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Abstract
Given an n× n symmetric matrixW ∈ [0, 1][n]×[n], let G(n,W) be the random graph obtained by indepen-
dently including each edge jk∈ ([n]2 ) with probabilityWjk =Wkj. Given a degree sequence d= (d1, . . . , dn),
let G(n, d) denote a uniformly random graph with degree sequence d. We couple G(n,W) and G(n, d)
together so that asymptotically almost surely G(n,W) is a subgraph of G(n, d), whereW is some function
of d. Let �(d) denote the maximum degree in d. Our coupling result is optimal when �(d)2 � ‖d‖1, that
is, Wij is asymptotic to P(ij ∈ G(n, d)) for every i, j ∈ [n]. We also have coupling results for d that are not
constrained by the condition �(d)2 � ‖d‖1. For such d our coupling result is still close to optimal, in the
sense thatWij is asymptotic to P(ij ∈ G(n, d)) for most pairs ij ∈ ([n]2 ).

Keywords: Kim–Vu’s sandwich conjecture; non-regular degree sequence; coupling; embedding; generalized Erdos–Renyi
graphs; Chung–Lu model
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1. Introduction
Given a realisable degree sequence d= (d1, . . . , dn) (a degree sequence d is realisable if there
exists a simple graph with degree sequence d), let G(n, d) denote a random graph chosen uni-
formly from the set of graphs on [n] where vertex i has degree di. Random graphs with a specified
degree sequence are a popular class of random graphs used in many fields of research such
as social network modelling and analysis [29, 33], epidemic analysis [5], and network sciences
[9, 34, 35].While these randomgraphs have been extensively used tomodel and analyse real-world
networks, such as social networks and the internet, they present several analytical challenges. The
most prominent difficulties in analysing G(n, d) are evaluating the edge probabilities and dealing
with edge dependencies. Compared with the classical Erdős–Rényi random graph G(n, p) where
every edge jk ∈ ([n]2 ) appears independently with probability p, there is no known closed formula
for P(jk∈ G(n, d)) for general d. Although asymptotic formulas exist for P(jk∈ G(n, d)) for some
classes of d, the correlation between the edges poses additional challenges when estimating the
probabilities of events in G(n, d).

We denote G(n, d) by G(n, d) when d= (d, d, . . . , d), that is, d is a d-regular degree sequence.
The random regular graph G(n, d) is the most well-understood model among all G(n, d). For
instance, the asymptotic enumeration of d-regular graphs on n vertices has been completely solved
following a sequence of benchmark research [2–4, 6, 28, 30–32]. Properties and graph parameters
of random regular graphs have been extensively studied, including Hamiltonicity, the chro-
matic and list chromatic numbers, independence number, and the distribution of subgraphs in
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2 P. Gao and Y. Ohapkin

G(n, d) [13, 13, 22, 27]. We refer the interested readers to a survey of Wormald [36] for many
other properties of random regular graphs. However, in general d can vary from near-regular
sequences to heavy-tailed sequences such as power-law sequences. Both enumerating graphs of
given degree sequences and analysing properties such as connectivity or Hamiltonicity of G(n, d)
turn out to be challenging, and there are many open problems in this field. In 2004 Kim and
Vu proposed the sandwich conjecture, which informally says that G(n, d) can be well approxi-
mated by G(n, p= d/n) through sandwiching G(n, d) between two correlated copies of G(n, p),
one with p slightly smaller than d/n and the other with p slightly greater than d/n. To formally
state the conjecture, we define a coupling of a finite set of random variables (or graphs) Z1, . . . , Zk
as a k-tuple of random variables (Ẑ1, . . . , Ẑk) defined in the same probability space such that the
marginal distribution of Ẑi is the same as the distribution of Zi for every 1≤ i≤ k. The sand-
wich conjecture is about a 3-tuple coupling of random graphs, proposed by Kim and Vu, given
as below. The standard Landau notation is used, and a formal definition of the notation is given
before Section 1.1.

Conjecture 1.1 ([25]). For d � log n, there exist probabilities p1, p2 = (1+ o(1))d/n and a cou-
pling (GL,G,GU) such that marginally, GL ∼ G(n, p1), G∼ G(n, d), GU ∼ G(n, p2) and jointly,
P(GL ⊆G⊆GU)= 1− o(1).

The sandwich conjecture, if proved to be true, is a powerful tool for analysing G(n, d), and
reveals beautiful distributional relations between the two different random graph models. The
assumption d � log n is necessary, as for p=O( log n/n), the maximum and minimum degrees
of G(n, p) differ by some constant factor away from 1, making it impossible for the sandwich con-
jecture to hold. For simplicity, we refer to a coupling (G1

n , G2
n) of two random graphs G1

n and G2
n

as embedding G1
n into G2

n , if in the coupling G1
n is a subgraph of G2

n with probability going to 1 as
n→ ∞. It turns out that embedding G(n, d) into G(n, p= (1+ o(1))d/n) is much more difficult
than embedding G(n, p= (1− o(1))d/n) into G(n, d). In their paper [25], Kim and Vu estab-
lished an embedding of G(n, p= (1− o(1))d/n) into G(n, d) for d up to approximately n1/3 (and
d � log n). Subsequent work by Dudek, Frieze, Ruciński, and Šileikis [14] improved this result
to d = o(n), and extended it to random uniform hypergraphs as well. The first 2-side sand-
wich theorem was proved by Isaev, McKay, and the first author [17, 18] in the case that d is
linear in n. Klimosová, Reiher, Ruciński, and Šileikis [26] proved the sandwich conjecture for
d � (n log n)3/4. Finally Isaev, McKay, and the first author [19] confirmed the sandwich conjec-
ture for all d ≥ log4 n. It is worth noting that a more general sandwich theorem was presented in
[17–19] for random graphs G(n, d) where d is a near-regular degree sequence, where all degrees
are asymptotically equal.

While it is not possible to approximateG(n, d) by G(n, p) in a useful way for more general forms
of d (since the typical degree distribution of G(n, p) would be very different from d), a natural
alternative is to consider a generalised Erdös–Rényi graph G(n,W), whereW is a symmetric n× n
matrix. In this model, each edge jk∈ ([n]2 ) appears in G(n,W) independently with probabilityWjk.
By choosing different forms of W, we can recover well-studied models in the literature, such as
G(n, p), the Chung–Lu model [9–12], the β-model [8, 24], and the stochastic block model [23].

The objective of this paper is to establish an embedding of G(n,W) into G(n, d), where d is a
degree sequence thatmay deviate significantly from being regular, for a suitable choice ofW. What
constitutes a goodW? Intuitively one would like the entryWjk to be approximatelyP(jk ∈ G(n, d)),
the true probability that jk is an edge in G(n, d). To formalise this notion, we defineW∗ =W∗(d)
as the n× nmatrix whereW∗

jk = P(jk ∈ G(n, d)) for every i, j ∈ [n].

Question 1.2. Given d, does there exists W = (1− o(1))W∗(d) such that G(n,W) can be embedded
into G(n, d)?

Note that the asymptotic value of P(jk ∈ G(n, d)) is not known for all realisable degree
sequences d. The coupling scheme we use in this paper heavily relies on the expression of the
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asymptotic formula for P(jk ∈ G(n, d)). Therefore, we are restricted to degree sequences for which
an asymptotic evaluation of P(jk∈ G(n, d)) is available in the literature. Without loss of gener-
ality we may assume that d1 ≥ · · · ≥ dn ≥ 1. Let �(d)= d1 and δ(d)= dn. Another important
parameter of d is J(d)=∑d1

i=1 di. The following proposition, a direct corollary of [20, Theorem 1],
estimates the edge probabilities in G(n, d) when J(d)= o(‖d‖1).
Proposition 1.3. (Corollary of [20, Theorem 1]) Suppose that J(d)= o(‖d‖1). Then

P(jk ∈ G(n, d))=
(
1+O

(
J(d)
‖d‖1

)) djdk
‖d‖1 + djdk

.

Remark 1.4. The condition J(d)= o(‖d‖1) requires d to be a sparse degree sequence. It also
restrict the tail of d so that there cannot be toomany degrees that are very large. See Proposition 3.2
in the Appendix for properties of d that satisfies this technical condition. The edge probability in
Proposition 1.3 is in general not correct without the condition J(d)= o(‖d‖1). See an example like
this in Remark 1.9.

Remark 1.5. Although Proposition 1.3 does not give asymptotic estimate of P(jk ∈ G(n, d))
for every degree sequence, there are many interesting families of degree sequences satisfying
J(d)= o(‖d‖1), including examples of

• all d-regular, and near-d-regular degree sequences (namely, all degrees are asymptotic to
d) where d = o(n);

• all perturbed sequences from a near-d-regular degree sequence by arbitrarily decreasing at
most (1− c)n entries, where c> 0 is fixed, and d = o(n);

• heavy-tailed degree sequences such as power-law sequences. We refer interested readers
to [22, Section 2] for a formal definition of power-law sequences and other examples of
heavy-tailed degree sequences.

Assume that J(d)= o(‖d‖1). It is easy to show that for most pairs jk, djdk = o(‖d‖1) (e.g. see
Proposition 3.2 in the Appendix), and thus by Proposition 1.3 their edge probabilities are o(1). On
the other hand, if there exist pairs jk such that djdk = �(‖d‖1), then Proposition 1.3 implies that
the edge probabilities in G(n, d) will not be uniformly o(1). In particular, for every such pair jk the
edge probability of jk is bounded from below by some constant c> 1. In fact, there exist degree
sequences d satisfying J(d)= o(‖d‖1) whose edge probabilities takes values ranging from o(1) to
constant 0< c< 1 and to 1− o(1). The power-law sequences mentioned in Remark 1.5 are good
examples like this. As we will see later, it is the presence of such diverse edge probabilities that
poses a challenge to embedding G(n,W) into G(n, d).

In light of Proposition 1.3, we define matrix P(d), which is asymptotic to W∗(d) under the
condition J(d)= o(‖d‖1).
Definition 1.6. Given d= (d1, . . . , dn), let P(d) be the symmetric n× n matrix defined by Pij =
Pji = didj

‖d‖1+didj , for every 1≤ i< j≤ n, and Pii = 0 for every 1≤ i≤ n.

One of our main results is the following theorem, which gives a positive answer to Question 1.2
for degree sequences satisfying �(d)2 = o(‖d‖1), a condition that is stronger than J(d)= o(‖d‖1).
Theorem 1.7. Assume that d= d(n) is a degree sequence satisfying �(d)2 = o(‖d‖1) and δ(d)�
log n. Then, there exist ε = o(1) and a coupling (GL,G), where GL ∼ G(n,W), W = (1− ε)P(d),
and G∼ G(n, d), such that P(GL ⊆G)= 1− o(1).

Under the stronger condition that �(d)2 = o(‖d‖1), djdk = o(‖d‖1) for all jk ∈ ([n]2 ), and thus
P(jk ∈ G(n, d))= o(1) for all jk ∈ ([n]2 ) by Proposition 1.3. This property is a crucial element in our
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coupling scheme which allows us to achieve an optimal embedding. Our next theorem embeds
G(n,W) into G(n, d) for d satisfying J(d)= o(‖d‖1). In this case, Wjk = (1− o(1))P(d)jk for all
jk where P(jk ∈ G(n, d))= o(1). However, Wjk is not asymptotic to P(jk ∈ G(n, d)) for jk where
P(jk∈ G(n, d)) is bounded away from 0. Given a function f :R→R, let f (P) denote the matrix
(f (Pi,j))i,j∈[n].
Theorem 1.8. Assume that d is a degree sequence satisfying J(d)= o(‖d‖1) and δ(d)� log n. Then,
there exist ε = o(1) and a coupling (GL,G), where GL ∼ G(n,W), W = (1− ε)f (P(d)) where f (x)=
1− e−x, and G∼ G(n, d), such that P(GL ⊆G)= 1− o(1).

We see that Theorem 1.7 immediately follows from Theorem 1.8.

Proof of Theorem 1.7. Note that �(d)2 = o(‖d‖1) implies J(d)= o(‖d‖1) since J(d)≤ �(d)2.
Moreover, �(d)2 = o(‖d‖1) implies that P(d)jk = o(1) for all jk by Definition 1.6. Now
Theorem 1.7 follows as a straightforward corollary of Theorem 1.8 by noticing that 1− e−x =
(1+O(x))x. �
Remark 1.9. Note that P(d)= (1+ o(1))W∗(d) is not true in general. For instance, consider the
d-regular degree sequence where d = �(n). By symmetry we know that W∗

jk = d/(n − 1)∼ d/n
for every jk. On the other hand, by Definition 1.6, Pjk = d2/(dn+ d2)= d/(n + d) which is not
asymptotic to d/n as d = �(n). Thus, in this example, Pjk is significantly smaller thanW∗

jk. There
are two open problems below that can be very interesting for future research. The first question is
a weaker version of Question 1.2, replacingW∗(d) by P(d).

(a) Does Theorem 1.8 hold with someW = (1+ o(1))P(d)?

Note that Theorem 1.7 answers the question above only for degree sequences satisfying
�2 = o(‖d‖1). However, in the more general setting as Theorem 1.8, there can be pairs jk where
djdk = �(‖d‖1), and for such pairs, our current embedding requiresW whereWjk is significantly
smaller than Pjk. Hence we do not have a complete answer to question (a).

(b) Can Question 1.2 be answered for d where J(d)= o(‖d‖1) is not satisfied? In partic-
ular, is there a way to embed G(n,W) into G(n, d) for some reasonable W without
knowing the asymptotic value of W∗(d) or the conditional edge probabilities as in
Proposition 1.3?

Remark 1.10. To obtain a sandwich-type result as for G(n, d), we would hope to embed G(n, d)
intoG(n,W) for someW = (1+ o(1))W∗. If we approach in the same way as for G(n, d), we would
embed G(n, (J − I)− (1+ o(1))W∗) into G(n, (n− 1)1− d) where 1 is the all-one vector, J = 11T
and I is the identity matrix. Both the proofs in [17, 27] for embedding G(n, 1− (1+ o(1))d/n)
into G(n, n− 1− d) use some counting arguments that heavily rely on the fact that the under-
lying graphs (during the construction of the coupling) have almost equal degrees, and we do
not think this argument can extend to graphs that are far away from being regular. In fact,
we do not have enough intuition to support a sandwich conjecture for G(n, d) as for G(n, d),
especially for degree sequences d where the values of edge probabilities range from o(1) to
1− o(1).

Throughout the paper n is assumed to be sufficiently large. For two sequences of real numbers
(an)∞n=0 and (bn)∞n=0, we write an =O(bn) if there is C > 0 such that |an| < C|bn| for every n. We
say an = �(bn) if an > 0 and bn =O(an). We say bn = o(an), or bn � an, or an � bn if an > 0
and limn→∞ bn/an = 0. We say a sequence of events An indexed by n holds a.a.s. (asymptotically
almost surely) if P(An)= 1− o(1). All asymptotics are with respect to n→ ∞.
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1.1 Relation betweenG(n, P(d)) and the Chung–Lu model
In 2002, Chung and Lu introduced the random graph model with given expected degrees [9–12].
Given a sequence of nonnegative real numbers w= (w1, . . . ,wn) satisfying that

max
i

w2
i ≤ ‖w‖1, (1)

the random graph G(w) is defined by G(n, Ŵ(w)) where Ŵjk(w)=wjwk/‖w‖1. To avoid rely-
ing on the assumption [1] one can define Ŵjk =min{wjwk/‖w‖1, 1}. However, most of the work
about the Chung–Lu model assumed [1]. Notice that the three matrices P(d), W∗(d), and Ŵ(d)
are all asymptotically equal if d satisfies �(d)2 = o(‖d‖1), as under this assumption, P(d)jk ∼
W∗(d)jk ∼ Ŵ(d)jk = djdk/‖d‖1 for all jk, by definition of these three matrices and Proposition 1.3.
However, if there exists jk such that djdk = �(‖d‖1) then P(d)jk, W∗(d)jk, and Ŵ(d)jk may be all
asymptotically distinct.

1.2 Applications
Given two n× nmatricesW1 andW2, we sayW1 ≤W2 if (W1)ij ≤ (W2)ij for every i, j ∈ [n]. It is
well known that G(n,W) has the nice “nesting property”, meaning that G(n,W1) can be embed-
ded into G(n,W2) provided thatW1 ≤W2. However, G(n, d) does not have the nesting property.
Given two degree sequences d� g, it is in general not true that G(n, d) can be embedded into
G(n, g). In fact, it is easy to construct degree sequences d� g for which there exists jk such that
P(jk ∈ G(n, d))= 1− o(1) and P(jk ∈ G(n, g))= o(1) (see an example like this in the Appendix).
Consequently and perhaps rather surprisingly, it is difficult to prove some rather “intuitive” results
about G(n, d). For instance, although it is known that a.a.s. G(n, 3) is connected, to our knowledge
it is not known if G(n, d) is a.a.s. connected for every d provided that δ(d)≥ 3 [20]. Most such
results are restricted to certain families of degree sequences for which either some enumeration
results are known, or some enumeration proof techniques can be applied. Theorem 1.8 gives a
powerful tool to obtain such results by first embedding G(n,W) into G(n, d) and then applying
the nesting property of G(n,W). We show a few examples below.

Theorem 1.11. Assume d is a degree sequence satisfying J(d)= o(‖d‖1) and δ(d)� log n. Then,

(a) if δ(d)2/‖d‖1 ≥ (1+ c) log n/n for some fixed c> 0 then a.a.s. G(n, d) is Hamiltonian and
k-connected for every fixed k;

(b) if δ(d)2/‖d‖1 ≥ c/n for some fixed c> 1 then a.a.s. G(n, d) contains H as a minor for every
fixed graph H;

(c) if δ(d)2/‖d‖1 ≥ n−2/(k+1)+c for some fixed c> 0 where k> 0 is a fixed integer, then a.a.s.
simultaneously for all graphs H on [n] with maximum degree at most k, G(n, d) has a
subgraph isomorphic to H.

Proof. By definition, P(d)jk ≥ (1− o(1))δ(d)2/‖d‖1 for every jk. Thus, by Theorem 1.8 and
the nesting property of G(n,W), G(n, p) can be embedded into G(n, d) for some p= (1−
o(1))δ(d)2/‖d‖1. Parts (a,b) follow as for every fixed c> 0, G(n, (1+ c) log n/n) is a.a.s.
Hamiltonian and k-connected [7]; and G(n, c/n) contains every fixed graph minor when
c> 1 [15]. Part (c) follows from Theorem 7.2 of [16]. �
Remark 1.12. It should be possible to improve or even remove some assumptions such as
δ(d)2/‖d‖1 ≥ (1+ c) log n/n for some fixed c> 0 in part (a), by directly analysing G(n, (1+
o(1))f (P(d))). For instance, the sharp threshold of Hamiltonicity was studied for the stochas-
tic block model [1]. We did not attempt it as the main objective of this paper is to prove the
embedding theorems.
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2. The coupling procedure
2.1 The old and the new
Assume that we aim to embed G(n, p) into G(n, d) where p= (1− o(1))d/n. Regardless of a few
minor differences, the coupling procedures employed in [14, 17–19, 25, 26] all use the following
approach, which was introduced in the original paper of Kim and Vu [25]: let x1, x2, . . . , xm be a
sequence of random edges, each uniformly and independently chosen from Kn (here m is a care-
fully chosen integer-valued random variable that is concentrated around ‖d‖1/2). Sequentially
add edges in this sequence to G and to GL, respectively. With a small probability εi = o(1), edge xi
is rejected byG; and with a slightly larger (than εi) but still rather small probability ζ , xi is rejected
by GL. The parameter εi is chosen to be proportional to pi(xi), the probability that xi is an edge of
G(n, d) conditional on the event that all the edges that have been added to G are edges of G(n, d).
The key idea of the coupling procedure is that, untilm gets very close to dn/2, with high probabil-
ity, pi(jk) is approximately the same for every edge jk that has not been added to G yet. Since xi is
uniformly chosen, a small rejection probability εi suffices to ensure that xi is added to G according
to the correct conditional probability. We can prove that with high probability, εi = o(1) for every
1≤ i≤m, where m, as commented earlier, is concentrated around (1− o(1))dn/2. Hence we can
choose some ζ = o(1) such that εi ≤ ζ for every 1≤ i≤m. Moreover, (a) GL obtained after the
m-th iteration is a uniformly random graph conditional on the number of edges it contains, as
every edge in

([n]
2
)
has an equal probability to be added to GL; and (b) GL is a subgraph of G, as the

rejection probability ζ for GL is slightly larger than that for G in every step.
Now we are considering d where the degrees are not all asymptotically the same. The most

natural way to extend the previous coupling procedure is to generate the sequence of i.i.d. ran-
dom edges x1, x2, . . . , xm where each edge is chosen with probability proportional toW∗(d). This
coupling procedure works well when �(d)2 = o(‖d‖1). This is because the conditional probabil-
ity pi(jk) of jk being an edge of G(n, d) in step i of the procedure turns out to be proportional to
W∗(d)jk uniformly for all jk during the whole coupling process, resulting a small rejection prob-
ability εi. However, rather surprisingly, if there exists jk such that djdk = �(‖d‖1) then the ratio
pi(jk)/W∗

jk changes in a non-uniformway over jk and over time i of the coupling procedure, result-
ing larger and larger rejection probability εi. As ζ has to be chosen uniformly during the process,
we can only choose ζ = 1− o(1), meaning that almost all edges are rejected by GL. The coupling
procedure thus fails.

To overcome the challenges, we develop two novel ideas.

• Instead of using the same rejection probability ζ for every edge to be added to GL, we
use different rejection probabilities for different edges. However, for a given edge jk, the
rejection probability ζjk remains uniform throughout the procedure. This uniformity is
needed for the output GL to have the correct distribution.

• During the coupling procedure, the value of pi(jk)/W∗
jk decreases significantly for edges jk

where djdk =O(‖d‖1), but changes little for jk where djdk � ‖d‖1. Consequently, many
rejections (particularly those where djdk � ‖d‖1) occur already for the construction of G,
and thus the first idea above would not help, as even more rejections would occur for GL
than for G. To reduce the rejection probability for the construction of G, we “intentionally”
boost the probability (by an ω(1) factor) of generating edges jk where djdk � ‖d‖1 in the
sequence of random edges x1, x2, . . .. This probability boosting strategy magically reduces
the rejection probability εi(jk) for jk such that djdk � ‖d‖1 (note that most jk ∈ ([n]2 ) are
this type; see Proposition 3.2 in the Appendix). However, the rejection probabilities εi(jk)
will be high (close to 1) for jk where djdk � ‖d‖1. Nonetheless, the first idea mentioned
earlier will be applicable in this case — we reject these jkmore often than the others for the
construction of GL. Consequently, the edge probability for such jk in the final construction
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ofGL turns out to be close to 1− e−1 instead of 1. Note that for pairs jkwhere djdk � ‖d‖1,
their edge probabilityW∗

jk in G(n, d) is asymptotic to 1 by Proposition 1.3. Thus, their edge
probabilities in GL (which is asymptotic to 1− e−1) is smaller thanW∗

jk, implying that our
embedding is not “tight”. The good news is that only a small proportion of jk∈ ([n]2 ) are of
this type.

We define the procedure for sequential generation of G(n,W) in Section 2.2, the procedure
for sequential generation of G(n, d) in Section 2.3. In Section 2.4 we couple the two procedures
together to sequentially generate the coupled pair (GL,G). The parameters used by the cou-
pling procedure will be specified in Section 2.5. Finally the proof of Theorem 1.8 is given in
Section 3.

2.2 Sequential generation of G(n,W)
Wedefine a sequential sampling procedure SeqApprox-P(d, λ,�), which adds a sequence of edges
one at a time, and outputs a random graph where every edge in

([n]
2
)
appears independently. The

input λ is a positive real number, and � ∈ [0, 1][n]×[n] is a symmetric n× nmatrix. We may think
of d as the target degree sequence. As mentioned before, instead of weighting edge probabili-
ties according to their true probabilities in G(n, d), we boost the probability of edge jk if djdk
is large. To formalise this notion, we define matrix Q as follows, which provides the probability
distribution for the edges to be sequentially sampled in the procedure SeqApprox-P(d, λ,�).

Definition 2.1. Given d= (d1, . . . , dn), let Q(d) be the symmetric n× n matrix defined by Qij =
Qji = (

∑
1≤k<�≤n dkd�)−1didj, for every 1≤ i< j≤ n, and Qii = 0 for every 1≤ i≤ n.

Procedure SeqApprox-P(d, λ,�) is given below. We use Po(λ) to denote the Poisson distribu-
tion with mean λ.

1: procedure SEQAPPROX-P(d, λ,�)

2: Let I ∼ Po(λ).

3: Let G0 be the empty graph on [n].

4: for i in 1, . . . , I do

5: Pick an edge jk∈ ([n]2 ) with probability proportional to djdk (i.e. with probability Q(d)jk).

6: Gi =Gi−1 ∪ {jk} with probability �jk, and Gi =Gi−1 with probability 1− �jk.

7: end for

8: Return GI .

9: end procedure

The parameters λ and�will be set in Section 2.5. Roughly speaking, λ is approximately ‖d‖1/2
so that the number of edges in the output of SeqApprox-P(d, λ,�) is close to the number of
edges in G(n, d), if only a small proportion of them are to be rejected, which we will prove later.
The matrix � is chosen so that �jk is approximately ‖d‖1/(djdk + ‖d‖1). Since each edge jk is
selected with probability proportional to djdk by the definition of Q, and due to the choice of
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�, edge jk is selected and accepted with probability proportional to djdk/(djdk + ‖d‖1), which is
approximately W∗

jk as desired. The exact values of λ and � are only important when we couple
the two sampling processes together. At this point, regardless of their values, we prove that the
output of SeqApprox-P(d, λ,�) has distribution G(n,W) for someW as a function of d, λ and �.
For two matrices A and B of the same dimension, we denote by A� B the Hadamard product of
A and B, defined by (A� B)ij =AijBij for every entry ij.

Lemma 2.2. SeqApprox-P(d, λ,�) returns a random graph G with distribution G(n, f (� �Q)),
where Q=Q(d) and f (x)= 1− exp (− λx).

Proof. Let e1 = j1k1, . . . , eN = jNkN be an enumeration of the edges in
([n]
2
)
, where N = (n

2
)
. For

1≤ i≤N, let Xi denote the number of times that edge ei is sampled throughout SeqApprox-
P(d, λ,�). We prove that the components of X= (X1, . . . , XN) are mutually independent, and
consequently, every edge ei appears independently in G with probability P(Xi ≥ 1). For each edge
ei ∈

([n]
2
)
, the probability that ei is in G is thus given by

P(Xi ≥ 1)= 1− P(Xi = 0)= 1−
∞∑

m=0
e−λ λm

m!
m∑
j=0

(
m
j

)
Qj
ei (1−Qei )

m−j (1− �ei
)j

= 1−
∞∑

m=0
e−λ λm

m! (1−Qei +Qei (1− �ei))
m

= 1− exp
(−λ + λ(1−Qei +Qei (1− �ei))

)= 1− exp (− λQei�ei),

and the probability generating function for Xi is given by

EzXi =
∞∑

m=0
e−λ λm

m!
m∑
j=0

(
m
j

)
Qj
ei(1−Qei)

m−j
j∑

k=0

(
j
i

)
�k

ei(1− �ei)
j−kzk

=
∞∑

m=0
e−λ λm

m!
m∑
j=0

(
m
j

)
Qj
ei(1−Qei)

m−j(1− �ei + �eiz)
j

=
∞∑

m=0
e−λ λm

m! (1−Qei +Qei(1− �ei + �eiz))
m = exp (− λQei�ei(1− z)).

On the other hand, the probability generating function for the random vector X is given by

∑
j1,...,jN

P(X1 = j1, . . . , XN = jN)z
j1
1 · · · zjNN =

∞∑
m=0

e−λ λm

m!

( N∑
i=1

(
Qei�eizi +Qei (1− �ei)

))m

= e−λ exp

( N∑
i=1

(
λQei�eizi + λQei(1− �ei)

))

=
N∏
i=1

exp
(−λ Qei�ei + λQei�eizi

)= N∏
i=1

EzXi ,

where the second last equation above holds because
∑N

i=1 Qei = 1 by definition of Q. Hence we
have shown that the components of X are mutually independent. Thus, G∼ G(n,W) whereW is
the symmetric n× nmatrix given byWij = 1− exp (− λQij�ij) for every i, j ∈ [n]. �
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2.3 Sequential generation of G(n, d)
We define procedure SeqSample-D(d) which sequentially generates a random graph with dis-
tribution G(n, d). This procedure is essentially the same as previously used in [17–19, 26]. Let
P(jk ∈ G(n, d) |H) denotes the probability that jk is an edge of G(n, d) conditional on H being a
subgraph of G(n, d).

1: procedure SEQSAMPLE-D(d)

2: Let G0 be the empty graph on [n].

3: for i in 1, . . . , ‖d‖1/2 do
4: Pick an edge jk ∈ ([n]2 ) \Gi−1 with probability proportional to P(jk ∈ G(n, d) |Gi−1).

5: Gi =Gi−1 ∪ {jk}.
6: end for

7: Return G‖d‖1/2.
8: end procedure

Given d, and an integer 0≤m≤ ‖d‖1/2, let G(n, d,m) denote a uniformly random subgraph
of G(n, d) with exactlym edges. The following lemma follows by a simple counting argument and
was proved in [18, Lemma 3].

Lemma 2.3. Let 0≤m≤ ‖d‖1/2 and Gm be the graph obtained after m iterations of SeqSample-
D(d). Then Gm ∼ G(n, d,m).

Lemma 2.3 (withm= ‖d‖1/2) immediately implies the following corollary.

Corollary 2.4. Let G be the output of SeqSample−D(d). Then G∼ G(n, d).
We need the following lemma, which follows by standard concentration results and can be

found in [18, Lemma 4]. We use Bin(K, p) to denote the Binomial distribution with K trials and
success probability p. (Note that Lemma 4(c) of [18] only states the upper tail bound of part (c)
below; but its proof gives both the upper and lower tail bounds.)

Lemma 2.5. Let Y ∼Bin(K, p) for some positive integer K and p ∈ [0, 1].

(a) For any ε ≥ 0, P(|Y − pK| > εpK)≤ 2e−
ε2
2+ε

pK .
(b) If p= j/K for some integer j ∈ (0, K), then P(Y = j)≥ 1

3 (p(1− p)K)−1/2.

(c) Let I ∼ Po(μ) for some μ > 0. Then, for any ε ≥ 0, P(|I − μ| ≥ εμ)≤ 2e−
ε2
2+ε μ.

The following lemma is similar to [18, Lemma 6], whose proof easily extends to more gen-
eral degree sequences d discussed in this paper through straightforward adjustments. We include
a short proof here. We will use this lemma to gain information on the remaining degree
sequence of G(n, d) when part of it has been constructed. Note that the probability lower bound
1− exp

(−�(ξ2pmdj)+ 2 log n
)
below is not necessarily nonnegative. If it is negative then the

assertion is trivially true.
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Lemma 2.6. Let 0≤m< ‖d‖1/2 and pm = (‖d‖1 − 2m)/‖d‖1. Let dGm
j denote the degree of j in

Gm. For any ξ = ξn ∈ (0, 1), |dj − dGm
j − pmdj| ≤ ξpmdj for all j ∈ [n] with probability at least 1−

exp
(−�(ξ2pmdj)+ 2 log n

)
.

Proof. Take G∼ G(n, d) and let h= (h1, . . . , hn) be the degree sequence of the graphH obtained
by independently keeping every edge of G with probability pm. Then, hj ∼ Bin(dj, pm) for every
j ∈ [n]. By Lemma 2.3, conditioned on the event that |E(H)| = ‖d‖1/2−m, h has the same
distribution as d− dGm . Therefore, by Lemma 2.5 (a,b), for every j ∈ [n],

P(|dj − dGm
j − pmdj| ≥ ξpmdj) ≤ P(|hj − pmdj| ≥ ξpmdj)

P(|E(H)| = ‖d‖1/2−m)
≤ 2e−

ξ2
2+ξ

pmdj

1
3 (pm(1− pm)‖d‖1/2)−1/2

≤ √‖d‖1 · e−�(ξ 2pmdj) = exp
(−�(ξ2pmdj)+ log n

)
,

as ‖d‖1 ≤ n2. The lemma follows by taking the union bound over j ∈ [n]. �

2.4 Couple the two sequential sampling procedures
Finally we couple the two aforementioned procedures and define procedure Coupling(d, λ, �)
which sequentially constructs G(n,W) and G(n, d) together. The central idea of Coupling is that
marginally, the constructions of GL ∼ G(n,W) and G∼ G(n, d) follow precisely the procedures
SeqApprox-P and SeqSample-D, respectively. As in SeqApprox-P, edges jk in Kn are sequen-
tially sampled independently with probability proportional to djdk. If jk was already added to
G then jk is accepted by GL with probability �jk as in SeqApprox-P. If jk was not in G, then jk
is accepted to G with some probability ηjk so that the probability that jk is selected and accepted
by G is proportional to the probability that jk is in G(n, d), conditional on the current construc-
tion of G, as desired in SeqSample-D. On the other hand, jk is accepted by GL with probability
�jk as required by SeqApprox-P. If ηjk ≥ �jk then we can couple the two operations so that jk is
added to GL only when it is added to G. On the other hand, if ηjk < �jk then we simply sample
GL ∼ G(n,W) and G∼ G(n, d) independently. We can prove that the latter case happens rarely.
The formal description of Coupling is given below.

1: procedure Coupling(d, λ, �)

2: Let L0 and G0 be empty graphs on vertex set [n].

3: Let I ∼ Po(λ).

4: for i in 1, . . . , I do

5: Pick an edge jk of Kn with probability proportional to djdk (i.e. with probability Qjk).

6: if jk∈Gi−1 then

7: Gi =Gi−1;

8: Li = Li−1 ∪ {jk} with probability �jk,

9: Li = Li−1 with probability 1− �jk.
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10: else

11: Let η(i)jk = ρi(jk)
maxh�/∈Gi−1 ρi(h�) , where ρi(h�)= (dhd�)−1

P(h� ∈ G(n, d) |Gi−1).

12: if η
(i)
jk < �jk then

13: Return IndSample(d, λ,�)

14: else

15: Gi =Gi−1 ∪ {jk} and Li = Li−1 ∪ {jk} with probability �jk,

16: Gi =Gi−1 ∪ {jk} and Li = Li−1 with probability η
(i)
jk − �jk,

17: Gi =Gi−1 and Li = Li−1 with probability 1− η
(i)
jk .

18: end if

19: end if

20: end for

21: for i≥ I + 1, while Gi−1 has fewer edges than G(n, d) do
22: Pick an edge jk �∈Gi−1 with probability proportional to P(jk ∈ G(n, d) |Gi−1);

23: Gi =Gi−1 ∪ {jk}.
24: end for

25: Return (GL,G), where G=Gi and GL = LI .

26: end procedure

27: procedure IndSample(d, λ,�)

28: Independently sample G∼ G(n, d), and GL ∼ G(n, f (� �Q)) where

f (x)= 1− exp (−λx).

29: Return (GL, G)

30: end procedure

Lemma 2.7. Let (GL,G) be the output of Coupling(d, λ,�).

(a) GL ∼ G(n, f (� �Q)) where Q=Q(d) and f (x)= 1− exp (− λx).
(b) G∼ G(n, d).
(c) If IndSample(d, λ,�) is not called during the execution of Coupling(d, λ,�), then GL ⊆G

in the output of Coupling(d, λ,�).

Proof. Parts (a,b) are trivially true if IndSample(d, ζ ) is called. Now assume that IndSample(d, ζ )
is not called. Part (c) follows directly by the coupling procedure, as every edge is added to GL only
when it is, or has been added to G. For (a), note that if IndSample(d, ζ ) is not called then the
edges are sequentially added to GL exactly as in SeqApprox-P(d, λ,�), and thus part (a) follows
by Lemma 2.2. For part (b), notice that in each step i, edge jk is added to Gi−1 with probability
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Qjkη
(i)
jk , which is proportional P(jk ∈ G(n, d) |Gi−1). Thus, the edges are added to G exactly as in

the execution of SeqSample-D(d), and part (b) follows by Corollary 2.4. �

2.5 Specify λ and� for the coupling procedure
By the assumptions J(d)= o(‖d‖1) and δ(d)� log n, there exist ξ , ζ , ζ ′ = o(1) that go to zero
sufficiently slowly so that

ζ ′ � ‖d‖−1/3
1 (2)

ζ ′ξ2 � log n
δ(d)

(3)

ζ ′ � J(d)
‖d‖1 (4)

ζ � J(d)
ζ ′‖d‖1 + ξ . (5)

To see why they exist, notice that there exists ζ ′ = o(1) satisfying [4] since J(d)= o(‖d‖1).
Moreover, since δ(d)� log n, we may assume that ζ ′ goes to 0 sufficiently slowly so that [2] is
satisfied and there exists ξ satisfying [3]. Finally, given [4] and ξ = o(1), the right-hand side of [5]
is o(1), and hence there exists ζ satisfying [5].

Choose ξ , ζ , ζ ′ that satisfy all the conditions above. For the coupling procedure, we set
λ = (1− ζ ′)‖d‖1/2 (6)

�jk = (1− ζ )
‖d‖1

‖d‖1 + djdk
for every 1≤ j< k≤ n. (7)

3. Proof of Theorem 1.8
Let � = �(d), Q=Q(d), and P = P(d). By Lemma 2.7, it suffices to show that

P(IndSample(d, ζ ) is called)= o(1) (8)

λ� �Q= (1+ o(1))P, (9)

as 1− exp (− (1+ o(1))Pij)= (1+ o(1))(1 − e−Pij) for every ij.

Proof of (9). For every 1≤ j< k≤ n,

Qjk = djdk∑
1≤h<�≤n dhd�

= djdk
1
2 (‖d‖21 −∑n

i=1 d2i )
= 2djdk

‖d‖21 −O(�)‖d‖1
.

Since λ = (1− ζ ′)‖d‖1/2 by [6], and by [7]

λ�jkQjk = (1− ζ ′)‖d‖1
2

(1− ζ )‖d‖1
‖d‖1 + djdk

2djdk
‖d‖21(1+O(�/‖d‖1)

=
(
1+O

(
ζ + ζ ′ + �

‖d‖1
)) djdk

‖d‖1 + djdk
,
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and (9) follows by noting that ζ , ζ ′,�/‖d‖1 = o(1). �
Proof of (8). By Lemma 2.5(c) (with μ = λ and ε = λ−1/3) and [6], a.a.s. I = (1+O(λ−1/3))λ =
(1− ζ ′ +O(‖d‖−1/3

1 ))‖d‖1/2. It suffices then to show that a.a.s. throughout the execution of
Coupling(d, λ,�), η(i)xi ≥ �xi for every 1≤ i≤ I , where xi is the random edge sampled in the ith
iteration. Let mi be the number of edges in Gi. Since a.a.s. I = (1− ζ ′ +O(‖d‖−1/3

1 ))‖d‖1/2 and
mi ≤ I for every 1≤ i≤ I , it follows then by [2] that a.a.s.

pmi ≥ pmI ≥ ζ ′/2 for every 1≤ i≤ I , (10)

where pmi is defined by 1− 2mi/‖d‖1 as in Lemma 2.6. �
By Lemma 2.6 (with ξ chosen in Section 2.5), [10] and [3], with probability at least

1− exp
(−�(ξ2pmdj)+ 2 log n

)≥ 1− exp
(−�(ξ2ζ ′δ(d))+ 2 log n

)= 1− exp
(−ω( log n

)
,

we have that |dj − dGi
j − pmidj| ≤ ξpmidj for all j ∈ [n]. Now take the union bound over all the

I ≤ ‖d‖1/2 steps, we conclude that
dj − dGi

j = (1+O(ξ))pmi dj for every j ∈ [n], and for every i≤ I . (11)

Next, we estimate P(jk∈ G(n, d) |Gi). Note that Proposition 1.3 gives P(jk ∈ G(n, d) |Gi) when
Gi = ∅. Here, we apply another corollary of [20], [Theorem 1], given in Theorem 3.1 below, which
estimates the edge probabilities in G(n, d) when conditioned on a set of edges H being present in
G(n, d).

For two degree sequences d and g, we say d� g if di ≤ gi for every i ∈ [n]. Given a graph H on
[n], let dH denote the degree sequence of H.

Theorem 3.1. Suppose H is a graph on [n] with dH � d, and let t= d− dH. Suppose that J(d)=
o(‖t‖1) and suppose jk �∈H. Then

P(jk∈ G(n, d) |H)=
(
1+O

(
J(d)
‖t‖1

)) tjtk
‖t‖1 + tjtk

,

where P(jk ∈ G(n, d) |H) denotes the probability that jk ∈ G(n, d) conditional on the event that
G(n, d) contains H as a subgraph.

We first verify that the assumption J(d)= o(‖t‖1) of Theorem 3.1 is satisfied for every i≤ I
with H =Gi. By (10) we may assume that pmi ≥ ζ ′/2 for every 1≤ i≤ I (which holds a.a.s.). Let
ti = d− dGi . Then,

‖ti‖1 = ‖d‖1 − 2mi = ‖d‖1(1− 2mi/‖d‖1)= ‖d‖1pmi ≥ ‖d‖1ζ ′/2. (12)

By [4], J(d)� ζ ′‖d‖1 and consequently J(d)/‖ti‖1 =O(J(d)/ζ ′‖d‖1)= o(1) for every 1≤ i≤ I .
By Theorem 3.1, [11] and [12], a.a.s.

P(jk ∈ G(n, d) |Gi)=
(
1+O

(
J(d)

pmi‖d‖1
+ ξ

)) pmidjdk
‖d‖1 + pmidjdk

, for every 1≤ i≤ I ,

where J(d)/pmi‖d‖1 + ξ =O(J(d)/ζ ′‖d‖1 + ξ)= o(1) as shown before. Recall that

ρi(jk)= P(jk∈ G(n, d) |Gi)
djdk

.

It follows that

ρi(jk)=
(
1+O

(
J(d)

ζ ′‖d‖1 + ξ

))
pmi

‖d‖1 + pmidjdk
.
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Notice that
pmi

‖d‖1 + pmidjdk
≤ pmi

‖d‖1 for all jk /∈Gi−1.

Thus,

max
h�/∈Gi−1

ρi(h�)≤
(
1+O

(
J(d)

ζ ′‖d‖1 + ξ

))
pmi/‖d‖1.

Hence,

η
(i)
jk ≥

(
1+O

(
J(d)

ζ ′‖d‖1 + ξ

)) ‖d‖1
‖d‖1 + pmidjdk

≥ (1− ζ )
‖d‖1

‖d‖1 + djdk
,

by [5]. Now [8] follows.
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Appendix
We prove a few properties of degree sequences d where J(d)= o(‖d‖1).
Proposition 3.2. Let d= dn be a sequence of degree sequences such that J(d)= o(‖d‖1). Let � =
max{di, i ∈ [n]}. Then,

(a) � = o(n).
(b) For every ε > 0, |{ij:didj ≥ ε‖d‖1}| ≤ εn2 for all sufficiently large n.

Proof. For (a), suppose on the contrary that � ≥ δn for some absolute constant δ > 0. Then,

‖d‖1 =
n∑
i=1

di ≤ δ−1
δn∑
i=1

di ≤ δ−1J(d),

contradicting with J(d)= o(‖d‖1).
For (b), note that J(d)≥ �d� and thus �d� = o(‖d‖1). It follows that for every i, j ∈ [n] such

that j≥ �, didj ≤ �d� = o(‖d‖1). Thus, part (b) follows by � = o(n) from part (a). �
Example 3.3. We construct an example of degree sequences d� g for which there exists jk such
that P(jk ∈ G(n, d))= 1− o(1) and P(jk ∈ G(n, g))= o(1). Let t be a degree sequence where t1 =
t2 = n2/3, and t3 = · · · = tn = 1 (without loss of generality we assume that n2/3 is an integer and
‖t‖1 is even). Let g= (n− 1)1− t, and let d be (n− 2n2/3)-regular. Obviously, d� g. By symmetry,
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the probability that vertices 1 and 2 are adjacent in G(n, d) is equal to (n− 2n2/3)/(n− 1)= 1−
o(1). By Proposition 1.3, the probability that these two vertices are adjacent in G(n, t) is 1− o(1),
and consequently, their adjacency probability in G(n, g) is o(1), as G(n, g) has the same distribution
as the complement of G(n, t).
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