
Bull. Aust. Math. Soc. 109 (2024), 45–50
doi:10.1017/S0004972723000230

STRICT REGULARITY FOR 2-COCYCLES OF FINITE GROUPS

R. J. HIGGS

(Received 10 February 2023; accepted 12 February 2023; first published online 24 March 2023)

Abstract

Let α be a complex-valued 2-cocycle of a finite group G. A new concept of strict α-regularity is introduced
and its basic properties are investigated. To illustrate the potential use of this concept, a new proof is
offered to show that the number of orbits of G under its action on the set of complex-valued irreducible
αN -characters of N equals the number of α-regular conjugacy classes of G contained in N, where N is a
normal subgroup of G.
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1. Introduction

Throughout this paper, G will denote a finite group and it will be implicitly assumed
that all projective representations affording projective characters are defined over the
field of complex numbers C.

DEFINITION 1.1. A 2-cocycle of G over C is a function α : G × G→ C∗ such that
α(1, 1) = 1 and α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G.

The set of all such 2-cocycles of G form a group Z2(G,C∗) under multiplication.
Let δ : G→ C∗ be any function with δ(1) = 1. Then t(δ)(x, y) = δ(x)δ(y)/δ(xy) for all
x, y ∈ G is a 2-cocycle of G, which is called a coboundary. Two 2-cocycles α and β
are cohomologous if there exists a coboundary t(δ) such that β = t(δ)α. This defines an
equivalence relation on Z2(G,C∗) and the cohomology classes [α] form a finite abelian
group, called the Schur multiplier M(G).

DEFINITION 1.2. Let α be a 2-cocycle of G.

(a) Define fα : G × G→ C∗ by

fα(g, x) =
α(g, x)α(gx, g−1)
α(g, g−1)

.

(b) For each x ∈ G, define αx : CG(x)→ C∗ by αx(g) = α(g, x)/α(x, g).
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These two functions arise naturally in the twisted group algebra (C(G))α in
which x̄ȳ = α(x, y)xy for all x, y ∈ G (see [4, page 66]). Here, ḡx̄ḡ−1 = fα(g, x)gxg−1

for g, x ∈ G and ḡx̄ḡ−1 = αx(g)x̄ if g ∈ CG(x). Also, if β = t(δ)α, then fβ(g, x) =
(δ(x)/δ(gxg−1)) fα(g, x) for all g, x ∈ G and consequently αx = βx.

Now αx ∈ Lin(CG(x)) from [6, Lemma 4.2], where Lin(CG(x)) is the group of linear
characters of CG(x). The kernel of αx is the absolute centraliser Cα(x) of x with respect
to α and CG(x)/Cα(x) � 〈αx〉.

DEFINITION 1.3. Let α be a 2-cocycle of G. Then x ∈ G is α-regular if αx is the trivial
character of CG(x) (or equivalently Cα(x) = CG(x)).

First, every element of G is α-regular if [α] is trivial. Second, setting y = 1 and z = 1
in Definition 1.1 yields α(x, 1) = 1 and similarly α(1, x) = 1 for all x ∈ G, and hence 1
is always α-regular. Third, if x ∈ G is α-regular, then it is αk-regular for any integer k.
Finally, if x ∈ G is α-regular, then so too is any conjugate of x (see [4, Lemma 2.6.1]),
so that one may refer to the α-regular conjugacy classes of G.

Now let Proj(G,α) denote the set of all irreducible α-characters of G (see
[4, page 184]). Then x ∈ G is α-regular if and only if ξ(x) � 0 for some ξ ∈ Proj(G,α)
(see [5, Proposition 1.6.3]) and |Proj(G,α)| is the number of α-regular conjugacy
classes of G (see [5, Theorem 1.3.6]).

Let N be a normal subgroup of G. Then G acts on Proj(N,αN) by

ζg(x) = fα(g, x)ζ(gxg−1)

for ζ ∈ Proj(N,αN), g ∈ G and all x ∈ N. Clifford’s theorem for projective characters
applies to this action (see [5, Theorem 2.2.1]).

A new concept of strict αd-regularity, which refines the notion of αd-regularity, will
be defined and investigated in Section 2 for d a divisor of the order of [α]. This concept
will be used in Section 3 to give an alternative proof that the number of orbits of G
under its action on Proj(N,αN), for N a normal subgroup of G, is equal to the number
of α-regular conjugacy classes of G contained in N from [2, Lemma 3.1]. It is also
easy to show that this result is independent of the choice of 2-cocycle from [α]. The
result is well known when α is trivial (see [3, Corollary 6.33]); the method employed
will be to apply this to the orbits of an α-covering group of G under its action on the
irreducible characters and conjugacy classes of a normal subgroup, but to decompose
these orbits into corresponding sets.

2. Strictly αd-regular elements

Let o( ) denote the order of an element in a group. Then for [β] ∈ M(G), there exists
α ∈ [β] such that o(α) = o([β]) and α is a class-function cocycle, that is, the elements of
Proj(G,α) are class functions (see [5, Corollary 4.1.6]). To avoid repetition throughout
the rest of this paper, it will be assumed that α has these two properties with n = o(α).
A consequence of the second property is that x ∈ G is α-regular if and only if
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fα(g, x) = 1 for all g ∈ G (see [5, page 33]). The first property allows us to make the
following definition in terms of αd rather than for the more clumsy β ∈ [α]d.

DEFINITION 2.1. Define x ∈ G to be strictly αd-regular if d is the smallest integer with
1 ≤ d ≤ n such that x is αd-regular.

Next suppose o(αd) = o(αk) = m. If ω is a primitive mth root of unity, then there
exists a field automorphism τ of Q(ω) over Q such that τ(αd) = αk. Consequently,
x ∈ G is αd-regular if and only if it is αk-regular. Thus, d | n in Definition 2.1.

Let π(d) denote the set of prime numbers that divide d and let dp denote the pth part
of d for any prime number p.

LEMMA 2.2. We have x ∈ G is strictly αd-regular if and only if either:

(a) x is αd-regular but not αd/p-regular for each p ∈ π(d); or
(b) o(αx) = d in Lin(CG(x)).

PROOF. For condition (a), if x is not αd/p-regular, then it is not αt-regular for all
positive integers t with t | d/p. For condition (b), observe that x is αd-regular if and
only if αd

x is trivial, that is, o(αx) | d. Now for d > 1, x is strictly αd-regular if and only
if o(αx) | d, but αd/p

x � 1 for each prime p ∈ π(d) from condition (a). The latter is true
if and only if dp | o(αx) for each prime p ∈ π(d), that is, if and only if d | o(αx). �

An equivalent way of stating Lemma 2.2(b) is that x ∈ G is strictly αd-regular if and
only if |CG(x)/Cα(x)| = d.

Now by definition for each x ∈ G, there exists a unique d | n such that x is strictly
αd-regular. Thus, the conjugacy classes of G are partitioned into strictly αd-regular
conjugacy classes. So for d | n and N a normal subgroup of G, let td be the number
of strictly αd-regular conjugacy classes of G contained in N. Thus, the number of
αd-regular conjugacy classes of G contained in N is

∑
s|d ts; in particular,

∑
d|n td = t(N),

where t(N) is the number of conjugacy classes of G contained in N.
The choice of 2-cocycle α allows the construction of an α-covering group H of G

with the following three properties (see [4, Section 4.1]):

(a) H has a cyclic subgroup A ≤ Z(H) ∩ H′ of order n;
(b) there exists a conjugacy-preserving transversal (see below) {r(g) : g ∈ G} of A in

H such that θ : H → G defined by θ(r(g)a) = g for all g ∈ G and all a ∈ A is a
homomorphism with kernel A;

(c) there exists a faithful character λ ∈ Lin(A) such that α(x, y) = λ(A(x, y)) for all
x, y ∈ G, where r(x)r(y) = A(x, y)r(xy).

A conjugacy-preserving transversal means that r(x) and r(y) are conjugate in H if
and only if x and y are conjugate in G (see [5, Lemma 4.1.1]).

It is easy to see that θ(CH(r(x))) = Cα(x) for x ∈ G and θ(CH(r(x)A)) = CG(x). Thus,
working in H, we see that x is strictly αd-regular if and only if the cyclic group
CH(r(x)A)/CH(r(x)) has order d.
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PROPOSITION 2.3. Let H be an α-covering group of G. Then x ∈ G is strictly
αd-regular if and only if either:

(a) r(x)〈zm〉 are the conjugates of r(x) in r(x)A, where 〈z〉 = A and dm = n; or
(b) {r(x)zi : i = 1, . . . , m} is a maximal set of conjugacy class representatives of H in

r(x)A.

PROOF. Define kr(x) : CH(r(x)A)→ A by kr(x)(h) = hr(x)h−1(r(x))−1. Then kr(x) is a
homomorphism with kernel CH(r(x)), since λ(kr(x)) = αx. Now let z be a generator
of A. Then r(x)zi and r(x)zj are conjugate if and only if zj−i ∈ Im(kr(x)), that is, if and
only if zi Im(kr(x)) = zj Im(kr(x)).

Now x is strictly αd-regular if and only if Im(kr(x)) = 〈zm〉, that is, if and only if the
cosets of Im(kr(x)) in A are zi〈zm〉 for i = 1, . . . , m. �

3. Counting orbits of projective characters

Let N be a subgroup of G. Let H be an α-covering group of G and, using the
notation of Section 2, let M be the subgroup of H containing A such that θ(M) = N.
Finally, for any integer k, let Irr(M|λk) = {χ ∈ Irr(M) : χA = χ(1)λk}, where Irr(M)
is the set of irreducible characters of M. Then the mapping from Proj(N,αk

N) to
Irr(M|λk), ζ 
→ χ is a bijection, where ζ(x) = χ(r(x)) for all x ∈ N (see [4, pages
134–135] or [5, Corollary 4.1.3]). Now suppose N is normal in G, then it is easy to
check that ζg = χr(g) for all g ∈ G and hence the orbit length of ζ under the action
of G equals that of χ under the action of H. By definition, for each x ∈ G, there
exists a unique d | n such that x is strictly αd-regular. Thus, the conjugacy classes
of H are partitioned according to |CH(r(x)A)/CH(r(x)| for r(x)a, where x ∈ G and
a ∈ A. However, if x is a strictly αd-regular conjugacy class representative of G, then
n/d corresponding conjugacy class representatives of H are obtained as detailed in
Proposition 2.3. So the number of conjugacy classes of H in M corresponding to
the number of αd-regular conjugacy classes of G contained in N is

∑
s|d(n/s)ts; in

particular,
∑

d|n(n/d)td = t(M), where t(M) is the number of conjugacy classes of H
contained in M.

LEMMA 3.1. Let N be a normal subgroup of G and suppose that o(αd) = o(αk). Let
σ be a field automorphism of C that extends τ, as described in Section 2, so that
σ(αd) = αk. Then ζg = ζ′ if and only if σ(ζ)g = σ(ζ′) for g ∈ G and ζ ∈ Proj(N,αd

N).

PROOF. If ζ ∈ Proj(N,αd
N), then σ(ζ) ∈ Proj(N,σ(αd

N)). Now

σ(ζ)g(x) = fσ(α)(g, x)σ(ζ(gxg−1)) = σ( fα(g, x)ζ(gxg−1))

for all x ∈ N. �

Lemma 3.1 sets up a one-to-one correspondence between the orbits of G under its
action on Proj(N,αd

N) and those under its action on Proj(N,αk
N) in which orbit lengths

are preserved. We next just restate Lemma 3.1 for an α-covering group H of G.
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COROLLARY 3.2. Suppose that o(λd) = o(λk) in 〈λ〉 = Lin(A). Let σ be as in
Lemma 3.1, so that σ(λd) = λk. Then χh = χ′ if and only if σ(χ)h = σ(χ′) for h ∈ H
and χ ∈ Irr(M|λd).

Let φ denote Euler’s totient function. We use the well-known result from number
theory that

∑
d|n φ(d) =

∑
d|n φ(n/d) = n.

THEOREM 3.3. Let N be a normal subgroup of G. Then the number of orbits of G
under its action on Proj(N,αN) is equal to the number of α-regular conjugacy classes
of G contained in N.

PROOF. Proceeding by induction, we count the number of αd-regular conjugacy
classes of G contained in N. First, if d = n, then, as previously stated, the number
of conjugacy classes of G contained in N is equal to the number of orbits of G under
its action on Irr(N). So assume by induction that the number of orbits of G under its
action on Proj(N,αd

N) is equal to the number of αd-regular conjugacy classes of G
contained in N for each d | n with d � 1. Let H be an α-covering group of G and let M
denote the subgroup of H containing A such that θ(M) = N.

Now for d | n and d � 1, G has
∑

s|d ts orbits under its action on Proj(N,αd
N). Thus,

H has the same number of orbits under its action on Irr(M|λd). Now o(λk) = o(λd) for
φ(n/d) values of k with 1 ≤ k ≤ n. Thus, using Corollary 3.2, the total number of orbits
of H under its actions on Irr(M|λc), for the n − φ(n) values of c with 1 ≤ c ≤ n that are
not relatively prime to n, is

∑
d|n
d�1

φ
(n
d

)(∑
s|d

ts
)
=
∑
s|d

ts
(∑

d|n
d�1

φ
(n
d

))

=
∑
s|n

ts
( ∑

r|(n/s)
(r,s)�(1,1)

φ
(n/s

r

))

= t1(n − φ(n)) +
∑
s|n
s�1

ts
n
s

.

The total number of orbits of H under its action on Irr(M) is t(M), so the total number
of orbits of H under its actions on Irr(M|λc), for the φ(n) values of c with 1 ≤ c ≤ n
that are relatively prime to n, is

t(M) − t1(n − φ(n)) −
∑
s|n
s�1

ts
n
s
= t1φ(n).

Hence, the number of orbits of H under its action on Irr(M|λ) (and the number of orbits
of G under its action on Proj(N,αN)) is t1, as required. �

Suppose that β = t(δ)α. Then from [1, Lemma 1.4], we see that Proj(N, βN) =
{δNζ : ζ ∈ Proj(N,αN)} and, for g ∈ G, ζg = ζ′ if and only if (δNζ)g = δNζ

′ for
ζ ∈ Proj(N,αN). In particular, this establishes a one-to-one correspondence between
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the orbits of G under its action on Proj(N, βN) and those under its action on Proj(N,αN)
in which orbit lengths are preserved. So from this and Lemma 3.1, the result of
Theorem 3.3 is independent of the choice of 2-cocycle from [α]c for c relatively prime
to n.
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