be a nonempty,
bounded, closed, convex, and let N ∶ V→ V be a continuous mapping. Assume that there
exists k ∈ [0, 1) such that

Λ(N(V)) ≤ kΛ(V).(2.9)

Then N admits a fixed point in V.

Theorem 2.14 [10] Suppose ϖ1 , ϖ2 , . . . , ϖn are MNCs in the Banach spaces
E1 ,E2 , . . . ,En , respectively. Let G ∶ [0,∞)n → [0,∞) be a convex function such that
G(x1 , x2 , . . . , xn) = 0 if and only if x i = 0 for i = 1, 2, . . . , n. Then

ϖ(X) = G(ϖ1(X1), ϖ2(X2), . . . , ϖn(Xn))(2.10)

defines an MNC in E1 ×E2 × ⋅ ⋅ ⋅ ×En , where X i denotes the natural projection of X into
Ei for i = 1, 2, . . . , n.
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748 O. Zentar, M. Ziane, and M. Al Horani

Example 2.15 Let ϖ1 , ϖ2 be MNCs in E1 ,E2, respectively and G(x1 , x2) = x1 +
x2 for (x1 , x2) ∈ [0,∞)2. Then, G satisfies all properties of Theorem 2.14. Hence,
ϖ(X) = ϖ1(X1) + ϖ2(X2) is an MNC in the space E1 ×E2.

3 Main results

We initiate this section by introducing the following hypotheses which are needed in
the sequel:
(H1) The functions t ↦ g i(t, u, v); i = 1, 2 are measurable on I for each (u, v) ∈

C(I,E) × C(I,E), and the functions (u, v) ↦ g i(t, u, v) are continuous for
a.e. t ∈ I.

(H2) There exist functions h i ∈ L
1

μi
φ (I,R+), 0 ≤ μ i < α i such that

∥g i(t, v1 , v2)∥ ≤ h i(t) (1 + ∥v1∥ + ∥v2∥) , i = 1, 2,

for v1 , v2 ∈ E, and a.e. t ∈ I.
(H3) There exist functions η i , η̂ i ∈ L∞(I,R+), i = 1, 2, such that for any bounded

subsets A1 ×A2 ⊂ C
φ
1−γ1

(I,E) × C
φ
1−γ2

(I,E), we have

Λ(g i(t,A1 ,A2)) ≤
2
∑
j=1

η i , j(t)Λ(A j), for all t ∈ I.(3.1)

(H4) The following inequality holds:

2K̂ i ≤ K , i = 1, 2,(3.2)

where

K i ∶= ∥ξ i∥ +
φ(b, a)1+α i−γ i−μ i ∥h i∥

L
1

μi
φ

�(α i)θ 1−μ i
i

+ K
2
∑
j=1

φ(b, a)1−γ i ∥h i∥
L

1
μi

φ

�(α i)
(Θθ i ,ϑ i , j(a, b, b, φ))1−μ i ,

θ i =
α i − μ i

1 − μ i
, and ϑ i , j =

1 − γ j

1 − μ i
, i , j = 1, 2.

Now, we prove our main result for the system (1.1), which is based on Theorem 2.13.

Theorem 3.1 Assume that (H1)–(H4) hold. Then, system (1.1) has at least one solution.

Proof First, let us introduce an operator H ∶ Cφ
1−γ1

(I,E) × C
φ
1−γ2

(I,E) →
C

φ
1−γ1

(I,E) × C
φ
1−γ2

(I,E) associated with the system (1.1) as

(H(y1 , y2))(t) = ((H1(y1 , y2))(t), (H2(y1 , y2))(t)) ,(3.3)
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where the operators Hi ∶ Cφ
1−γ1

(I,E) × C
φ
1−γ2

(I,E) → C
φ
1−γ i

(I,E), i = 1, 2 are
defined by

(Hi(y1 , y2))(t) = ξ i φ(t, a)γ i−1 + 1
�(α i) ∫

t

a
φ′(s)φ(t, s)α i−1 g i(s, y1(s), y2(s))ds, t ∈ I′ .

According to [22, Lemma 3.1], the solutions of the system (1.1) are fixed points of
the operator H. Consider the following bounded closed convex set:

ΩK = {(y1 , y2) ∈ Cφ
1−γ1

(I,E) × C
φ
1−γ2

(I,E) ∶ ∥y1∥Cφ
1−γ1

≤ K , ∥y2∥Cφ
1−γ2

≤ K} .

Then we divide the proof into four steps.

Step 1. H transforms ΩK into itself. Indeed, for each (y1 , y2) ∈ ΩK and every t ∈ I′,
one has

∥φ(t, a)1−γ i (Hi(y1 , y2)) (t)∥

≤ ∥ξ i∥ +
φ(t, a)1−γ i

�(α i) ∫
t

a
φ′(s)φ(t, s)α i−1 ∥g i(s, y1(s), y2(s))∥ ds

≤ ∥ξ i∥ +
φ(t, a)1−γ i

�(α i) ∫
t

a
φ′(s)φ(t, s)α i−1h i(s) (1 + ∥y1(s)∥ + ∥y2(s)∥) ds

≤ ∥ξ i∥ +
φ(t, a)1−γ i

�(α i) ∫
t

a
φ′(s)φ(t, s)α i−1h i(s)(1 + φ(s, a)γ1−1∥y1∥Cφ

1−γ1

+ φ(s, a)γ2−1∥y2∥Cφ
1−γ2
)ds

≤ ∥ξ i∥ +
φ(t, a)1−γ i

�(α i) ∫
t

a
φ(t, s)α i−1h i(s)

⎛
⎝

1 + K
2
∑
j=1

φ(s, a)γ j−1⎞
⎠

φ′(s)ds.

Since μ i + (1 − μ i) = 1, we can write φ′(s) as the product

φ′(s) = φ′(s)μ i φ′(s)1−μ i .

Then, applying the Hölder inequality, we get

∥φ(t, a)1−γ i (Hi(y1 , y2)) (t)∥

≤ ∥ξ i∥ +
φ(t, a)1−γ i ∥h i∥

L
1

μi
φ

�(α i)
(∫

t

a
φ(t, s)

αi−1
1−μi dφ(s))

1−μ i

+ K
2
∑
j=1

φ(t, a)1−γ i ∥h i∥
L

1
μi

φ

�(α i)
(∫

t

a
φ(t, s)

αi−1
1−μi φ(s, a)

γ j−1
1−μi dφ(s))

1−μ i

.
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Hence, by Lemma 2.2 and Remark 2.3, we obtain

∥φ(t, a)1−γ i (Hi(y1 , y2)) (t)∥ ≤ ∥ξ i∥ +
∥h i∥

L
1

μi
φ

�(α i)
( 1 − μ i

α i − μ i
)

1−μ i

φ(t, a)1+α i−γ i−μ i

+ K
2
∑
j=1

φ(t, a)1−γ i ∥h i∥
L

1
μi

φ

�(α i)
(Θ αi−μi

1−μi
,

1−γ j
1−μi

(a, t, t, φ))
1−μ i

≤ K̂ i , i = 1, 2.

Thus,

∥Hi(y1 , y2)∥Cφ
1−γi

≤ K̂ i , i = 1, 2.

Consequently,

∥H(y1 , y2)∥Cφ
1−γ1
×C

φ
1−γ2

≤ K̂1 + K̂2 .

This shows that H transforms ΩK into itself.

Step 2. The continuity of H(⋅, ⋅).

Let {y1,n , y2,n} ∈ Ωq such that (y1,n , y2,n) → (y1 , y2) as n 1→∞. Making use of
the Carathéodory condition of g i , i = 1, 2, we easily have

∥g i(s, y1,n(s), y2,n(s)) − g i(s, y1(s), y2(s))∥ → 0, as n 1→∞.

Next, by (H2), one gets

∥g i(s, y1,n(s), y2,n(s)) − g i(s, y1(s), y2(s))∥

≤ ∥g i(s, y1,n(s), y2,n(s))∥ + ∥g i(s, y1(s), y2(s))∥
≤ 2h i(s)(1 + ∥y1(t)∥ + ∥y2(t)∥)

≤ 2h i(s)(1 + K
2
∑
j=1

φ(s, a)γ j−1).

Since, the function s ↦ h i(s)(1 + K
2
∑
j=1

φ(s, a)γ j−1) is Lebesgue integrable over [a, t],

so is the function s ↦ h i(s)φ(t, s)α i−1(1 + K
2
∑
j=1

φ(s, a)γ j−1). Then it follows from the

Lebesgue dominated convergence theorem that

∥φ(t, a)1−γ i [Hi(y1,n , y2,n)(t) −Hi(y1 , y2)(t)]∥

≤ φ(t, a)1−γ i

�(α i) ∫
t

a
φ(t, s)α i−1φ′(s) ∥g i(s, y1,n(s), y2,n(s)) − g i(s, y1(s), y2(s))∥ ds → 0

as n 1→∞ for all t ∈ I, which leads to

∥(Hi(y1,n , y2,n)) − (Hi(y1 , y2))∥Cφ
1−γi

111→
n→∞

0
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for any t ∈ I. Therefore,

∥H(y1,n , y2,n) −H(y1 , y2)∥Cφ
1−γ1
×C

φ
1−γ2

111→
n→∞

0.

Accordingly, the operator H(⋅, ⋅) is continuous.
Step 3. H(Ωq) is equicontinuous.

Let (y1 , y2) ∈ Ωq and a < t1 < t2 ≤ b. Then for i = 1, 2, we have

∥φ(t2 , a)1−γ i (Hi(y1 , y2))(t2) − φ(t1 , a)1−γ i (Hi(y1 , y2))(t1)∥

≤
22222222222

φ(t2 , a)1−γ i

�(α i) ∫
t2

a
φ′(s)φ(t2 , s)α i−1 g i(s, y1(s), y2(s))ds

−φ(t1 , a)1−γ i

�(α i) ∫
t1

a
φ′(s)φ(t1 , s)α i−1 g i(s, y1(s), y2(s))ds

22222222222
≤ J0 + J1 ,

where

J0 =
φ(t2 , a)1−γ i

�(α i) ∫
t2

t1
φ′(s)φ(t2 , s)α i−1∥g i(s, y1(s), y2(s))∥ds,

and

J1 =
22222222222

φ(t2 , a)1−γ i

�(α i) ∫
t1

a
φ′(s)φ(t2 , s)α i−1 g i(s, y1(s), y2(s))ds

− φ(t1 , a)1−γ i

�(α i) ∫
t1

a
φ′(s)φ(t1 , s)α i−1 g i(s, y1(s), y2(s))ds

22222222222
.

Next, applying the Hölder inequality, we conclude that

J0 ≤
φ(t2 , a)1−γ i

�(α i) ∫
t2

t1
φ′(s)φ(t2 , s)α i−1h i(s)(1 + ∥y1(s)∥ + ∥y2(s)∥)ds

≤
φ(t2 , a)1−γ i ∥h i∥

L
1

μi
φ

�(α i)
(∫

t2

t1
φ(t2 , s)

αi−1
1−μi dφ(s))

1−μ i

+ K
2
∑
j=1

φ(t2 , a)1−γ i ∥h i∥
L

1
μi

φ

�(α i)
(∫

t2

t1
φ(t2 , s)

αi−1
1−μi φ(s, a)

γ j−1
1−μi dφ(s))

1−μ i

,

and hence,

J0 ≤
φ(t2 , a)1−γ i ∥h i∥

L
1

μi
φ

�(α i)

⎡⎢⎢⎢⎢⎣

φ(t2 , t1)α i−1

θ 1−μ i
i

+ K
2
∑
j=1
(Θθ i ,ϑ i , j(t1 , t2 , t2 , φ))1−μ i

⎤⎥⎥⎥⎥⎦
.
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Now, using Remark 2.3, we obtain

J0 1→ 0 as t1 1→ t2 ,

and

J1 ≤ J2 + J3 ,

where

J2 =
∣φ(t2 , a)1−γ i − φ(t1 , a)1−γ i ∣

�(α i) ∫
t1

a
φ′(s)φ(t2 , s)α i−1∥g i(s, y1(s), y2(s))∥ds,

J3 =
φ(t1 , a)1−γ i

�(α i) ∫
t1

a
φ′(s)∣φ(t2 , s)α i−1 − φ(t1 , s)α i−1∣∥g i(s, y1(s), y2(s))∥ds.

Then,

J2 111→n→∞
0,

on the other hand, φ(t2 , s)α i−1 ≤ φ(t1 , s)α i−1. Therefore

J3 ≤
φ(t1 , a)1−γ i

�(α i)
(∫

t1

a
h i(s)φ′(s)φ(t1 , s)α i−1ds − ∫

t1

a
h i(s)φ′(s)φ(t2 , s)α i−1ds)

+ φ(t1 , a)1−γ i

�(α i)
K

2
∑
j=1
∫

t1

a
h i(s)φ′(s)(φ(t1 , s)α i−1 − φ(t2 , s)α i−1)φ(s, a)γ j−1ds.

Then,

J3 ≤
φ(t1 , a)1−γ i ∥h i∥

L
1

μi
φ

�(α i)
[(Θθ i ,0(a, t1 , t1 , φ))1−μ i − (Θθ i ,0(a, t1 , t2 , φ))1−μ i ]

+
φ(t1 , a)1−γ i ∥h i∥

L
1

μi
φ

�(α i)
K

2
∑
j=1

⎡⎢⎢⎢⎢⎣
(Θθ i ,ϑ i , j(a, t1 , t1 , φ))1−μ i

− (Θθ i ,ϑ i , j(a, t1 , t2 , φ))1−μ i
⎤⎥⎥⎥⎥⎦

.

So,

J3 1→ 0 as t1 1→ t2 .

Hence,

∥φ(t2 , a)1−γ i (Hi(y1 , y2))(t2) − φ(t1 , a)1−γ i (Hi(y1 , y2))(t1)∥ 1→ 0 as t1 1→ t2 .

Thus, we conclude that H(Ωq) is equicontinuous.

Downloaded from https://www.cambridge.org/core. 22 Nov 2024 at 00:20:06, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Theoretical study of a φ-Hilfer fractional differential system in Banach spaces 753

Step 4. Condition (2.9) holds. For every bounded subset J1 × J2 ⊂ C
φ
1−γ1

(I,E) ×
C

φ
1−γ2

(I,E), we define the MNC as

Λ̂C
φ
1−γ1
×C

φ
1−γ2
(J1 × J

2) = Λ̂C
φ
1−γ1
(J1) + Λ̂C

φ
1−γ2
(J2),(3.4)

where

Λ̂C
φ
1−γi
(Ji) = sup

t∈I
e−ℵt Λ(Ji

γ i
(t)); i = 1, 2, ℵ > 0.(3.5)

By using Lemma 2.10 and Example 2.15, Λ̂C
φ
1−γ1
×C

φ
1−γ2

satisfies all properties of the
Hausdorff MNC mentioned in Lemma 2.8.

Now, let A = (A1 ,A2) be a bounded set belongs to convH(ΩK), using Lemma
2.12, it follows that for a given ε i > 0 (i = 1, 2), there exists {(y1,n , y2,n)}+∞n=1 ⊆ A such
that, for all t ∈ I,

Λ̂C
φ
1−γi
(Hi(A )(t)) = Λ̂C

φ
1−γi
({(Hi(y1 , y2))(t) ∶ (y1 , y2) ∈ A })(3.6)

≤ 2Λ̂C
φ
1−γi
({(Hi(y1,n , y2,n))(t)}+∞n=1) + ε i , i = 1, 2.

From

(Hi(y1,n , y2,n))(t) = φ(t, a)γ i−1 ξ i + I
α i ,φ
a+ g i(t, y1,n(t), y2,n(t)), i = 1, 2,(3.7)

wet get

Λ̂C
φ
1−γi
({(Hi(y1,n , y2,n))(⋅)}+∞n=1) = Λ̂C

φ
1−γi
({Iα i ,φ

a+ g i(⋅, y1,n(⋅), y2,n(⋅))}+∞n=1), i = 1, 2.
(3.8)

Now, we estimate the quantity Λ̂C
φ
1−γi
({(Hi(y1,n , y2,n))(⋅)}+∞n=1). Using (H3), for all

s ∈ [a, t], one has for i = 1, 2

Λ ({φ′(s)φ(t, s)α i−1 g i(s, y1,n(s), y2,n(s))}
+∞

n=1
)

≤
2
∑
j=1

φ′(s)φ(t, s)α i−1η i , j(s)Λ({y j,n(s)}+∞n=1)

≤
2
∑
j=1

η i , j(s)φ′(s)φ(t, s)α i−1φ(s, a)γ j−1Λ({y j,n
γ j (s)}+∞n=1)

≤
2
∑
j=1

η i , j(s)φ′(s)φ(t, s)α i−1φ(s, a)γ j−1eℵs sup
a≤s≤t

e−ℵs Λ({y j,n
γ j (s)}+∞n=1)

≤
2
∑
j=1

η i , j(s)φ′(s)φ(t, s)α i−1φ(s, a)γ j−1eℵs Λ̂C
φ
1−γ j
({y j,n}+∞n=1).
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Thus, Lemma 2.11 entails that, for all t ∈ I and s ≤ t,

Λ({Iα i ,φ
a+ g i(t, y1,n(t), y2,n(t))}+∞n=1)

≤
2
∑
j=1

2∥η i , j∥L∞

�(α i)
Λ̂C

φ
1−γ j
({y j,n}+∞n=1)∫

t

a
φ′(s)φ(t, s)α i−1φ(s, a)γ j−1eℵsds.

Hence,

Λ ({φ(t, a)1−γ iHi(y1,n(t), y2,n(t))}+∞n=1)

≤
2
∑
j=1

2∥η i , j∥L∞

�(α i)
Λ̂C

φ
1−γ j
({y j,n}+∞n=1)φ(b, a)1−γ i ∫

t

a
φ′(s)φ(t, s)α i−1φ(s, a)γ j−1eℵsds.

Multiplying both sides by e−ℵt , we obtain

sup
t∈J

e−ℵt Λ ({φ(t, a)1−γ iHi(y1,n(t), y2,n(t))}+∞n=1)

≤
2
∑
j=1

2∥η i , j∥L∞

�(α i)
Λ̂C

φ
1−γ j
({y j,n}+∞n=1)φ(b, a)1−γ i×

sup
t∈I
∫

t

a
φ′(s)φ(t, s)α i−1φ(s, a)γ j−1e−ℵ(t−s)ds.

So,

Λ̂C
φ
1−γi
({Hi(y1,n , y2,n)}+∞n=1) ≤

2
∑
j=1

Li , j(ℵ)Λ̂C
φ
1−γ j
({y j,n}+∞n=1),

where Li , j(ℵ), i = 1, 2, j = 1, 2 are defined in (2.1). Hence,

Λ̂C
φ
1−γi
({Hi(y1,n , y2,n)}+∞n=1)

≤ max
1≤ j≤2

{Li , j(ℵ)}(Λ̂C
φ
1−γ1
({y1,n}+∞n=1) + Λ̂C

φ
1−γ2
({y2,n}+∞n=1))

= max
1≤ j≤2

{Li , j(ℵ)}Λ̂C
φ
1−γ1
×C

φ
1−γ2
({(y1,n , y2,n)}+∞n=1).

The last inequality together with the fact that

Λ̂C
φ
1−γ1
×C

φ
1−γ2
({(y1,n , y2,n)}+∞n=1) ≤ Λ̂C

φ
1−γ1
×C

φ
1−γ2
(A )

yields

Λ̂C
φ
1−γi
({Hi(y1,n , y2,n)}+∞n=1) ≤ max

1≤ j≤2
{Li , j(ℵ)}Λ̂C

φ
1−γ1
×C

φ
1−γ2
(A ).(3.9)

From (3.6) and (3.9), one gets

Λ̂C
φ
1−γi
(Hi(A )(t)) ≤ 2 max

1≤ j≤2
{Li , j(ℵ)}Λ̂C

φ
1−γ1
×C

φ
1−γ2
(A ) + ε i , i = 1, 2.(3.10)
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Then,

Λ̂C
φ
1−γ1
×C

φ
1−γ2
(H(A ))

= Λ̂C
φ
1−γ1
(Hi(A )) + Λ̂C

φ
1−γ2
(Hi(A ))

≤ 2(max
1≤ j≤2

{L1, j(ℵ)} + max
1≤ j≤2

{L2, j(ℵ)})Λ̂C
φ
1−γ1
×C

φ
1−γ2
(A ) + ε3

≤ 4 max
1≤i≤2

{max
1≤ j≤2

{Li , j(ℵ)}}Λ̂C
φ
1−γ1
×C

φ
1−γ2
(A ) + ε3 ,

where ε3 = ε1 + ε2. Since ε3 > 0 is arbitrary, we have

Λ̂C
φ
1−γ1
×C

φ
1−γ2
(H(A )) ≤ 4 max

1≤i≤2
{max

1≤ j≤2
{Li , j(ℵ)}}Λ̂C

φ
1−γ1
×C

φ
1−γ2
(A ).

From Remark 2.4, we deduce 4 max1≤i≤2{max1≤ j≤2{Li , j(ℵ)}} < 1.
In view of Steps 1 to 4, we can apply Theorem 2.13 and deduce that H admits in

ΩK , at least one fixed point which is a solution of system (1.1). ∎

4 An example

Consider the Banach space

E = {z = (z1 , z2 , . . . , zn , . . . ) ∶ zn → 0 as n →∞},

equipped with the norm ∥z∥E = sup
n≥1

∣zn ∣.

We recall that the Hausdorff MNC Λ in (E, ∥ ⋅ ∥E) is defined as follows:

Λ(A) = lim
n→∞

sup
z∈A

∥(I − Pn) z∥∞,

where A is a bounded subset in E and Pn is the projection onto the linear span of the
first n vectors in the standard basis (see [5, 25]).

Consider the following coupled system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HD
α1 ,β1 ;t
a+ y1(t) = g1(t, y1(t), y2(t)), t ∈ I′ ∶= (0, b], 0 < b < 1

4e ,

HD
α2 ,β2 ;t
a+ y2(t) = g2(t, y1(t), y2(t)), t ∈ I′ ∶= (0, b], 0 < b < 1

4e ,

(t1−γ1 y1) (0+) = (0, 0, . . . , 0, . . . ),

(t1−γ2 y2) (0+) = (0, 0, . . . , 0, . . . ).

(4.1)

Note that (4.1) is a particular case of (1.1), where:

a = 0, φ(t) = L−1/ϕmin bζ t, L = max
1≤i≤2
1≤ j≤2

L i , j , ϕ i , j = θ i + ϑ i , i − ϑ i , j , μmin = min
1≤i≤2

μ i

ζ = 1
ϕmin(1 − μmin)

− 1, L i , j =
⎧⎪⎪⎨⎪⎪⎩

2ϑ i , j

θ i
+ 21−θ i

1 − ϑ i , j

⎫⎪⎪⎬⎪⎪⎭
, ϕmin = min

1≤i≤2
1≤ j≤2

ϕ i , j ,
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and for t ∈ I, y i = {y i ,n}n ∈ E,

g1(t, y1 , y2) = e t{arctan(∣y1,n ∣ + ∣y2,n ∣) + 1
n2 }

∞

n=1
,

g2(t, y1 , y2) = e t{ln(∣y1,n ∣ + 1) + ∣y2,n ∣ + 1
n2 }

∞

n=1
.

One can easily deduce that the functions g i , (i = 1, 2) satisfy the Carathéodory type
hypotheses, so (H1) holds.

To justify hypothesis (H2), let t ∈ I and y i = {y i ,n}n ∈ E, (i = 1, 2). We have

∥g1(t, y1 , y2)∥E = e t∥{arctan(∣y1,n ∣ + ∣y2,n ∣) + 1
n2 }

∞

n=1
∥
E

≤ e t (sup
n≥1

∣y1,n ∣ + sup
n≥1

∣y2,n ∣ + 1)

≤ e t (∥y1∥E + ∥y2∥E + 1) ,

and

∥g2(t, y1 , y2)∥E = e t∥{ln(∣1 + y1,n ∣) + ∣y2,n ∣ + 1
n2 }

∞

n=1
∥
E

≤ e t (sup
n≥1

∣y1,n ∣ + sup
n≥1

∣y2,n ∣ + 1)

≤ e t (∥y1∥E + ∥y2∥E + 1) .

This shows that hypothesis (H2) holds, with

h(t) = h1(t) = h2(t) = e t , for all t ∈ I.

To prove (3.1), let t ∈ I and z i = {z i ,n}n ∈ Ai ⊆ E, i = 1, 2. Fix n ∈ N; then we have

arctan(∣z1,k ∣ + ∣z2,k ∣) ≤ ∣z1,k ∣ + ∣z2,k ∣ ≤ ∥ (I − Pn) (z1,k)k∥∞ + ∥ (I − Pn) (z2,k)k∥∞,

for all k > n, which implies, by taking the supremum, that

sup
(z1 ,z2)∈A1×A2

∥ (I − Pn) (arctan(∣y1,k ∣ + ∣y2,k ∣))k∥∞

≤ sup
z1∈A1

∥ (I − Pn) (z1,k)k∥∞ + sup
z2∈A2

∥ (I − Pn) (z2,k)k∥∞.

Then

lim
n→∞

sup
(z1 ,z2)∈A1×A2

∥ (I − Pn) (arctan(∣y1,k ∣ + ∣y2,k ∣))k∥∞

≤ lim
n→∞

sup
z1∈A1

∥ (I − Pn) (z1,k)k∥∞ + lim
n→∞

sup
z2∈A2

∥ (I − Pn) (z2,k)k∥∞,

which yields

Λ(g1(t,A1 ,A2))

= e t lim
n→∞

sup
(z1 ,z2)∈A1×A2

∥(I − Pn)(arctan(∣z1,k ∣ + ∣z2,k ∣) + 1
k2 )k

∥∞
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≤ e t[ lim
n→∞

sup
z1∈A1

∥ (I − Pn) (z1,k)k∥∞

+ lim
n→∞

sup
z2∈A2

∥ (I − Pn) (z2,k)k∥∞]

≤ η1,1(t)Λ(A1) + η1,2(t)Λ(A2),

where

η1,1 = η1,2 = h.

Similarly, one can obtain

Λ(g2(t,A1 ,A2)) ≤ η2,1(t)Λ(A1) + η2,2(t)Λ(A2),

where
η2,1 = η2,2 = h.

Hence condition (H3) is verified. Now, it remains to show that (3.2) holds. To do this,
from �(α i) > 1 for 0 < α i < 1, we have

K̂ i ≤ ∥h∥
L

1
μi

φ(b, 0)1+α i−γ i−μ i

θ 1−μ i
i

+ K
2
∑
j=1
∥h∥

L
1

μi
(Θθ i ,ϑ i , j(0, b, b, φ)φ(b, 0)ϑ i , i)1−μ i .

Then, by Lemma 2.2 and 0 < φ(b, 0) < 1, we get

K̂ i ≤ ∥h∥
L

1
μi

φ(b, 0)1+α i−γ i−μ i

θ 1−μ i
i

+ K
2
∑
j=1
∥h∥

L
1

μi
((2ϑ i , j

θ i
+ 21−θ i

1 − ϑ i , j
)φ(b, 0)θ i−ϑ i , j φ(b, 0)ϑ i , i)

1−μ i

≤ ∥h∥
L

1
μi

φ(b, 0)1+α i−γ i−μ i

θ 1−μ i
i

+ 2K∥h∥
L

1
μi
(L (L−1/ϕmin bζ+1)ϕmin)

1−μ i

≤ ∥h∥
L

1
μi

φ(b, 0)1+α i−γ i−μ i

θ 1−μ i
i

+ 2K∥h∥
L

1
μi
(b

1
1−μmin )

1−μmin

≤ φ(b, 0)1+α i−γ i−μ i

θ 1−μ i
i

∥h∥
L

1
μi
+ 2Kb∥h∥

L
1

μi

and

∥h∥
L

1
μi
= (μ i eb/μ i − μ i)

μ i ≤ (μ i eb/μ i)μ i = μμ i
i eb ≤ μμ i

i e1 = e1+μ i ln(μ i) ≤ e .

Now, choose

K ≥ 2eφ(b, 0)1+α i−γ i−μ i

θ 1−μ i
i (1 − 4be)

, i = 1, 2.

Hence,
2K̂ i ≤ K , i = 1, 2.

Since, all hypotheses in Theorem 3.1 are verified, system (4.1) has at least one solution.
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