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Abstract

Shot-noise processes are used in applied probability to model a variety of physical systems
in, for example, teletraffic theory, insurance and risk theory, and in the engineering
sciences. In this paper we prove a large deviation principle for the sample-paths
of a general class of multidimensional state-dependent Poisson shot-noise processes.
The result covers previously known large deviation results for one-dimensional state­
independent shot-noise processes with light tails. We use the weak convergence approach
to large deviations, which reduces the proof to establishing the appropriate convergence
of certain controlled versions of the original processes together with relevant results on
existence and uniqueness.
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1. Introduction

The goal of this paper is to study large deviation results for a general family of multidimen­
sional state-dependent shot-noise processes. Shot-noise processes provide a natural class of
models for systems in which (some aspect of) the state of the system is determined by the arrival
of shocks. A typical application is in the context of queueing systems, in which the arrival of
customers can be interpreted as shocks and one is interested in, say, the current workload or
cost incurred - due to performed work - by current and former customers. Another common
area of application is insurance, the shocks being claims that arrive according to an underlying
point process.

Due to their usefulness in describing various physical systems, shot-noise processes have
been studied extensively, both theoretically as well as from the perspective of applications. For
some general treatments of this class of processes and their properties, see [5], [7], [17], [18].
Vvarious asymptotic properties of shot-noise are found in [13] and [15], with [12], [16], and
[19] dealing with heavy-tailed phenomena. An example of shot-noise processes in the queueing
context is provided in [9], whereas [11] and [12] consider applications to insurance and risk
theory. Another type of application is to storage processes, see, e.g. [2] and [14].

In this paper we are concerned with Poisson shot-noise processes, i.e. the underlying point
process governing the arrivals ofthe shocks is a Poisson process. Large deviations for a family of
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1098 A. BUDHIRAJAAND P. NYQUIST

Poisson shot-noise processes have been studied in [8] and the precise result therein is as follows.
Let N be a homogeneous Poisson process with unit intensity and let 21, 22, ... , be independent
and identically distributed X-valued random variables, each with distribution v and independent
of N. Here X is some locally compact Polish space. For a function H: lR+ x X ~ lR+, referred
to as the shot shape, consider the Poisson shot-noise process {X (r): t E [0, T]}, defined as

NCt)

X(t) = L H(t - r; Zn),
n=l

where T}, T2, ... are jump instants of N. Suppose that

(1.1)

t ~ H (t, z) is nondecreasing, cadlag, and H (0, z) = ° for each Z E X. (1.2)

Let h(z) = limt-400 Hit, z). The function h is referred to as the shot value for the shot-noise
process X. Suppose that h satisfies the following condition:

£. eDh(z)v(dz) < 00 for every o E Jl\t (1.3)

For e > 0, let X" (r) = £X (£-1 t), t E [0, T]. Paper [8] shows that {Xe}c>o satisfies a large
deviation principle (LOP) in D([O, T]: lR+) as e ~ 0, where D([O, T]: ~+) denotes the space
of cadlag functions from [0, T] to lR+ which is equipped with the usual Skorohod topology.

The goal of this paper is to study large deviation properties of general state-dependent
multidimensional shot-noise processes. Such processes are natural models for systems where
the impact of a shot depends on the current state of the system. In order to prove large deviation
results, we use the fact that a Poisson shot-noise process can be represented as an integral with
respect to a Poisson random measure. Using such representations, our work builds on certain
variational formulae for functionals of a Poisson random measure [4] and their application to
large deviations [3]. Rather than traditional large deviation techniques such as those used in [8],
we use the weak convergence approach to large deviations. With the results of [3] and [4], this
amounts to proving the appropriate convergence of certain controlled versions of the original
process together with the necessary existence and uniqueness results. The main advantage of
the weak convergence approach is that it avoids the discretization/approximation arguments and
exponential estimates typically encountered in a large deviation analysis; see, e.g. [6]. Such
approximation methods are used extensively in [8] and in general are difficult to implement for
complex settings such as the state-dependent shot-noise processes considered here.

Large deviation results such as those considered in this paper can be used to determine
the most likely path to rare events. In applications of shot-noise processes these results can
thus be used to try and prevent unwanted behavior of the system in question. Moreover, large
deviation results can be used to design efficient Monte Carlo algorithms. For an example of
such simulations in the context of shot-noise processes, see [20]. Applications of our results to
rare-event simulation problems will be studied in our future work.

We now introduce the multidimensional state-dependent shot-noise processes that will be
studied in this paper. Let for each e > 0, He: lR+ x X X lR~ ~ ~~ be a measurable function
and consider the stochastic process Xe given as the solution of the equation:

N(t)

iC(t) = L n,« - r; z.; XC(Tn -»,
n=l

t ::: 0. (1.4)
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(1.5)t E [0, T],

Let X" (r) = eXe(e- l t). We will give a sufficient condition on the collection of maps {He}e>O
under which {XC}e>O satisfies an LDP in D([O, T]: IR~). It will be convenient to work with
the following, equivalent in law, representation for X", Let nc be a Poisson random measure
(PRM) on XT = [0, T] x X with intensity e- lvT = e- l A®V, where Ais the Lebesgue measure
on [0, T]. Let Xe solve

XS(t) = e ( Hs(e-I(t - s), z. e- I XS(s-))ns(ds dz),
JXt

where Xt = [0, t] x X for t E [0, T]. It is easy to check that X" defined in (1.5) and eXe (e- l .) ,

where XC is as in (1.4), have the same distribution. We will in fact consider a more general
setting in that we will study the collection [X"}e>O given as the solution of (1.5), where the
measure v describing the intensity of n, is a general a-finite measure on (X,2(X». This
allows for a nonintegrable number of shocks on a bounded time interval. One can formulate
general sufficient conditions under which (1.5) has a unique pathwise solution. We will instead
take unique solvability of the equation as one of our basic assumptions (see Condition 2.1). In
Section 2.1 we introduce our assumptions (Conditions 2.1 and 2.2) on He. Our main result
(Theorem 2.2) shows that under these conditions, X" given as the solution of the stochastic
integral equation (2.1) satisfies an LDP in D([O, T]: JR~) as e ~ 0. The LOP established
in [8] is an immediate consequence of Theorem 2.2.

The rest of the paper is organized as follows. Section 3 contains the proof of well-posedness
of an ordinary differential equation (ODE) associated with the asymptotics of controlled ana­
logues of (1.5) (Theorem 2.1). In Section 4 we recall a result from [4] that gives a general
sufficient condition (Condition 4.1) for an LOP to hold for measurable functionals of a PRM.
Theorem 2.2 is proved by verifying this sufficient condition. Condition 4.1(a) is verified in
Section 5.1 while Condition 4.1(b) is considered in Section 5.2.

The following notation will be used. The space of probability measures on a Polish space
S, equipped with the topology of weak convergence, will be denoted by /P(S), For a function
I: [0, T] ~ ]Rk,set 1I111*,t = supo<s<t III(s)!I,t E [0, T]. ForU E /P(§)andaU -integrable
1 on s, we denote I§ l(x)tJ(dx) as (I, U). The Borel a-field on a Polish space s will be
denoted as 2(§). The space of functions that are right-continuous with left limits from [0, 00)
(respectively [0, T]) to S will be denoted as D([O, 00): S) (respectively D([O, T]: S) and are
equipped with the usual Skorohod topology. For a bounded function 1 from S to JR, we denote
1111100 = SUPXE§ I/(x)l. Convergence of a sequence {X n } of §-valued random variables in
distribution to X will be written as X; ~ X.

For a a -finite measure v on a Polish space S, £~k (S, u) will denote the space of p-integrable
functions with respect to v, from S to]Rk. When k = 1, we will merely write £P(§, v) or £P(v).
We will usually denote by K, Kl, K2, ... , the constants that appear in various estimates within
a proof. The values of these constants may change from one proof to another.

2. Main result

Our basic collection of stochastic processes {xe}e>O is given in terms ofPRMs {ne}e>O. We
would like all these PRMs to be defined on a common probability space. For this, the following
construction will be useful. Let Y = X x [0, 00) and YT = [0, T] x Y. For a locally compact
Polish space Z, let eMFC(Z) be the space of all measures v on (Z, 2(Z» such that v(K) < 00

for every compact K in Z. This space is equipped with the usual topology of vague convergence.
Let M= eMFC (YT ) and let jp> be the unique probability measure on (M, 2 (M» under which the
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t E [0, T], U E 93(X).

canonical map, N: M-+ M, N(m) = m, is a PRM with intensity measure VT = )... ~ v~ )...00'

where )...00 is the Lebesgue measure on [0, (0). The corresponding expectation operator will
be denoted by lEo Let:Ft = a{N«O, s] x A): °~ s ~ t, A E 2('Y)}, and let :it denote the
completion under P. We denote by ~ the predictable a-field on [0, T] x Mwith the filtration
{:it :°.s t :s T} on (M, 2(M».

-I
For e > 0, let N" be a counting process on XT defined as

Ne-'((O,t] xU) = ( l[O.e-'j(r)N(dsdxdr),
J(O,t]XUxlR+

Clearly N e-
I

has the same distribution as ne, i.e, it is a PRM on X T = [0, T] x X with intensity
£-1)... ® v.

Next we introduce our assumptions and present the main result.

2.1. Assumptions

Our first assumption is on the unique solvability of (1.5). Note that N e-
1

is aM-valued
random variable, where M = MFC(XT).

Condition 2.1. For each e > 0, there is a measurable map g,e: M -+ D([O, T]: lRi) such
that for any probability space (Q, :F, P) on which is given a PRM iie on X T with intensity
measure £-I VT, X" = g,e(£iie) is a :it = a{iie(B x [0, s]), s ~ t, B E 2(X), v(B) < oo}­
adapted cadlagprocess that is the unique solution ofthe stochastic integral equation (1.5).

Condition 2.1 is satisfied quite generally. For example, if v is a finite measure, the unique
solvability is immediate from a recursive construction of a solution of (1.5) from one jump to
the next. For more general v, Condition 2.1 will hold under suitable Lipschitz and growth
assumptions on He (cf. [10, Theorem 111.2.3.2]). The condition, in particular, says that
X" = g,e (eNe-I) is the unique solution of

Xe(t)=e ( He(e-l(t-s),z,e-1Xe(s-»Ne-l(dsdz).
JXt

t E [0, T] (2.1)

on (M, 93 eMI) , lP). For the rest of this paper Xe will denote the solution of (2.1).
Next we introduce our second main assumption on the family {He}e>O. We denote by cLexp

the family of all measurable functions r: X -+ lR+ such that whenever A E 2 (X) is such that
v(A) < 00, i eUr(z)v(dz) < 00 for all o E R

Note that if v is a probability measure, this condition merely says that r(Z) has an everywhere
finite moment generating function, where Z is a random variable with probability distribution v,

Condition 2.2. There are measurable functions tl and R; from lR+ x X x lRi to lRi and lRd ,

respectively; ~e, ~ from X to R+; and hfrom X x Ri to lRi such that the following hold.

(a) For e > 0 and (t, Z, x) E R+ x X x Ri,

He(t, z. x) = ii«. Z, sx) + Re(t, Z, sx).

(b) For £ > °and (z, x) E X x lRi,

sup II e,«. z, X) II ~ ~e(z)(lIxlI + 1).
t~O
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(c) ~e :::: ~, ~ E £exp n £1(V) andfor V almost everywhere (a.e.) Z E X, ~e(Z) ~ °
ass ~ 0.

(d) For (z. x) E X x IR~, t ~ H(t, Z, x) is cadlag and nondecreasing (coordinatewise) and
H(O, z. x) = 0.

(e) Foreveryz E Xandm > 0, sUPllxll:sm IH(t,z,x) -h(z,x)1I ~ Oast ~ 00.

(f) Forsome Lh E £exp n £1(v),

IIh(z,x ) - h(z,x' ) 11 :::: Lh(z)lIx -x'II for all x, x' E IRi, z EX.

(g) Forsome Mh E £exp n £1 (V),

IIh(z,x)1I :::: Mh(Z)(1 + IIxll) for all x E IR~, z EX.

The setting considered in [8] corresponds to the case where He(t, z,x) is independent of 8

and x; in particular R, == 0. Conditions 2.1 and 2.2 will be standing assumptions for this paper
and will not be explicitly mentioned in the statements of results.

2.2. Controlled ODEs

In this section we will consider an ODE that arises in the asymptotic analysis ofthe controlled
analogues of (2.1). Define l: [0, (0) ~ [0, (0) by

l (r) = r log r - r + 1, r E [0, (0).

For g: XT ~ [0, (0), let

Lr(g) = r l(g(t, z»vr(dt dz),
JXT

S" = {g: Xr ~ [0, (0): Lr(g) :::: n}. (2.2)

A function g E S" can be identified with a measure v~ E M defined by

v~(A) =i g(s, x)vT(ds dx),

This identification induces a topology on S" under which S" is a compact space; see [3] for a
proof. Let S = Un~1 S". For g E S consider the integral equation

~(t) = r h(z, ~(s»g(s,z)v(dz) ds,Jx, t E [0, T]. (2.3)

The following result says that the above integral equation has a unique solution for every g E S;
a proof is given in Section 3.

Theorem 2.1. For every g E S there is a unique g E C([O, T]: lR~) that solves (2.3).
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2.3. TheLDP

We are now ready to present our main result. Given g E S denote by ~g the unique solution
of (2.3). Define I: D([O, T]: R~) --+ [0,00] as

I «(jJ) = inf {LT (g) },
gES:4>=~g

(2.4)

where infimum over an empty set is taken to be 00. In particular, this says that I «(jJ) = 00 for
all 4> E D([O, T]: Ri) \ C([O, T]: Ri). The following is our main result.

Theorem 2.2. It holds that I is a rate function and the collection {Xe}e>O satisfies an LDP in
D([O, T]: R~) with rate function I as 8 --+ 0.

Remark 2.1. The LDP for the scalar state-independent case established in [8, Proposition 3.1]
is an immediate consequence of Theorem 2.2. To see this, note that when d = 1 and
He(t, Z, x) == H (t, z), where H is as introduced in (1.1), Condition 2.1 holds trivially.
Furthermore, under the assumptions made in [8] (specifically, (1.2», Conditions 2.2(a)-(t)
are immediate and h(z, x) == h(z). Finally, the requirement in (1.3), and since v is a probability
measure, implies that Condition 2.2(g) holds as well in this state-independent case.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. We start with the following two lemmas which will
be used several times in this paper. The proof of the first lemma is standard and is omitted.

Lemma 3.1. (a) For a, b E (0,00) and a E [1,00), ab :::: ea a + (lja)l(b).

(b) Forevery fJ > 0, there exist (}I (fJ), (}2(fJ) E (0,00) such that {}I (fJ), (}2(fJ) --+ Oas fJ --+ 00,

and

[x - 11 :::: el(fJ)l(x) for [x - 11 2:: {3, x 2:: 0, x :::: Q2({3)l(x) for x 2:: f3 > 1.

(3.1)

Lemma 3.2. Let fJ E £exp n £1 (v). For every 8 > °and n E N, there exists c(8, n, fJ) E

(0, 00) such that for all U: X --+ R+ such that U:::: fJ, all measurable maps f: [0, T] --+ lR+
and °.:s s .:s t .:s T,

sup 1 !(u)D(z)g(u, z)v(dz) du
gESn (S,t]xX

:s c(8, n, 1J)(L J(Z)V(dZ)) (it f(U)dU) + 8If'*.t.

Proof Let f: [0, T] --+ lR+, g E S'', and D, fJ be as in the statement of the lemma. Then,
for each m > 0,

1 !(u)D(z)g(u, z)v(dz) du = TI (m) + T2(m),
(S,t]xX

where

t, (m) = 1 f(u)D(z)g(u, z)v(dz) du
(s,t]x{1J~m}

and

T2(m) =1 !(u)D(z)g(u, z)v(dz) duo
(s,t]x{1J>m}
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Using Lemma 3.1(a), we can estimate T2(m), for each k ~ 1, as

For each f3 > 1, define the sets E 1(m, f3) and E2(m, f3) by

El(m,f3) = {(u,z) E (s,t] x X: l?(z) ~ m andg(s,Z) ~ f3l,

Ez(m, fi) = feu, z) E (s, z] x X: U(z) ~ m and g(s, z) > tJ}.

Then T}(m) can be estimated as

where

T3(m, (3) = { !(u)J(z)g(u, z)v(dz) du,
J£1 (m,p)

T4(m, (3) = { !(u)J(z)g(u, z)v(dz) duoJE2(m,p)

Using Lemma 3.1(b),

1103

Combining the estimates for TI (m) and Tz (m), the left-hand side of (3.1) can be bounded by

Now, given 8 > 0, choose k > 1 such that n] k < 8/3. Next, since l? E £exp n £1 (v), it is
possible to choose m > °such that T J{tJ>m} ektJ(z)v(dz) < 8/3. Finally, using Lemma 3.1(b),
choose fJ > 1 such that Q2(fJ)mn < 8/3. The result now follows on taking c(8, n, l?) = {J.

Proof ofTheorem 2.1. We will use Banach's fixed point theorem. Fix n E Nand g E S",
Define for r > 0, T': C ([0, r]: IR~) --+ C ([0, r]: IR~) as

T" (4J)(t) = 4J(O) + ( h(z, 4J(s»g(s, z)v(dz) ds,Jx, t E [0, r], 4J E C([O, r]: IR~).

Note that the right-hand side indeed defines an element of C([O, r]: lR~.) since by Lemma 3.2,
for 8 > °and °::: s < t < r,

( IIh(z, 4J(u» IIg(s, u)v(dz) du
J(s,t]xX

:s (l + 114Jlkr)(c(8, n, Mh)(t - s) Ix Mh(Z)v(dz) + 8).
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t E [0, T], U E c8(X).

We will now argue that for r small enough T' is a contraction. Note that for ¢, ~ E C ([0, r] :
d· -IR+), WIth ¢(O) = ¢(O),

IITr (</» - r:(¢) Ikr:S ( IIh(z, </>(s» - h(z, ¢(s» IIg(s, z)v(dz) dsJXr

s II</> - ¢Ikr ( Lh(Z)g(S, z)v(dz) ds.
JXr

Using Lemma 3.2 again and our assumption on Li; we have fXT Lh(Z)g(S, z)v(dz) ds < 00.

Thus, for sufficiently small r , JX
r

Li;(z)g(s, z)v(dz) ds < 1 and consequently T' is a contrac­
tion and so by Banach's fixed point theorem has a unique fixed point. This shows that there is
a unique solution to (2.3) for all t E [0, r]. The result now follows by a recursive argument.

4. A general sufficient condition for the LDP

We now present a result from [4] which will be a key ingredient in our proofs. We
begin with some notation. Let Abe the class of all (9) ® c8(X»/c8[O, oo)-measurable maps
tp : Xr x M~ [0, (0); as is common, we frequently suppress in the notation the dependence
of cp on elements in (the probability space) M. For cp E eA, define a counting process NCP on
Xr by

N'P((0, t] x U) = ( lro,'P(s,z)] (r)N(ds dz dr),
J(O,t] xU xlR+

The counting process Nf/J can be interpreted as a controlled random measure, with ip playing
the role of the control which selects the intensity for the points at location x and time s in a
possibly random but nonanticipating way. Let

'Un = {cp E eA: (s, z) ~ tpts, z, w) E S", lP a.e. wI.

Elements of 'Un will be regarded as S" -valued random variables where the topology on the latter
space is as introduced below (2.2). Let {Km C X, m = 1,2, ... } be an increasing sequence
of compact sets such that U~=l Km = X. For each m, let

.Ab,m = {cp E.A: for all (t,w) E [0, T] x Mr, m ~ cp(t,x,w) ~ ~ ifx E «;

and cp(t,x, w) = 1 if x E K~ }

- 00 - - -
and let e'ftb = Um=l e'ftb,m. Define 'Un = 'Un nAb.

Let 1U be a Polish space. The following condition is a slight modification of a condition
introduced in [4, Section 4] to establish a large deviation result; see [3, Section 2.2].

Condition 4.1. There exist measurable maps ~0, ~". 8 > 0, from M to 1U such that the following
hold.

(a) For n E N, let gm, g E S" be such that gm ~ g as m ~ 00. Then
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(b) For n E N, let CPc, cp E f1n be such that CPc converges in distribution to cp as e ~ 0. Then

fj,c (eNC-1CPE) ~ fj,0(vj).

For (jJ E U, define §<t> = {g E S: (jJ = fj,°(v~)}. Let I: U ~ [0,00] be defined by

I (cP) = inf {LT(g)},
gE§tj)

cP E 1U. (4.1)

By convention, I(<!» = 00 if§ljJ = 0.
The following theorem is a slight extension of [4, Theorem 4.2]. For a proof, we refer the

reader to [3, Appendix].

Theorem 4.1. For 8 > 0, let ZC be defined by ZC = fj,C(eNC-
I). IfCondition 4.1 holds then I

defined as in (4.1) is a rate function on 1U and the family {ZC}c>o satisfies an LDP with rate
function I.

5. Proof of Theorem 2.2

In order to prove Theorem 2.2 we will apply Theorem 4.1 with U = D([O, T]: IRi), fj,c as
introduced in Condition 2.1, and fj,0: M ~ C([O, T]: IRi)definedasfollows. Letfj,°(m) = ~g

if m = v~ for some g E S, where ~g is as introduced above (2.4). For all other m E M we
set fj,0 (m) = 0. It suffices to show that Condition 4.1 is satisfied with this choice of fj,e and fj,0 .

In Section 5.1 we will verify Condition 4.1(a) and Section 5.2 is devoted to the verification of
Condition 4.1 (b).

5.1. Verification of Condition 4.1(a)

The following is the main result of this section.

Proposition 5.1. Let n E Nand gk, g E S", k ~ 1 be such that gk ~ g. Then ~gk ~ ~g in
C([O, T]: lRi).

The following lemma will be useful in proving the proposition.

Lemma 5.1. Let fk, f E D([O, T]: IRt), k :::: 1, be such that IIfk - fll*,T ~ 0 as k ~ 00.

Also let n E Nand gk, g E S" be such that gk ~ g. Then letting

j(t) = ( h(z. f(s))g(s. z)v(dz) ds,lx,
Ik(t) ~ I(t) as k ~ 00 for every t E [0, T].

Proof. Note that

( h(z. fk(S))gk(S. z)v(dz) ds - ( h(z. f(s))g(s. z)v(dz) ds = T1k(t) + T{(t). (5.1)lXt lx,
where

T1k(t) = ( [h(z. A(s)) - h(z. f(S))]gk(S. z)v(dz) dslXt

and

TZk(t) = ( h(z. f(S))[gk(S. z) - gts, z)]v(dz) ds.lXt
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Noting that
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IIT]kl'*.T S IIfk - fII*,T ( Lh(Z)gk(S, z)v(dz) ds
JXT

and sUPk fXT Lh(Z)gk(S, z)v(dz) ds < 00 from Lemma 3.2, we see that IIT}kll*,T ~ 0 as k ~
00. Consider now T2

k • We first claim that for every e > 0 there is a compact K C X such that

sup ( Mh(Z)1f!(S, z)v(dz) ds < E,
1/fESn J[O,T]xKC

(5.2)

To see the claim, let {KY}r EN be a sequence of compact subsets of X such that K; t X
as y ~ 00. Since Mh E L (v),

( Mh(Z)v(dz) -+ 0 as y -+ 00.

JK~

Also, from Lemma 3.2, with f(u) == 1, D(z) = 1Kc(z)Mh(z), and U(z) = Mh(Z), we have,
y

for every 8 > 0,

sup ( Mh(Z)1f!(S, z)v(dz) ds s c(o, n, Mh)T ( Mh(Z)v(dz) + o.
1/fESn J[O,T]XK~ JK~

The claim now follows on combining the above two displayed equations. Using (5.2), for a
fixed e > 0 choose a compact K C X such that

and sUPk~} II T3
k ll *,T ::s £. Next, for p > 0 write

it h(z, f(s))lK(z)[gds, z) - g(s, z)]v(dz) ds = Tt,p(t) + T;'p(t),

where

and

T5~p(t) = ( h(z, f(s))l\Mh(z»pj[gk(S, z) - g(s, z)]v(dz) ds.
J[O,t]xK

From Lemma 3.2, for every 8 > 0,

s~p IIT5~pl'*.T S (l + IIfl'*.T) (2C(O, n, Mh)T LMh(Z)l\Mh(z»pjv(dz) + 20)'
Choose 8 > 0 and p > 0 such that the right-hand side of the above expression is bounded
by £. A minor modification of [1, Lemma 2.8] shows (see [3, Appendix A.6]) that for every
p > 0, T: p (r) ~ 0 as k ~ 00. Combining the above estimates, we have for every t E [0, T],
lim sUPk~oo II Tf (t) II ::s 2£. Since e > 0 is arbitrary, the above implies that for every t E [0, T],
T2

k (z) ~ °as k ~ 00. Thus, we have shown that the expression on the left-hand side of (5.1)
converges to 0 as k ~ 00, which proves the result.
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t E [0, T].

ProofofProposition 5.1. Let ~k = ~gk, ~ = ~g. We first argue that {~k}k> 1 is precompact
in C([O, T]: IRt). Note that -

lI~dt)lI::; { (1 + lI~k(s)II)Mh(z)gk(s, z)v(dz) ds,
JXt

From Lemma 3.2 it follows that, for any 8 > 0,

An application of Gronwall's lemma now shows that

sup(l + lI~kll*,T) = Kl < 00.
k~l

Next, for °~ s ~ t ~ T and 8 > 0,

/I~k(t) - ~k(S) II ~1 /Ih(z, ~k(U)) Ilgk(U, z)v(dz) du
(S,t]xX

~ Kl 1 Mh(Z)gk(U, z)v(dz) du
(S,t]xX

::; K) (do, n, Mh)(t - s) l Mh(Z)v(dz) +0)'

(5.4)

This shows that {~k}k~l is equicontinuous which together with (5.4) proves the desired
precompactness. Suppose that ~k converges along a subsequence to ~. From Lemma 5.1,
along this subsequence for every t E [0, T] as k ~ 00,

( h(z, ~k(S))gk(S, z)v(dz) ds -+ { h(z, €(s))g(s, z)v(dz) ds.lXr JX t

Combining this with the fact that ~k solves

~k(t) = ( h(z, ~k(S))gk(S,z)v(dz) ds,
JXr

t E [0, T],

for every k ~ 1, and that ~k converges along the chosen subsequence to ~, we have

€(t) = { h(z, €(s))g(s, z)v(dz) ds,
JXr

t E [0, T].

By the unique solvability of the above equation and the definition of ~, we now see that ~ = ~.

5.2. Verification of Condition 4.1(b)

The following is the main result of this section.

Proposition 5.2. Let n E N and let CfJ£, CfJ E iLn be such that CfJ£ converges in distribution to CfJ

as e -+ O. Let {~£}£>o be as in Condition 2.1 and ~o be as introduced at the beginning of
e £-I rn D 0 qJSection 5. Then g, (eN 't'c) -+ ~ (vT).
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Proof. Let iPE = l/({JE' and recall that ({JE E un means that ({JE = 1 for some compact set
in X and bounded above and below away from 0 on the compact set. Then it is easy to check
(see [10, Theorem 111.3.24] and also [4, Lemma 2.3]) that

GtE = exp{ ( log(.pe) dN + { (-ijJe + 1) dVr }
l(O,t]XXX[O,E-1q;e] J(O,t]XXX[O,E-1({Jel

is an {it }-martingale and, consequently,

Q}(G) =i 8f(ijJ) dJP> for G E $(M)

defines a probability measure on M. Furthermore, Jii> and Q~ are mutually absolutely continuous
-I -I -

and it can be verified that under Q~, eNE ({Je has the same law as that of ENE under P. Thus,
from Condition 2.1 it follows that XE = tJE(eNE-1q;e) is Q} almost surely (a.s.) (and hence Jii>

a.s.) the unique solution of

Xe(t) =e ( He(e-l(t-s),z,e-lie(s-))Ne-Irp£(dsdz),
JXt

Also note that go = ~0(v~) solves the integral equation

t E [0, T].

iO(t) = ( h(z, iO(s))cp(s, z)v(dz) ds,
lXt

t E [0, T]. (5.5)

In order to prove the result we need to show that XE converges in distribution to i O• We start
by showing that {X8 }E>O is tight. Note that, for t E [0, T],

Ellie "*,t .s E { II H(e- 1(t - S), z.xe(s))llCPe(S, z)v(dz) ds
lXt

+ E { II Re(e- 1(t - s), z, i e(s) IICPe(s, z)v(dz) ds
lXt

= T{(t) + Ti(t).

Using the monotonicity of if, we see that

Using Lemma 3.2 we now have, for every [, > 0,

Another application of Lemma 3.2 shows that, for each fixed 8 > 0,

Ti(t) ~ E ( ~e(z)(l + Ellie "*.s )CPe(S, z)v(dz) dslx,
~ c(~, n,~) Ix ~e(z)v(dz) it (1 + Elliell*.s) ds + ~(l + EIiXell*,t).
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Combining the above estimates on T{ and T{ and choosing 8 sufficiently small, we have, by
an application of Gronwall's lemma,

suplEIIXell*,T = Kl < 00.
e>O

(5.6)

In order to prove the tightness of {X£}e>O we will first establish the tightness of the following
closely related collection {Xe}e>O of C([O, T]: ]Rd)-valued random variables:

XC (1) = ( h(z, XC(s»CPc(s, z)v(dz) ds, 1 E [0, T], e > 0. (5.7)
JX I

We first observe that

IIxclk T .s (l + IIXC lk T) { Mh(Z)CPc(s, z)v(dz)ds.
JXT

Combining the above estimate with (5.3) and (5.6), we see that sUPe>O tllxe"*,T < 00. Also,
for°:5 s :5 t :5 T and 8 > 0,

II Xc (1) - Xc (s) II:::: { IIh(z, Xc (u))llcpc(u, z)v(dz) du
J(s,t]xX

:::: (l + IIxc lI *.T)(c (8, n, Mh)(t - s) LMh(Z)v(dz) + 8).

Let K2(8) = c(8, n, Mh) Ix Mh(Z)v(dz) and consider

Aa = {x E C([O, T]: }Rd): IIxll*,T:5 a,
and for every 8 > 0, IIx(t) - x(s)1I :5 a(K2(8)(t - s) + 8)}.

It is easy to check that for every a > 0, Aa is a compact subset of C([O, T]: ]Rd). Also, from
the above estimates, sup, JP>(X£ E A~) ~ 0 as a ~ 00. This proves the tightness of {Xe}£>o.
Next, let for e > 0,

yc (1) = e { h(z, XC(s-»NC-I'P' (ds dz), 1 E [0, T].
JX I

Then, for t E [0, T],

yc (t) - Xc (t) = e { [h (z, Xc (s- » - if (s-I (1 - s), Z, XC (s - ))]NC-I 'P, (ds dz) + ~i (1),
JX I

(5.8)
where

1I~i1kT::::e sup ( IIRc(e-
l (t - s) , z, X C(s- » IIN C-

1
'P' (ds dz)

tE[O,T] JX I

.s e { ~"e<z)(IIXC (s-)II + 1)Nc-
I'P'

(ds dz),
JXT

Thus, for every 8 > 0,

JEII~ilkT :::: JE(lI x clI*.T + 1) LT ~c(z)CPc(s, z)v(dz) dS)

:::: (JElIxclkT + 1) [C(8, n, ~)TL~c(z)v(dz) + 8}
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(5.10)

(r, z) E lR+ x X.

Since Ix ~c(z)v(dz) converges to 0 as e -+ 0, we have

~i converges to °in probability in D([O, T]: JRd). (5.9)

Next, denoting the first term on the right-hand side of (5.8) as -8f(z), we have, for to E [0, T],

JEII-8f 1I*.to ::: eJE { IIh(z, XO(s- ))IINc '<P, (ds dz)Jxto

::: JE(lI xolI*,T + 1) Lto Mh(Z)CPo(s, z)v(dz) dS)

::: (JElIxolI*.T + 1) [C(8, n, Mh)toLMh(Z)v(dz) + 8]­

Thus, for some KI E (0,00), we have, for every 8 > 0,

suplElI-8fll*,to ~ K} (toc(8, n, Mh) + 8).
c>o

Now we consider the interval (to, T]. Note that, for any v E (0, to),

sup l1-8j(t)lI::: sup l1-8j(t - v)1I + sup 11-82,v(t) II , (5.11)
tE(tO, T] le(to, T] le(to, T]

where

-8tv(t) = e ( [h(z, XO(s-)) - H(e-1(t - s), z. XO(s-))]No-'<p'(dsdz).
J(t-v,t]xX

Using the monotonicity of ii again, we have, for ex > 0,

sup l1-8f(t - v)1I ::: e ( IIh(z, XO(s-)) - H(e-1v, z, XO(s-))IINo-
1<p'(ds

dz)
te(~,T] JXT

= ~2.a + ~3.a' (5.12)

where

~2 ex = elB' ( IIh(z, XO(s-)) - H(e-1v, z. XO(s-))IiNc'<P'(ds dz),
, a JXr

~tex = el(B~)C Lr IIh(z, XO (s-)) - H(e- 1u, z. Xo (s- ))IiNo-I<p, (ds dz),

and B~ = {w: IIXc "*,T ::; a}. For a > 0, let IDa : JR+ X X ~ JR+ be defined as

W"a(r, z) = sup /Ih(z, x) - H(r, z.x)/I,
IIxll~a

Then, from Condition 2.2(e), for all (ex, z) E JR+ x X, IDa(r, z) -+ 0 as r ---+ 00. Also, since
IDa(r, z) ~ Mh(Z)(l + a) and Mh E ell (v), we have Ix IDa(r, z)v(dz) ---+ 0 as r ---+ 00. Now,
for every 8 > 0,

JE~2 ex ::: JE ( W"ex(e-1v, Z)CPo(S, z)v(dz) ds
, JXT

::: Tc(8, n, Mh)LW"ex(e-1v, z)v(dz) + 8(1 + a).

Thus, ~ta -+ 0 as e ~ °for every ex > o.

https://doi.org/10.1239/jap/1450802755 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802755


Large deviations for Poisson shot-noise processes

Next, from Markov's inequality and (5.6), for 1] > 0,

1111

(5.13)

Using the above two observations in (5.12), we have for every to E (0, T) and v E (0, to),

sup l1-8f(t - v)1I ~ ° as e -+ 0,
tE(to,T]

(5.14)

where ,~, denotes convergence in probability. We now consider -82u: Using monotonicity
of H, '

sup 11-8~,v(t)1I ~ sup ell! h(z, Xe(S-»Ne-1(fJE(dSdz)11
tett«, T] tE(to, T] (t-v,t] xX

~ sup ell! h(z, Xe(S-»Ne-1(fJE(dSdz)11
tE(to, T] (t-v,t] xX

+ sup II! h(z, Xe(s-»gJe(s, z)v(dz) dsll
tE(to, T] (t-v,t] xX

= ~~(to, v) + ~~(to, v),

(5.15)

(5.16)

where Ne-I(fJE(ds dz) = Ne-1(fJE(ds dz) - 8- l gJe (S , z)vT(ds dz), the compensated version of
-1

N e (fJE. For "1 > °and ex > 0,

Also,

~5(to, v)lBg ~ (1 + ex) sup ! Mh(Z)<{Je(s, z)v(dz) ds
tE(to,T] (t-v,t] xX

~ (l + a)[uc(o, n, Mh) LMh(Z)v(dz) + 0]'
Combining the above two estimates and using (5.13) once again, we have for every to E (0, T)
and 1] > 0,

sup1P>(~~(to, v) > "1) -+ ° as v -+ 0.
e>O

We now consider ~~(to, v). We have

~~(to, v) ::s 28 sup II ( h(z, XE(s-»NE-1'PE(ds dz)II= ~~.
O~t~T JXr

(5.17)

Let r~ = inf{t E [0, T]: "ge(t)" > a}, where the infimum is taken to be T if the set is empty.
Let

~6,a = 2£ sup II { h(z, ge(S-»Ne-1(fJE(dSdZ)II·
O~t::=::T J(O,t/\r~]xX

Then, from (5.13), for "1 > 0,
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For r > 0, write ~6,a = ~~:: + ~~::' where
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~;:~ = 28 sup II { h(z, ge (s- »l{Mh(z)~rINe-lq>e(ds dz) II,
Os.ts.T J(O,tA..r:~]XX

~~:: = 28 sup II { h(z, ge (s-»1{Mh(z»rIN e- 1q>e
(ds dz) II·

Os.ts.T J(O,tl\T:~]xX

By standard martingale inequalities, for some K2 E (0,00) (independent of ex, 8, r),

JE(~;.:)2 ~ K2 r (1 +( 2)sJE ( Mh(Z)CPe(s, z)v(dz) ds
, JXr

~ K2 r (1 + ( 2 )S( C(8, n, Mh) LMh(Z)v(dz) + 8)'
cr lP

Thus, for each r > 0 and ex > 0, !R7:a ~ 0 as 8 ~ O. Also, for every 8 > 0,

JE(~~':) ~ 8(1 + a)lE ( Mh (z)l{Mh(z»rICPe (s, z)v(dz) ds
, JXr

~ 8(1 + a)(C(8, n, Mh) LMh(Z)l{Mh(z»rl v(dz) + 8)'
Since Mh E £l(v), we have for each ex > 0, suPc>o1E(!R~::) converges to 0 as r ~ 00.
Combining the above estimates, for each ex > 0,

~6,a ~ 0 as e ~ 0.

Using this observation in (5.18), we have for each to E (0, T) and v E (0, to),

(5.19)

Combining this with (5.11), (5.14), (5.16), and (5.17), we see that, for every to E (0, T),

sup lI,sf(t)1! ~ 0 as 8 ~ O.
tE(to, T]

Thus, from (5.10),

sup l1-8f(t)1I ~ 0 as e ~ O.
tE[O,T]

Combining this with (5.9) and (5.8), we see that

yc _ xc~ ° in D([O, T]: JRd).

Also, since life - XCII*,T = 1~~, from (5.19), we have

yc _ xc~ 0 in D([O, T]: JRd).

The above two displays together with the tightness of {XC}c>o established earlier show that
{ie}c>o is tight. Suppose that (ie, CPc) converges weakly along a subsequence to (Xo, iJ).
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Note that qJ and iP must have the same distribution. Without loss of generality we can assume
that convergence is almost sure and it holds along the full sequence. In fact we can assume that
(Xe, Xe , qJe) converges a.s. to (Xo, Xo, iP). Then, from Lemma 5.1, for all t E [0, T],

{ ht», is (s»qJs(S, z)v(dz) ds --+ ( h(z, XO(s»q5(s, z)v(dz) ds a.s.
k k

This, along with (5.7) shows that XO solves

XO(t) = ( h(z, XO(s»q5(s, z)v(dz) ds, t E [0, T], a.s.
JX1

Since the above equation has a unique solution and iP and qJ have the same distribution, it
follows that Xo and go have the same distribution, where go was defined in (5.5). Thus, we
have shown that ge converges in distribution to go. The result follows.

5.3. Completing the Proof of Theorem 2.2

In view of Theorem 4.1 it suffices to check that {g,e, e > O} introduced in Condition 2.1
and g,°introduced at the beginning of Section 5 satisfy Condition 4.1. Condition 4.1(a) is
immediate from Proposition 5.1, while Condition 4.1(b) is a consequence of Proposition 5.2.
These observations complete the proof.
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