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ABSTRACT: Background: The spinocerebellar ataxias (SCAs) are a genetically and clinically heterogeneous group of
neurodegenerative disorders. Relative frequencies vary within different ethnic groups and geographical locations. Objectives: 1) To
determine the frequencies of hereditary and sporadic adult onset SCAs in the Movement Disorders population; 2) to assess if the fragile
X mental retardation gene 1 (FMR1) premutation is found in this population. Methods: A retrospective chart review of individuals with
a diagnosis of adult onset SCA was carried out. Testing for SCA types 1, 2, 3, 6, 7, and 8, Dentatorubral-pallidoluysian atrophy
(DRPLA), Friedreich ataxia and the FMR1 expansion was performed. Results: A total of 69 patients in 60 families were identified.
Twenty-one (35%) of the families displayed autosomal dominant and two (3.3%) showed autosomal recessive (AR) pattern of
inheritance. A positive but undefined family history was noted in nine (15%). The disorder appeared sporadic in 26 patients (43.3%).
In the AD families, the most common mutation was SCA3 (23.8%) followed by SCA2 (14.3%) and SCA6 (14.3%). The SCA1 and
SCAS8 were each identified in 4.8%. FA was found in a pseudodominant pedigree, and one autosomal recessive pedigree. One sporadic
patient had a positive test (SCA3).Dentatorubral-pallidoluysian atrophy and FMRI testing was negative. Conclusion: A positive family
history was present in 53.3% of our adult onset SCA patients. A specific genetic diagnosis could be given in 61.9% of dominant
pedigrees with SCA3 being the most common mutation, followed by SCA2 and SCA6. The yield in sporadic cases was low. The fragile
X premutation was not found to be responsible for SCA.

RESUME: Ataxie spinocérébelleuse débutant chez I’adulte dans une clinique de désordres du mouvement au Canada. Contexte: Les ataxies
spinocérébelleuses (ASCs) constituent un groupe hétérogene de maladies neurodégénératives tant au point de vue génétique qu’au point de vue clinique.
Leur fréquence relative est trés variable selon le groupe ethnique et le lieu géographique. Objectifs: 1) déterminer la fréquence d’ASCs héréditaires et
sporadiques débutant chez 1’adulte chez des patients fréquentant une clinique de désordres du mouvement ; 2) évaluer si on retrouve chez ces patients
des prémutations du géne FMR1 causant le syndrome de retard mental du X fragile. Méthodes: Nous avons procédé a une revue rétrospective de
dossiers de patients chez qui un diagnostic d’ASC de 1’adulte a été posé. Des tests de biologie moléculaire ont été faits pour détecter des anomalies des
génes responsables de I’ASC de type 1, 2, 3, 6, 7 et 8, de I’atrophie dentato-rubro-pallido-luysienne (ADRPL), de I’ataxie de Friedrich (AF) ainsi que
I’expansion de FMRI1. Résultats: 69 patients appartenant a 60 familles différentes ont été identifiés. Chez 21 familles (35%), I’hérédité était
chez 9 familles (15%). La maladie semblait sporadique chez 26 patients (43,3%). Chez les familles ou I’hérédité était AD, la mutation la plus fréquents
était une mutation du géne ASC3 (23,8%) suivie d’ASC2 (14,3%) et d’ASC6 (14,3%). Une mutation du gene ASC1 et ASCS a été identifiée chez 4,8%
des patients. Une mutation du gene de I’AF a été identifiée dans un pedigree ou la maladie était pseudo dominante et dans un ou la maladie était AR.
Chez un cas sporadique on a trouvé une mutation du géne ASC3. Les tests pour I’ ADRPL et le FMR1 étaient négatif. Conclusion: Une histoire familiale
positive était présente chez 53,3% des patients atteints d’ASC adulte. Un diagnostic génétique spécifique a pu étre établi chez 61,9% des pedigrees ol
I’hérédité était dominante et une mutation du géene ASC3 était ’anomalie la plus fréquente, suivie d’ASC2 et d’ASC6. Le rendement était faible chez
les cas sporadiques. La prémutation du gene responsable du syndrome du X fragile n’était pas responsable de I’ASC chez nos cas.
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The spinocerebellar ataxias (SCAs) are a large group of
neurological disorders which may be hereditary or sporadic. The
core clinical features of gait and limb ataxia are manifestations
of degenerations of the cerebellum and its connections. Other
neurological systems are variably involved producing features
such as extraocular movement abnormalities, pyramidal tract
dysfunction, sensory loss, bulbar dysfunction, and movement
disorders such as parkinsonism, dystonia and tremor.!

The dominantly inherited SCAs were classified in the past
according to a scheme suggested by Harding.! In this system, the
autosomal dominant cerebellar ataxias (ADCA) were separated
clinically into three types. In addition to cerebellar ataxia, ADCA
I patients had variable degrees of dementia, supranuclear
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ophthalmoplegia, optic atrophy, and extrapyramidal features.
Patients classified as having ADCA Type II developed
pigmentary retinal degeneration which could precede the
development of the ataxia. Autosomal dominant cerebellar
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Table 1: Summary of the Dominantly Inherited SCAs

Name Locus Clinical Features in Addition to Gait and Limb Ataxia

SCA12 8% 6p23 Oculomotor defects, muscle weakness, decreased vibration sense, pyramidal signs

SCA235:52.6870,91,92 12q23-q24.1 Slow saccades, hypotonia, Parkinsonism

SCA36 9397 14q24.3-q32 Type I — pyramidal and extrapyramidal findings, progressive external ophthalmoplegia and
minor cerebellar deficits
Type II — cerebellar and pyramidal deficits, without extrapyramidal signs with or without
progressive external ophthalmoplegia
Type III — distal symmetrical muscle atrophy with cerebellar findings with or without
progressive external ophthalmoplegia and pyramidal signs
Type IV — Parkinsonism and peripheral neuropathy

SCA420.21 16g22.1 Two families — one with sensory neuropathy and the other with dysarthria and no sensory
neuropathy

SCA5% 11pll-qll Predominantly cerebellar. Very slow progression

SCA6’ 19p13 Predominantly cerebellar

SCA73:9.%8 3p21.1-p12 Pigmentary retinopathy

SCAS8" 13g21 Spasticity and decreased vibration sense. Controversial

SCA9Y Reserved

SCA10%- 100 22ql3 Seizures in 20 to 100%

SCA11% 15q14-q21.3 Predominantly cerebellar

SCAI12" 5q31-q33 Early upper extremity tremor and late dementia

SCA13% 19q13.3-q13.4  Childhood onset. Mental retardation

SCA14%-26 19q13.4-qter Predominantly cerebellar but axial myoclonus if younger age of onset

SCA153 101 3p26.1-p25.3 Predominantly cerebellar. Postural/action tremor. Very slow progression

SCA16% 8q22.1-q24.1 Predominantly cerebellar with head tremor

SCA17!- 11 6q27 Intellectual deterioration

SCA18% 7q22-q32 Sensory loss, pyramidal tract signs, muscle weakness

SCA19%102 1p21-q21 Mild ataxia with cognitive impairment, myoclonus, and a low frequency postural tremor

SCA20% 11p13-qll Palatal tremor, dysphonia, and dentate nucleus calcification

SCA2130-103 7p21.3-pl5.1 Hyporeflexia, postural tremor, parkinsonism, cognitive impairment. Extraocular movements generally
normal

SCA223! 1p21-q23 Predominantly cerebellar with hyporeflexia. Slow progression

SCA23% 20p13-pl12.2 No published information available

SCA243% None Likely recessive. Saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus

SCA253% 2p21-p13 Sensory neuropathy

ataxias Type III was described as a relatively pure cerebellar
syndrome.

At present, classification of the SCAs is largely based on
genetic mutations rather than clinically defined syndromes. A
summary of the chromosomal loci and clinical characteristics of
the currently described SCAs is presented in Table 1. In the
SCAs where a genetic defect has been identified, the abnormality
has thus far involved expansion of unstable repeat sequences of
deoxyribonucleic acid (DNA). The most common expansions are
of triplet CAG (cytosine/adenine/guanine) sequences which
encode polyglutamine within the protein. This is the case for
SCA types 1, 2, 3, 6, 7, and 17.2"! Dentatorubral-pallidoluysian
atrophy (DRPLA) is another autosomal dominant ataxic disorder
that has been found to result from expansion of a polyglutamine
sequence.'?

Expansion of trinucleotide repeats in non-coding regions of a
gene may also lead to disease. Although the genetic abnormality
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in SCA12 is a CAG repeat, it appears to occur outside of the
translated portion of the gene so a polyglutamine tract is not
created.” Friedreich ataxia (FA) is caused by an intronic GAA
triplet repeat expansion.'* SCAS is thought to be the result of a
non-coding cytosine/thymine/guanine (CTG) expansion,
although the significance of the expansion has been
questioned.”'® In the case of SCAI10 the expansion is
of an ATTCT (adenine/thymine/thymine/cytosine/thymine)
pentanucleotide repeat.!® The pathologic repeat numbers in these
disorders are generally much larger when it affects the non-
coding, rather than the coding regions.

For many dominantly inherited SCA families a chromosomal
locus for the disorder has been described but a specific genetic
defect has not yet been discovered. This is the case for SCA types
4,5, 11, 13 to 16, 18 to 22 and 25.2** The human genome
organisation (HUGO) Gene Nomenclature Committee website
lists a locus for SCA23 but without clinical data.*> The disorder

451


https://doi.org/10.1017/S0317167100004431

THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES

currently labelled SCA24 appears to be recessive.’® The label
SCAY is currently reserved.?’

As is common with most genetic disorders, the relative
frequencies of the SCAs vary within different populations. To
date, there is no published data regarding the distribution of the
SCAs or diagnostic yield of SCA testing in a Canadian
population; this paper aims to provide such information.

Recently, a syndrome consisting of tremor, cerebellar
dysfunction, parkinsonism, and cognitive decline associated with
the fragile X premutation has been described. Fragile X
syndrome is caused by an expansion of CGG repeats greater than
200 in the fragile X mental retardation 1 gene (FMRI1).%
Repeats falling within the range of 50 to 200 repeats are
considered to be premutations and individuals in subsequent
generations are at risk of further expansion. The prevalence of
the premutation is approximately one in 700 males and one in
250 females.*® The initial report of the fragile X tremor/ataxia
premutation syndrome consisted of case reports of five men over
the age of 57 who were all grandfathers of children with fragile
X syndrome.* Several other reports have been published
describing clinical, radiological, and pathological findings of
other individuals with this disorder. Common neuroradiological
findings include increased T2 signal intensity in the middle
cerebellar peduncles and deep white matter of the cerebellum as
well as diffuse cerebral and cerebellar atrophy. Neuro-
pathological examination has revealed the presence of
intranuclear inclusions in the neuronal and astrocytic nuclei of
the cortex.**> The diagnostic utility of testing for this disorder
in patients presenting with SCA has not yet been established.

The main objective of the present study was to determine the
distribution of the hereditary spinocerebellar ataxias in patients
who are followed at the University of Calgary Movement
Disorders Clinic. The proportion of patients who had a family
history suggestive of other affected individuals with a similar
disorder was examined and the yield of genetic testing in patients
with and without a positive family history was determined. In
addition the SCA group was assessed for the frequency of the
FMR1 premutation.

METHODS

Patients were identified by a search of the University of
Calgary Movement Disorders Clinic patient registry for the
diagnoses of spinocerebellar ataxia, Friedreich ataxia (FA), and
multiple system atrophy—olivopontocerebellar atrophy. The
geographical patient catchment area includes southern Alberta,
south-western Saskatchewan, and south-eastern British
Columbia. The majority of patients seen in the clinic live in the
southern Alberta area.

Patients who had been seen between January 1, 1996 and
December 31, 2002 were included in this study. Only those
patients with an onset of symptoms at age 18 or greater were
included. Individuals were excluded if they had a diagnosis of a
secondary ataxia from disorders such as multiple sclerosis, brain
tumour, paraneoplastic syndrome, stroke, or alcoholism.
Patients seen for presymptomatic genetic testing were also
excluded.

A detailed clinical chart review was performed, and the
abstracted information was recorded on a standardized data
collection form. The following variables were collected: gender,
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age of symptom onset, age at last assessment, presenting
complaint, family history, neuroimaging findings, and the
presence or absence of dysarthria, nystagmus, saccadic smooth
pursuit, hyperreflexia, hyporeflexia, Babinski, spasticity, sensory
findings, limb ataxia, Parkinsonism, dystonia, and autonomic
symptoms. The aforementioned variables of interest were
recorded as present if they were documented in the chart. If no
information was documented, then the variables were recorded
as absent.

Genetic testing for SCA1, SCA2, SCA3, SCA6, SCA7,
SCAS, FA, DRPLA and the FMR1 expansion was performed in
the Molecular Diagnostics Laboratory of the Alberta Children’s
Hospital in Calgary, Alberta using standard testing methods as
previously published.>36-%:12:-1538 A test was labelled positive if a
repeat expansion in the pathological range was discovered. The
number of tests performed in each of the families varied because
not all of these tests became available at the same time. Testing
using newly offered tests was only carried out if prior testing did
not provide a specific genetic diagnosis.

Testing for DRPLA was part of the SCA assessment in our
clinic initially but, as all patients were negative and the yield in
non-Asian populations has been shown to be negligible, we have
stopped doing this on a regular basis.*>*7

Family history was divided into the following categories:
autosomal dominant, autosomal recessive, positive but
unknown, and adopted/unavailable. Autosomal dominant
inheritance was assigned if at least two generations were affected
and there was evidence of parent to child transmission.
Autosomal recessive pedigrees were those that had affected
siblings without other family history of a similar disorder, or if
there were other similarly affected family members (e.g. cousins)
without evidence of parent-child transmission. Some pedigrees
contained family members who could possibly have had similar
symptoms but adequate clinical information was not available.
Such cases were labelled as positive but unknown inheritance.
Relatives of the index cases were examined if available and
attempts were made to obtain their medical records.

REsuLTS

A total of 69 patients in 60 families were identified as having
an adult onset spinocerebellar ataxia. Thirty three (47.8%) of the
study patients were male and 36 (52.1%) were female. The mean
age of symptom onset was 46.5 years with a range of 18 to 85
years. The mean duration of disease symptoms at the last follow-
up visit was 11.7 years with a range of one to 44 years.

Thirty-two (53.3%) of individuals studied had a positive
family history with the majority (35%) being autosomal
dominant (see Table 2 for full description). Age of onset in the
autosomal dominant and sporadic groups was twice that of the
autosomal recessive group.

The results of genetic testing by family history classification
are summarized in Table 3. The most common mutation in the
autosomal dominant families was SCA3 (five families — 23.8%).
This was followed by SCA2 (three families — 14.3%) and SCA6
(two families — 9.5%). The SCA1 and SCAS8 expansions were
only identified in one family (4.8%) each.

The DRPLA testing was done on 21 of the families and all
results were negative.

Of the 44 families without a genetic diagnosis, two did not
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Table 2: Family History Category Among Study Families

Family History n (%)

Mean Age of Symptom Onset (Years)

Autosomal Dominant 21 (35.0) 43.2(range = 18-72)

Autosomal Recessive 2(3.3) 28.3(range = 22-35)

Positive but Undefined 9 (15.0) 54.6(range = 42-64)

Sporadic 26 (43.3) 49.4(range = 20-85)
Adopted 2 (3.3) 47.5(range = 30-65)
Total 60 (100) 46.5 (range = 18-85)

have DNA available for FMRI1 testing. The index cases of the
remaining 42 (22 males and 20 females) were tested for the
FMRI1 premutation. No premutation or pathological range
expansions of the FMRI1 gene were found. The highest number
of repeats found was 38.

Although the family history was suggestive of a dominant
disorder, one patient was found to have FA. A patient in one of
the two autosomal recessive appearing families tested positive
for FA.

One of nine individuals (11.1%) with a positive but undefined
family history tested positive for SCA6. Two of his eight sisters
also had an ataxic syndrome. This patient’s mother died at age 89
with no gait abnormality and his father died at age 85 and had
walked with a cane for a long time because of a supposed injury.
As it was unclear whether he was affected the undefined
category was chosen. It can be postulated that he was indeed
affected.

Only one of the 26 (3.8%) sporadic patients had a positive
test. This individual tested positive for SCA3. The age of onset
of symptoms was 22 years and the expanded allele contained 80
repeats. His father died of cancer at age 61. His mother and seven
siblings were all asymptomatic, and all tested negative for
SCA3. None of his father’s six siblings were known to be
similarly affected. His mother had four siblings and none of them

had any symptoms suggestive of a neurological disorder. It is
suspected that this represented a new mutation, although
paternity testing was not done.

One patient was found to be heterozygous for the Friedreich
ataxia GAA expansion. Symptoms of gait dysfunction began at
age 66 and other clinical features included dysarthria,
nystagmus, saccadic smooth pursuit, hyporeflexia, as well
symptoms of autonomic dysfunction. Sensory abnormalities
were not noted. Sequencing of the coding region of the normal
sized allele was performed in this individual as some patients
with Friedreich ataxia are compound heterozygotes with an
expansion on one allele and a point mutation on the other.* No
mutations were found in the normal sized allele of this patient.
The normal sized allele was sequenced and no mutations were
identified in the coding regions. The expansion was felt to be an
incidental finding.

A positive test result was found in 61.9% (13/21) of
autosomal dominant pedigrees, one out of two autosomal
recessive pedigrees, and one of nine patients with positive but
undefined family histories. Of those patients who lacked a family
history of a similar disorder, only 1/26 (3.8%) was found to have
a positive genetic test. Neither of the two adopted patients had a
positive test (Table 3).

The clinical features of all the patients separated by diagnosis

Table 3: Results of Genetic Testing — Families (%)

Genetic Test AD AR Undefined Sporadic Adopted Total
SCA1 1(4.8) 0 0 0 0 1(1.7)
SCA2 3(14.3) 0 0 0 0 3(5.0)
SCA3 5(23.8) 0 0 1(3.8) 0 6(10.0)
SCA6 2(9.5) 0 1(11.1) 0 0 3(5.0)
SCA7 0 0 0 0 0 0

SCA8 1(4.8) 0 0 0 0 1(1.7)
FA 1(4.8) 1(50) 0 0 0 2(3.3)
DRPLA 0 0 0 0 0 0
FMR1 0 0 0 0 0 0

All Negative 8(38.1) 1(50) 8(88.9) 25(96.2) 2(100) 44(73.3)
Total 21(100) 2(100) 9(100) 26(100) 2(100) 60(100)

AD = Autosomal Dominant AR = Autosomal Recessive
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Table 4: Clinical Features of Study Patients Separated by Diagnosis

SCA1l SCA2 SCA3 SCA6 SCA8 FA Other
n 2 3 7 7 1 2 47
Male 0 1 5 4 0 0 23
Female 2 2 2 3 1 2 24
Mean Age of Onset (Years) 44.5 33.0 36.3 55.9 29 21.5 49.0
Range of age of Onset 39-50 18-54 22-55 48-64 29 21-22 18-85
Mean Duration of Symptoms
at Last Visit (Years) 17 233 10.7 7 15 13 11.4
Range of Symptom Duration 9-25 15-31 4-19 1-12 15 10-16 1-44
Presenting Complaint Gait 22 2/3 717 6/7 171 2/2 35/47
Dysarthria 2/2 2/3 6/7 4/7 171 2/2 35/47
Nystagmus 2/2 1/3 5/7 6/7 1/1 2/2 23/47
Saccadic Smooth Pursuit 2/2 2/3 57 6/7 1/1 172 36/47
Hyperreflexia 22 173 4/7%* 177 0/1 0/2 30/47
Hyporeflexia 0/2 173 4/7%* 4117 171 2/2 11/47
Babinski 12 0/3 4/7 0/7 0/1 172 9/47
Spasticity 212 0/3 517 177 0/1 0/2 18/47
Sensory Findings 2/2 1/3 5/7 1/7 0/1 2/2 21/47
Limb Ataxia 2/2 3/3 517 717 171 2/2 38/47
Parkinsonism 0/2 0/3 377 077 0/1 02 7147
Dystonia 12 1/3 3/7 0/7 1/1 0/2 2/47
Chorea 0/2 0/3 0/7 0/7 0/1 0/2 2/47
Autonomic Symptoms 0/2 0/3 177 077 0/1 0/2 7147

** One patient had a mixture of hyporeflexia and hyperreflexia on the most recent physical examination that was documented in the chart.

Table 5: Distribution of the SCAs in Dominant Pedigrees of Different Populations

Frequency %

Country # of SCA1 SCA2 SCA3 SCA6 SCA7 SCAS SCA12 DRPLA  Unclassified
Families
Australia®’ 88 16 6 12 17 2 - - - 47
USAY 178 5.6 15.2 20.8 15.2 4.5 - - - 38.7
USAS! 52 53 4 3 14.7 12 - - - 0 61.3
Germany>? 77 9 10 42 22 - - - - 17
Italy>* 32 19 31 3 0 0 0 0 - 47
Ttaly’s 73 41 29 0 0 - - - - 30
Spain® 87 5.6 15.3 15.3 1.4 2.8 - - 14 57.3
Brazil¥’ 52 0 0 92 0 2 0 - 0 6
Portugal®® 46 0 4 74 0 - - - - 22
Taiwan® 74 54 10.8 47.3 10.8 2.7 0 - 1.4 21.6
China® 85 4.7 5.9 48.2 0 0 - - 0 41.2
Korea®! 32 6.3 31.3 28.1 6.3 3.1 - - - 25.0
Japan—-Hokkaido® 155 9.7 7.7 23.9 29.0 0 0 - 2.6 27.1
Japan—-Honshu® 117 24.8 0.8 23.9 10.3 1.7 0.8 - 14.5 23.1
Japan-Kinki®* 220 3.5 4.9 24.5 31.5 0 0 0 12.6 23
India-East% 57 10.5 17.5 7.0 1.8 0 - - 0 73.2
India—East &
North® 39 7.7 25.6 5.1 0 0 0 - 0 61.5
This Study 21 4.8 14.3 23.8 9.5 0 4.8 - 0 38.1
454
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are summarized in Table 4. All patients had an ataxic gait.
Considerable variability existed between, as well as within, each
of the diagnostic categories. Dysarthria, extraocular movement
abnormalities, and reflex changes were commonly found in all
groups. Parkinsonism, dystonia, Babinski, and autonomic
symptoms were uncommon. A much younger age of onset of
symptoms was noted in the two patients diagnosed with
Friedreich ataxia.

DiscussioN

The distribution of the spinocerebellar ataxias found in
dominant pedigrees in other countries is summarized in Table 5.
In the University of Calgary Movement Disorders Clinic
population the most common SCA diagnosed by genetic testing
is SCA3 followed by SCA2 and SCA6. The frequency of the
different SCAs depends on ethnic and geographic factors. The
finding that this genetic profile is most similar to that found in
the United States and Germany is not surprising given that the
population of southern Alberta is largely of European descent.*
% In the 2001 Canadian census 17.5% of the population of
Calgary consisted of visible minorities.®” Changing patterns of
immigration to Canada may result in an alteration of the relative
frequencies of the SCAs over time.

Not included in the above analysis are two brothers followed
in this clinic from the family described by Furtado et al (2002).68
These individuals presented with a levodopa responsive
parkinsonian syndrome rather than an ataxia and were
subsequently found to have the SCA2 mutation. Other reports of
similar parkinsonian SCA2 phenotypes exist.**’ Given that
there may be a small but significant number of patients who
carry the SCA2 expansion who manifest their illness with
Parkinsonism or other non-ataxic problems, the specific
prevalence of SCA2 in the population may be higher than this
and other studies have suggested.

Just over half of our SCA patients have positive family
histories and most of these pedigrees are autosomal dominant.
The dominant spinocerebellar ataxias have rapidly expanded
from disorders classified into a handful of clinical groups to 20
or more separate genetic entities. Even though testing is only
available for a few of these disorders, current testing was able to
provide a genetic diagnosis in 61.9% of the dominant pedigrees
in our clinic.

While some dominant pedigrees may be easily apparent, a
clinician may find that it is difficult to accurately classify the
patient’s family history in other cases. This may occur because
the patient knows few details of family members’ medical
problems. Vague complaints may have been attributed correctly
or incorrectly to another disorder such as back problems or old
age. The tendency for the nucleotide repeat disorders to expand
in successive generations with earlier age of onset and more
severe symptoms may also result in a lack of evidence of clear
parental involvement. The importance of examining all available
family members, deemed clinically affected or unaffected, in
order to determine who else is truly affected cannot be
overemphasised.

Recessive spinocerebellar ataxias with onset in adulthood are
much less common than dominant forms. The few patients with
recessive pedigrees found in this clinic were significantly
younger than the dominant and sporadic patients, with one of the
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patients testing positive for FA. While patients with FA usually
present during childhood, onset of symptoms has been described
to occur in the adult age group.”!®> There is a report of symptom
onset as high as 67 years.”® Testing for FA in adult onset patients
appears to be appropriate.

The expanded FA gene was also found in a couple of
less characteristic situations. One of the two patients found to
have FA appeared to have an autosomal dominant disorder. The
appearance of FA in two successive generations has been
previously described. This occurs as a result of an affected
homozygous individual having children with a heterozygous
carrier.”” 78

One patient in the sample was found to be heterozygous for
the FA GAA expansion. Given that the carrier frequency for the
FA expansion is approximately one in 90, the appearance of one
heterozygote in a sample of this size is appropriate.”® 80

Just under half of our SCA patients lacked a positive family
history. These individuals had ages of onset that were similar to
those of the autosomal dominant patients. The etiology of SCA
in these sporadic cases was not clear, and may represent a non-
genetic disorder.

Testing of apparently sporadic cases only yielded one positive
result. Several possible explanations exist for the appearance of
a positive test result in an individual with a negative family
history. As anticipation is a feature of most of these disorders, a
positive family history may not be evident as an affected parent
may have died before manifesting symptoms of the disorder.
Symptoms may not be sufficient to enable the index case to
realize that similar problems exist in family members. In
addition, a large but normal allele or an allele in the
indeterminate range might expand sufficiently to cause
symptoms. The possibility of non-paternity can always cloud
pedigree analysis.

While a positive result has been reported in as many as 22%
of sporadic patients tested for the inheritable ataxias, the single
individual testing positive out of 26 tested in this study is
somewhat lower than most other studies.’0-32%36.57,59-61.64.81-83
Our lower yield in this group may be the result of a more
aggressive assessment of the family history resulting in fewer
patients being classified as sporadic. Overall, one can see that the
testing of apparent sporadic patients results in a small but
potentially significant positive result rate. Testing in these
individuals is important as the discovery that a patient’s disorder
is genetic has significant implications for other family members.
Given the lack of positive results in our patients and the reported
rarity in patents of European descent, DRPLA testing appears to
be of little value for non-Japanese patients presenting with
spinocerebellar ataxia.***’ Testing might be more appropriate in
individuals who have the additional features of chorea, dementia,
or epilepsy.

There has been increasing interest in the role that premutation
range expansions of the FMRI gene has in degenerative
disorders characterized by tremor, ataxia, Parkinsonism, and
dementia. While no FMR1 premutations were found in our SCA
patient population, there has been one other study which looked
for its presence in a group of patients referred with SCA.
Macpherson et al®tested 59 SCA patients who had tested
negative for SCA types 1, 2, 3, 6, and 7. They found three with
repeats in the premutation range. One of the patients had onset of
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ataxia at age ten. Another group reported testing for the FMR1
premutation in nine males and four females with the ataxic form
of multiple system atrophy. While they did not find any repeats
greater than 50, they felt that there was an excess of repeats
greater than 40.%° There has been one report of two females with
the association of tremor and ataxia with the FMRI
premutation.’ While females carrying the full mutation have
been thought to have no clinical manifestations, 16% of women
with the premutation develop premature menopause.®’

At present, it appears that the fragile X premutation is only
occasionally identified in patients presenting with SCA. Given
that the prevalence of the premutation is relatively common
(approximately one in 700 males and one in 250 females) and
that as many as 20% of male premutation carriers over the age of
50 have symptoms suggestive of this disorder, one might wonder
why the yield of testing SCA patients is not higher.38 Perhaps this
disorder is much less common than has been suggested or
additional genetic and/or environmental factors play a role in its
development. It is possible that features other than the ataxia
may be more prominent leading to diagnoses such as essential
tremor, Parkinson’s disease, or dementia. In addition, the white
matter abnormalities might be interpreted as being indicative of
a demyelinating disorder. The role that this syndrome plays in
degenerative neurological disease should be investigated in a
larger series of patients with these types of disorders.

In the University of Calgary Movement Disorders Clinic the
most commonly diagnosed autosomal dominant spinocerebellar
ataxia is SCA3 followed by SCA2 and SCA6. Over 60% of
autosomal dominant ataxia pedigrees can be given a specific
genetic diagnosis using currently available testing methods. A
patient with an unclear but positive family history may also
obtain a positive test result. The yield of testing sporadic patients
is low but may provide useful information for the patient and his
or her family. The fragile X tremor/ataxia syndrome was not
identified in our SCA patient population.
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