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Abstract

Selective withdrawal of a two-layer fluid is considered. The fluid layers are weakly
compressible, miscible and viscous and therefore flow rotationally. The lower, denser
fluid flows with constant velocity out through one or more drain holes in the bottom
of a rectangular tank. The drain is opened impulsively and the subsequent draw-down
produces waves in the interface which travel outward to the edges of the tank and are
reflected back with a 180◦ change of phase. The points on the interface that have the
highest absolute gradient form regions of high vorticity in the tank, enabling mixing
of the fluids. An inviscid linearized interface is computed and compared to contour
plots of density for the viscous solution. The two agree closely at early times in the
withdrawal process, but as time increases, nonlinear and viscous effects take over. The
time at which the lighter fluid starts to flow out of the tank is dependent on the number
of drains, their width, and the fluid flow rate and density, and is investigated here.

2010 Mathematics subject classification: primary 76D50; secondary 76M22.

Keywords and phrases: selective withdrawal, multiple drains, viscous fluids, spectral
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1. Introduction

There are many instances in nature where two fluid layers of different densities overlay
each other. These include oil on water, subterranean layers of fresh and salty water, and
lakes that are thermally stratified. These situations also arise in industry. For example,
cooling ponds used in power stations have a pronounced stratification in the fluid,
where the recently used warmer water lies above the denser cooler water. Due to these
artificial and naturally occurring events, a lot of work has been done on the withdrawal
of fluid from a two-layered reservoir, particularly in the past few decades [2, 4, 5, 8].
When outflow from a two-layered reservoir is less than some critical value, fluid exits
from the layer that contains the sink. This phenomenon is termed selective withdrawal.
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With the increased need to maintain environmental standards worldwide, the
problem of extracting fluid from reservoirs consisting of two different density
layers has become increasingly important, and thus there are substantial engineering
applications in this area. Maintaining water quality and reservoir management as
discussed by Imberger and Hamblin [7] are examples, along with the ability to reuse
water in industrial settling tanks and withdrawing the coolest water from power station
cooling ponds [12]. The better the understanding of the flow pattern as the fluid
is being withdrawn, the more efficient and environmentally friendly these industrial
applications may become.

Although the literature on selective withdrawal is extensive, the vast majority of
the mathematical modelling of such withdrawal problems assumes that the outflow
involves only a single sink, the fluids are inviscid, immiscible and incompressible, and
the flow is irrotational. This was assumed by Forbes and Hocking [4] and Hocking [5].
Forbes and Hocking [4] showed that for an impulsive start in the draining process, the
nonlinear and linearized interfaces between the fluids coincide for early times, but
as the interface draws closer to the drain, the nonlinear and linearized solutions vary
considerably as nonlinear effects start to dominate. They also found that curvature
singularities apparently develop on the interface, for wide drains. As fluid is being
withdrawn, waves are produced in the interfacial region of the fluid system. Depending
on the outflow rate, these waves can have varying amplitudes and therefore their
influence on the withdrawal is significant. Farrow and Hocking [2] showed that this
behaviour can delay or accelerate the arrival of the interface at the sink. Ahmed et al.
[1] consider withdrawal from multiple holes, although these are arranged vertically,
and so that problem is largely equivalent to selective withdrawal through a single sink
in a horizontal bottom.

The viscous problem is much more difficult since it involves the Navier–Stokes
equations. Additionally, the conditions on the interface or free surface are much
more complicated. Viscous effects have had relatively little consideration in the
literature. Nevertheless, Imberger et al. [8] looked at selective withdrawal from a
finite rectangular tank, taking viscosity into account, with a sink located at the bottom
left corner. They showed that the natural processes of the withdrawing layer depend
on viscous forces, the number of reflections of the wave off the wall opposite the
sink, and the Prandtl number. Lister [9] considered withdrawal of a two-layered
viscous fluid through a point sink located centrally in a semi-infinite cylinder, under
the approximation that the nonlinear inertial terms in the equations of motion were
negligible. More recently, Hocking and Zhang [6] also looked at viscous fluids
and considered withdrawal from a two-layered fluid through a line sink in a porous
medium. In this case, the line sink is situated above an impermeable wedge-shaped
region. The results can be used to improve withdrawal of viscous fluids from oil
reserves and ground water aquifers.

Farrow and Hocking [2] approximated the two-layer fluid system with a single
fluid of spatially varying density and used Boussinesq approximation theory. A finite
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difference method was used to solve the problem for a single hole located at the bottom
left corner of the tank, with a range of values for the physical parameters.

In this paper, we consider the withdrawal of fluid from a two-layer fluid system
confined to a rectangular tank. We follow Farrow and Hocking [2] and also use
Boussinesq approximation theory. However, we focus on designing a tank with
multiple drain holes, not necessarily symmetrically placed, to achieve maximum
withdrawal volume before the interface reaches the sink or sinks. The fluids are
weakly compressible, viscous and miscible, and flow rotationally. Density and
vorticity contour plots for tanks with various drain widths and flow rates are of
particular interest, together with different drain configurations. These nonlinear
viscous solutions are obtained using a novel spectral method, and are compared with
linearized approximations to the inviscid problem. Nonlinear and viscous effects are
seen at later times in the withdrawal process.

2. Mathematical formulation

We consider a two-dimensional rectangular tank that lies in the xy-plane. The x-
axis is located along the bottom of the tank, with the y-axis oriented vertically upward
from the centre of the tank. The left side wall is located at x = −W and the right side
wall at x = W. This results in a tank of width 2W. The bottom of the tank has a drain
hole located centrally with width 2A, so that the left and right sides of the drain hole
are located at x = −A and x = A, respectively, on y = 0.

The tank contains two different density fluids that have the same viscosity
coefficient, with the denser fluid below the lighter fluid. The initial interface between
the two fluids is horizontal and located at y = H. The lighter fluid, located in region 1
of the tank, is considered to have density ρ1 and thickness L. The denser fluid in
region 2 has height H and density ρ2. It follows that ρ1 < ρ2. The tank has height
y = H + L.

At time t = 0 the drain is turned on impulsively. The withdrawal speed at the drain
is V0, and the fluid is subject to the acceleration due to gravity g. It is assumed that
constant outflow occurs over the region of the drain hole, giving an outward mass flux
2AV0. It is required that the tank be full at all times, and it must therefore be recharged
uniformly at the top with the same volume of fluid that is being drained out. This leads
to the inward mass flux of 2AV0/W injected at the top of the tank.

The fluid is assumed to be weakly compressible, and accordingly the interface
between the fluid regions can be regarded as a rapid but smooth transition from one
density to another. The density ρ can then be expressed as ρ = ρ1 + ρ̄, where ρ1 is the
density of the upper, lighter fluid and ρ̄ is a small perturbation to it.

Dimensionless variables are introduced immediately, and are used throughout this
paper. All lengths are scaled relative to H, the initial depth of the lower, heavier fluid
and the time scale is taken to be

√
H/g. The density scale is chosen to be the lower

fluid density ρ2 and the speed scale is
√

gH. The problem is then dependent on seven
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F 1. Sketch of the nondimensionalized tank. Initially, the interface is at height y = 1 (dashed line),
but drops as time progresses. The interface (solid line) has been taken from an inviscid linearized solution
with F = 0.05 and D = 0.95 at time t = 75.

dimensionless constant parameters:

α =
A
H
, β =

W
H
, λ =

L
H
, D =

ρ1

ρ2
,

µ =
ν√
gH3

, F =
V0
√

gH
, γ =

σ√
gH3

. (2.1)

The first constant α in (2.1) represents the dimensionless half-width of the drain,
and the second constant β is the half-tank width. The constant λ represents the
dimensionless height of the upper, lighter fluid. Consequently, in dimensionless
variables the initial height of the lower, heavier fluid is 1 and the total height of the
tank is 1 + λ. The width of the tank is 2β and the drain width is 2α. A sketch of the
nondimensionalized tank is given in Figure 1. The parameter D is the density ratio
between the upper and lower fluids. The parameter µ is the dimensionless viscosity
coefficient and may be thought of as the inverse of a Reynolds number. The parameter
F is a Froude number based on the initial depth of the lower, heavier fluid and can be
considered as a measure of the flow rate out through the drain hole. The parameters σ
and γ are the dimensional and nondimensional diffusion coefficients, respectively.

The velocity vector is written q = ui + v j where u and v denote the horizontal
and vertical velocity components, respectively. In Boussinesq theory, the mass
conservation equation is split into an essentially incompressible part

∂u
∂x

+
∂v
∂y

= 0 (2.2)
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and an effective transport component for the perturbation density, which takes the form

∂ρ̄

∂t
+ q · ∇ρ̄ = γ∇2ρ̄. (2.3)

The viscous momentum equations for the horizontal and vertical velocity components,
respectively, are

∂u
∂t

+ q · ∇u +
∂p
∂x

= µ∇2u, (2.4)

∂v
∂t

+ q · ∇v +
∂p
∂y

= −ρ̄ + µ∇2v. (2.5)

Equations (2.4) and (2.5) are combined by differentiating with respect to y and
x, respectively, and subtracting to eliminate pressure, resulting in the single scalar
equation

∂ω

∂t
+ q · ∇ω = −

∂ρ̄

∂x
+ µ∇2ω (2.6)

for the vorticity

ω =
∂v
∂x
−
∂u
∂y
.

Equation (2.2) is satisfied identically using the stream function Ψ(x, y, t), in terms
of which the velocity components and vorticity become

u =
∂Ψ

∂y
, v = −

∂Ψ

∂x
, ω = −∇2Ψ. (2.7)

When modelling viscous fluid behaviour it is necessary to enforce a nonslip condition
on the walls of the tank, creating a boundary layer. This layer will be extremely thin
and its influence in the centre of the tank where the drain holes are located will be
negligible. Consequently, it is assumed here that the boundary layers on the two
walls and the bottom of the tank can be ignored. We therefore follow Farrow and
Hocking [2] in allowing slip boundary conditions on the walls and bottom of the tank.
The approximate boundary conditions on the side walls are

u = ω = 0 at x = ±β, (2.8)

and on the bottom of the tank at y = 0,

v =

−F if −α < x < α

0 otherwise.
(2.9)

At the top of the tank, at y = 1 + λ, the recharge rate is

v = −
αF
β
. (2.10)
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3. The spectral solution method

The stream function Ψ in equation (2.7) is written as the sum of a steady background
component Ψb and a fully unsteady component Ψu in the form

Ψ(x, y, t) = Ψb(x, y) + Ψu(x, y, t).

3.1. Single hole located symmetrically The background component Ψb is
determined by ignoring viscosity and looking for steady flow of a single fluid through
the tank, to conserve mass. Therefore, Ψb is the solution to Laplace’s equation in the
two-dimensional region −β < x < β and 0 < y < 1 + λ, satisfying boundary conditions
u = 0 on the walls x = ±β, the top condition (2.10) on y = 1 + λ and the bottom
condition (2.9) on y = 0. The background component of the stream function can be
represented in the form

Ψb(x, y) =
αFx
β

+

∞∑
n=1

Bn sinh
[nπ
β

(1 + λ − y)
]

sin
(nπx
β

)
, (3.1)

where

Bn =
2βF sin( nπα

β
)

n2π2 sinh[ nπ
β

(1 + λ)]
.

Since the steady component Ψb already satisfies the bottom boundary
condition (2.9), it is appropriate to take the unsteady component in the form

Ψu(x, y, t) =

∞∑
m=1

∞∑
n=1

Amn(t) sin
( mπy
1 + λ

)
sin

(nπx
β

)
(3.2)

with coefficient functions Amn(t) to be determined. Thus the full representation of the
stream function is given by

Ψ(x, y, t) =
αFx
β

+

∞∑
n=1

Bn sinh
[
nπ
β

(1 + λ − y)
]

sin
(nπx
β

)
+

∞∑
m=1

∞∑
n=1

Amn(t) sin
( mπy
1 + λ

)
sin

(nπx
β

)
. (3.3)

Equation (2.7) gives the expression for the vorticity ω of the fluid in the tank in the
form

ω =

∞∑
m=1

∞∑
n=1

CmnAmn(t) sin
( mπy
1 + λ

)
sin

(nπx
β

)
, (3.4)

where

Cmn =

(nπ
β

)2

+

( mπ
1 + λ

)2

. (3.5)
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The vorticity equation (2.6) shows that the density derivative ∂ρ̄/∂x must have a
similar form to that in equation (3.4) for the vorticity. In addition, it is necessary to
make ρ̄ = 0 at the top y = 1 + λ of the tank, and to have ρ̄ = 1 − D at the bottom y = 0.
It is therefore appropriate to take the series for the density perturbation to be

ρ̄(x, y, t) =

∞∑
m=1

∞∑
n=1

Bmn(t) sin
( mπy
1 + λ

)
cos

(nπx
β

)
+

∞∑
m=1

Bm0(t) cos
( (2m − 1)πy

2(1 + λ)

)
. (3.6)

The vorticity equation (2.6) and the density equation (2.3) are decomposed
spectrally, by multiplying by basis functions and integrating over the region of the
tank. This gives the following system of equations for the time-dependent Fourier
coefficients:

A′kl(t) =
−2

β(1 + λ)Ckl

∫ 1+λ

0

∫ β

−β

F(x, y, t) sin
( lπx
β

)
sin

( kπy
1 + λ

)
dx dy

+
lπ
β

Bkl(t)
Ckl

− µCklAkl(t), k = 1, 2, . . . , M, l = 1, 2, . . . , N; (3.7)

B′kl(t) =
−2

β(1 + λ)

∫ 1+λ

0

∫ β

−β

G(x, y, t) cos
( lπx
β

)
sin

( kπy
1 + λ

)
dx dy

− γCklBkl(t), k = 1, 2, . . . , M, l = 1, 2, . . . , N; (3.8)

B′k0(t) =
−1

β(1 + λ)

∫ 1+λ

0

∫ β

−β

G(x, y, t) cos
( (2k − 1)πy

2(1 + λ)

)
dx dy

− γ
( (2k − 1)π

2(1 + λ)

)2

Bk0(t), k = 1, 2, . . . , M. (3.9)

The constants Ckl are given by equation (3.5), and the functions in the integrands are
defined for convenience to be

F(x, y, t) = u
∂ω

∂x
+ v

∂ω

∂y
and G(x, y, t) = u

∂ρ̄

∂x
+ v

∂ρ̄

∂y
.

Equations (3.7)–(3.9) embody a system of M(1 + 2N) ordinary differential equations
for the time-dependent Fourier coefficients in the representations of the stream
function (3.3), the vorticity (3.4) and the perturbation density (3.6). This large system
of differential equations is then solved using a fourth-order Runge–Kutta method to
integrate the coefficients forward in time.

3.2. Multiple holes located symmetrically In this section, a tank with multiple
drain holes is investigated. As previously, the tank has width 2β and height 1+λ.
The drain holes are centred about ±β/3 and have width α. Thus, the left drain
hole is located in the region −β/3 − α/2 < x < −β/3 + α/2, and the right drain hole
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in β/3 − α/2 < x < β/3 + α/2. The boundary conditions on the walls and top are the
same as for the case of a single hole located symmetrically and are given in (2.8)
and (2.10). Therefore. the equations representing the stream function (3.3), the
vorticity (3.4) and the perturbation density (3.6) remain the same, but the Fourier
coefficients Bn differ due to the imposed boundary condition at the bottom of the tank
changing from (2.9) to

v(x, 0) =

−F if |x + β/3| < α/2 or |x − β/3| < α/2

0 otherwise.

The Fourier coefficients in equation (3.3) take the form

Bn =
2βF[sin( nπ(−β/3+α/2)

β
) + sin( nπ(β/3+α/2)

β
)]

n2π2 sinh[ nπ
β

(1 + λ)]
. (3.10)

3.3. Multiple holes located asymmetrically For convenience, the walls in this case
are taken to be located at x = 0 and x = 2β, and a virtual tank is to have walls located
at x = −2β and x = 0. This enables the method of images to be used to solve for
the stream function Ψ(x, y, t), as the flow would be symmetric about x = 0. The
boundary conditions on the walls are now u = 0 on x = ±2β and (2.10) on y = 1 + λ.
The background component (3.1) and the unsteady component (3.2) are now modified
by replacing the sin(nπx/β) term with sin(nπx/(2β)). This results in vorticity taking
the form

ω =

∞∑
m=1

∞∑
n=1

DmnAmn(t) sin
( mπy
1 + λ

)
sin

(nπx
2β

)
, (3.11)

where

Dmn =

(nπ
2β

)2

+

( mπ
1 + λ

)2

. (3.12)

The perturbation density ρ̄ takes the form

ρ̄(x, y, t) =

∞∑
m=1

∞∑
n=1

Bmn(t) sin
( mπy
1 + λ

)
cos

(nπx
2β

)
+

∞∑
m=1

Bm0(t) cos
( (2m − 1)πy

2(1 + λ)

)
. (3.13)

In the case of multiple drain holes located asymmetrically along the bottom of
the tank, we consider two alternative drain hole configurations, with each drain hole
having width α. The first case (case 1) considers one drain hole centrally located and
a second drain hole butted up against the right-hand wall. The second case (case 2)
consists of a drain hole butted up against the right-hand wall and a second drain hole
separated from it by a distance α. The respective boundary conditions for the bottom
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of the tank for case 1 and case 2 are

v(x, 0) =


−F if x ∈ (−2β, −2β + α), x ∈ (−β − α/2, −β + α/2),

x ∈ (β − α/2, β + α/2) or x ∈ (2β − α, 2β)

0 otherwise,

v(x, 0) =


−F if x ∈ (−2β, −2β + α), x ∈ (−2β + 2α, −2β + 3α),

x ∈ (2β − 3α, 2β − 2α) or x ∈ (2β − α, 2β)

0 otherwise.

For case 1, the Fourier coefficients Bn in the modified version of equation (3.1) have
the form

Bn =
4βF[sin( nπ(α−2β)

2β ) + sin( nπ(α−2β)
4β ) + sin( nπ(α+2β)

4β )]

n2π2 sinh[ nπ
2β (1 + λ)]

, (3.14)

and for case 2,

Bn =
4βF[sin( nπ(α−2β)

2β ) + sin( nπ(3α−2β)
2β ) + sin( nπ(β−α)

β
)]

n2π2 sinh[ nπ
2β (1 + λ)]

. (3.15)

The ordinary differential equations for the asymmetrically located drain holes are
slightly different from those for one drain hole and two symmetrically located drain
holes, as some of the basis functions are different from those in the previous derivations
and the integration in x is over the region −2β < x < 2β. The method is the same
as previously used, and thus for brevity we simply state the systems of ordinary
differential equations. They are

A′kl(t) =
−1

β(1 + λ)Dkl

∫ 1+λ

0

∫ 2β

−2β
F(x, y, t) sin

( lπx
2β

)
sin

( kπy
1 + λ

)
dx dy

+
lπ
2β

Bkl(t)
Dkl

− µDklAkl(t), k = 1, 2, . . . , M, l = 1, 2, . . . , N;

B′k0(t) =
−1

2β(1 + λ)

∫ 1+λ

0

∫ 2β

−2β
G(x, y, t) cos

( (2k − 1)πy
2(1 + λ)

)
dx dy

− γ
( (2k − 1)π

2(1 + λ)

)2

Bk0(t), k = 1, 2, . . . , M;

B′kl(t) =
−1

β(1 + λ)

∫ 1+λ

0

∫ 2β

−2β
G(x, y, t) cos

( lπx
2β

)
sin

( kπy
1 + λ

)
dx dy

− γDklBkl(t), k = 1, 2, . . . , M, l = 1, 2, . . . , N.

The constants Dkl are given by (3.12) and the functions F(x, y, t) and G(x, y, t) are
defined as previously.
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4. The linearized inviscid solution

In this section, the linearized inviscid solution is presented and discussed. As the
tank has two different density layers, there is an interface between the two fluids in
the inviscid model. Initially this interface is a horizontal line defined by y = 1. When
the drain is opened, the interface begins to drop towards the drain hole and therefore
changes with respect to the spatial variable x and time variable t. Thus the interface
can be defined as y = η(x, t). The problem is highly nonlinear and therefore needs to
be solved using numerical techniques. However, a linearized solution is possible for
small Froude numbers F.

4.1. Single hole located symmetrically The derivation of the linearized interface
function follows a similar technique to that used by Forbes and Hocking [4], and in
the interest of conciseness will only be stated. For a single drain hole located centrally,
the linearized interface function to order F takes the form

η(x, t) = 1 − t
αF
β
− 2F

∞∑
n=1

sinh( nπλ
β

) sin( nπα
β

) sin
(
t
√

(1−D)
Tn

)
cos( nπx

β
)

nπ
√

(1−D)
Tn

sinh[ nπ(1+λ)
β

]
,

where

Tn =
D coth( nπλ

β
) + coth( nπ

β
)

nπ
β

. (4.1)

4.2. Multiple holes located symmetrically The linearized interface solution y =

η(x, t) for two symmetrically located drain holes is given by

η(x, t) = 1 − t
αF
β
−

∞∑
n=1

Bn( nπ
β

) sinh( nπλ
β

)√
(1−D)

Tn

sin
(
t

√
(1 − D)

Tn

)
cos

(nπx
β

)
. (4.2)

In this case, Bn and Tn are defined by (3.10) and (4.1), respectively.

4.3. Multiple holes located asymmetrically For multiple holes located asymmet-
rically, the linearized interfaces for both cases 1 and 2 have a similar form to that of
equation (4.2), but with the β terms in the infinite sum being replaced with 2β to give

η(x, t) = 1 − t
αF
β
−

∞∑
n=1

Bn( nπ
2β ) sinh( nπλ

2β )√
(1−D)

Tn

sin
(
t

√
(1 − D)

Tn

)
cos

(nπx
2β

)
, (4.3)

where Bn is defined by (3.14) and (3.15) for cases 1 and 2, respectively. In both cases,
Tn takes the form

Tn =
D coth( nπλ

2β ) + coth( nπ
2β )

nπ
2β

.
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T 1. The total outflow flux for each tank configuration with F = 0.03 for half-drain widths α = 3 and
α = 4.

Configuration Vout for α = 3 Vout for α = 4

Single hole 16.56 17.28
Multiple holes, symmetric 27.72 28.32
Multiple holes, asymmetric, case 1 23.58 24.72
Multiple holes, asymmetric, case 2 18.00 18.96

5. Presentation of results

In this section, the results and findings of the problem are discussed, using the
methods presented in the previous sections. Density and vorticity contour plots for
tanks with various drain configurations, drain widths and flow rates are of particular
interest. The time at which the upper, lighter fluid starts to withdraw from the tank
is studied due to its applications in water management when withdrawing heavier
polluted fluids from settling tanks. If the sum of the drain widths 2α and the Froude
number F are kept constant then, comparing such times at which the upper fluid starts
to be withdrawn for each drain configuration, it can be concluded that the greater the
time, the greater the outflow volume. In this paper we compare the outflow volume
by using the dimensionless outflow flux for each tank configuration with α = 3 and
α = 4 and the Froude number F = 0.03. The approximate withdrawal times for each
drain configuration for α = 3 are shown by density contour plots, but in the interest
of conciseness the approximate time of withdrawal for tanks with α = 4 is only stated
and used to determine the total outflow flux in Table 1 at the end of this section. The
dimensionless total outflow flux of the lower, heavier fluid is Vout. The total outflow
flux for a single drain hole and multiple drain holes located symmetrically is given by

Vout = 2αFt, (5.1)

and for multiple drain holes located asymmetrically by

Vout = 2αFtR + αF(tL − tR), (5.2)

where tR and tL are the times at which the upper fluid starts to be withdrawn from the
right and left drain hole, respectively.

The viscosity and diffusion parameters are taken to be µ = γ = 10−4, and M = N =

25 Fourier coefficients are taken in each spatial variable unless specified otherwise.
In particular, Figures 4(b), 12(a) and (b), and 14(a) and (b) use M = N = 31 Fourier
coefficients and were compared to M = N = 25 Fourier coefficients for the same tank
configurations to check the convergence of the numerical solutions. The dimensionless
half-tank width and height of the upper fluid are β = 20 and λ = 0.75, respectively.
Unless specified otherwise, the Froude number is F = 0.03 and the density ratio is
D = 0.97. In the viscous solution, the interfacial region is distinguished by a smooth
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F 2. Evolution of the linearized interface for a tank with β = 20, λ = 0.75, F = 0.03 and D = 0.97,
for (a) α = 2 at t = 0, 20, 50, 100, 150, 220 and 290; (b) α = 4 at t = 0, 5, 20, 40, 70, 110 and 150.

but rapid change in the density ρ, so that contours of this function are closely packed
in this region. This is compared with the solution for the linearized interface discussed
in Section 4.

5.1. Single hole located symmetrically When withdrawing fluid from the tank,
it is assumed that the drain is impulsively turned on. It is expected that once the
withdrawal process is started, the interface between the fluid regions would begin
to drop towards the bottom of the tank, particularly in the region directly above the
drain. This behaviour is shown for the linearized approximation in Figure 2(a) for
half-drain width α = 2, where the evolution of the interface location is shown at seven
different times. At t = 0, the interface is horizontal as both fluids are at rest prior to the
impulsive start of the withdrawal process. The profile at t = 20 has a significant dip in
the interface directly above the drain and remains horizontal across the rest of the tank.
The profiles at t = 50, 100 and 150 show clearly that a travelling wave is produced due
to the withdrawal and moves outward towards the walls of the tank. At the later time
t = 220, the waves have been reflected back towards the centre of the tank with a 180◦

change of phase. These inward travelling waves have met in the centre of the tank by
t = 290 and further disturbances occur due to other outward travelling waves.
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–20 20

y

0

0.5

1

1.5

–15 –10 –5 0 5 10 15
x

(a) Linearized interface and density contours

–20 20

F 3. Linearized interface (dashed line) with contours of (a) density and (b) vorticity for a tank with
α = 3, β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 8.

Figure 2(b) shows the evolution of the linearized interface for α = 4. In this case,
the interface is drawn towards the drain at a much faster rate due to the wider drain,
and as a consequence the outward travelling waves do not have time to reflect back off

the tank walls before withdrawal is completed.
For a tank consisting of one drain hole, with α = 3, a typical density contour plot and

vorticity contour plot for the fully viscous problem are shown in Figures 3(a) and (b),
respectively, at time t = 8, with a thick dashed line representing the inviscid linearized
interface. The contours of the density ρ(x, y, t) were computed by summing the density
of the upper fluid ρ1 and the perturbation density as defined by equation (3.6). In the
density contour plots, the blank regions above and below the interface have density
ranging from 0.970 to 0.973 and 0.997 to 1.000, respectively, and the visible contours
have values that increase in increments of 0.03 from 0.976 to 0.994. The contours of
the vorticity ω were computed using equation (3.4).

The initial conditions for the viscous solutions in Figure 3 were determined by
assuming that the fluid is initially at rest and therefore that its velocity is zero. This is
achieved by setting Amn(0) = 0 in equations (3.3) and (3.4). At t = 0, the perturbation
density function ρ̄ is obtained from equation (3.6) and takes values ρ̄ = 0 in the region
1 < y < 1 + λ and ρ̄ = 1 − D in the region 0 < y < 1. So the initial values for the Fourier
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(a) Approximate viscous interface, linearized interface
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and density contours

and density contours

F 4. Linearized interface (dashed line), approximate viscous interface ρ = 0.985 (thick line) and
density contours with Fourier coefficients (a) M = N = 25 and (b) M = N = 31 for a tank with α = 4,
β = 20, λ = 0.75, F = 0.03 and D = 0.97 at time t = 80.

coefficients, Bm0(0) and Bmn(0), are

Bm0(0) =
4(1 − D)
(2m − 1)π

sin
( (2m − 1)π

2(1 + λ)

)
,

Bmn(0) = 0, n ≥ 1.

For the linearized solution, it was expected that the function y = η(x, t) would be
comparable with the fully nonlinear viscous solution in the region of the tank where
the density contours are closely compacted together, showing a rapid change in density
over a thin region of the tank for early times in the withdrawal process. This is
confirmed in Figure 3(a), which shows a region of densely compacted contour lines in
the middle of the diagram with the linearized interface lying directly in the middle of
the nonlinear viscous interfacial region. From Figure 3(a), it is reasonable to assume
that the fully viscous interface can be represented by the density contour that has the
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value midway between the density of the lighter and heavier fluids, in this case the
density contour ρ = 0.985.

Figure 3(b) shows the linearized interface overlaid on vorticity contours for
the same parameters. The vorticity ω is essentially zero throughout the entire
tank, suggesting that the flow is almost irrotational and confirming the approximate
boundary condition (2.8). However, two small regions of relatively high vorticity are
formed on the interface at precisely the points where the surface slopes are greatest.
These regions of nonzero vorticity are antisymmetric in x and range in absolute value
from 0.009 on the outer contour to 0.045 on the innermost contour. They indicate
that strongly rotational flow is possible at these locations, and they therefore have a
significant influence on the physical flow behaviour. In a practical experiment, these
are the regions in which turbulence might first be produced [10, p. 22].

As time increases, the linearized inviscid approximation becomes increasingly
inaccurate. This can be seen in Figure 4, which shows the density contours for the
fully nonlinear viscous problem combined with the linearized inviscid interface at time
t = 80. In particular, the nonlinear interface has drawn down into the sink, whereas
for the linearized solution this has not yet occurred. This suggests that nonlinear
and viscous effects are increasing the speed at which the upper fluid is being pulled
towards the drain. As an indicator of the mean location of the viscous “interface”,
the intermediate density contour ρ = 0.985 has been selected, and is shown with a
thick black line in Figure 4. Figures 4(a) and (b) were generated using M = N = 25
and M = N = 31 Fourier coefficients, respectively. Figure 4(b) shows little change
compared to Figure 4(a), which suggests that using any more than M = N = 25 Fourier
coefficients has negligible impact on the numerical solution and implies that the
Fourier coefficients have converged. Indeed, a careful examination of the Fourier
coefficients Amn and Bmn at selected times confirms that they are insignificant beyond
about order 30.

Figure 5(a) shows the density contours for a tank with half-drain width α = 3 and
density ratio D = 0.97 at time t = 92. The thick black line is the density contour
ρ = 0.985 and is therefore an indicator of the viscous interface. At time t = 92, this
contour touches the bottom of the tank. From this time onwards there is continual
withdrawal of the lighter fluid from the tank, and thus the density contours, which are
an indication of the true interface between the fluids, become increasingly steep as
time goes on, to the point at which the density contours turn in under themselves and
separate into two distinct regions on the left and right of the drain hole, encapsulating
the denser fluid. These two regions of high density fluid are separated by a funnel
of lighter fluid approximately two-thirds of the drain width. So as well as the lighter
fluid being drained out, the heavier fluid is also being extracted, in a process of viscous
entrainment.

Figure 5(b) shows that at t = 92 there are also two symmetrically located regions of
vorticity with high rotation just above the inside edges of the drain hole. These regions
of nonzero vorticity have absolute contour values ranging from 0.16 to 0.83 and align
themselves with the shape of the funnel which separates the two regions of fluid at
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(a) Approximate viscous interface and density contours
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F 5. Approximate viscous interface ρ = 0.985 (thick line) with contours of (a) density and (b)
vorticity for a tank with α = 3, β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 92.

this time. This is to be expected, since the regions of relatively high vorticity occur at
points in which the density contour ρ = 0.985 and thus the viscous interface are at their
steepest. These regions of vorticity create strongly rotational flow, leading to mixing
of the two fluids through viscous entrainment. The denser fluid ultimately separates
into two isolated regions either side of a jet of the lighter fluid. Similar results are
achieved for varying drain widths and flow rates, although the times at which such
results occur depend on these parameters.

Figure 6 gives a graphical view of the approximate time to withdrawal for different
values of the half-drain width α and Froude number F. If the Froude number F
is increased and the half-drain width α is kept the same, then the time of initial
withdrawal of the less dense fluid decreases. If α is increased and F is kept the
same, then the time of initial withdrawal of the upper fluid decreases. For example,
if F = 0.03 and α is increased to 4, then the approximate time to withdrawal drops to
t = 72. This time value is used to determine the total outflow flux in Table 1 at the
end of this section, for a single symmetrically located drain hole. To illustrate these
findings, Figure 7 shows density contours for a tank with α = 5 and F = 0.06. The time
of initial withdrawal of the upper fluid is t = 27 and the figure shows the approximate
viscous interface spanning more than half the drain at this time.
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F 7. Approximate viscous interface ρ = 0.985 (thick line) and density contours for a tank with α = 5,
β = 20, λ = 0.75, F = 0.06 and D = 0.97 at time t = 27.

5.2. Multiple holes located symmetrically For a tank with two symmetrically
located drain holes, equations (3.6) and (3.4) are again used to compute the density
ρ(x, y, t) and vorticity ω contour diagrams, respectively. The initial conditions are
the same as for a single hole located symmetrically and the linearized interface is
computed using (4.2).

Figure 8(a) displays the linearized interface overlaid with density contours. It
confirms the findings in the previous section, in that the linearized interface function
shown as the thick black dashed line is a reliable estimate for the fully nonlinear
viscous interface for early times in the withdrawal process, as it lies directly in the
middle of the viscous interfacial region. Figure 8(b) shows the same interface, but
now combined with vorticity contours. There are four elliptical contour regions
consisting of two pairs symmetrically located about x = 0, clustered at locations along
the linearized interface. This reaffirms that the vorticity has its greatest absolute value
at points where the interface is steepest. In this case, the absolute vorticity contour
values increase from 0.006 to 0.030 with the largest values lying directly on the
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F 8. Linearized interface (dashed line) with contours of (a) density and (b) vorticity for a tank with
α = 4, β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 6.

linearized interface. Like the single drain hole configuration, away from the interfacial
region, vorticity is essentially zero.

For a tank configuration of two symmetrically located drain holes with α = 3, the
time at which the lighter fluid starts to withdraw from the tank is t = 154. This is
illustrated in Figure 9(a), which shows the viscous interface, taken to be approximated
by the contour ρ = 0.985, reaching the bottom of the tank and spanning most of each
drain hole. As with the single drain hole case, a wedge type funnel formation appears
above each drain hole, forming four distinct regions in the tank, one of light fluid above
the wedge and three encased by the wedge, sides and bottom of the tank. The lighter
fluid is draining out over the central two thirds of each drain. This process is similar to
the single drain hole case. At the sides of the drains there is heavier fluid exiting, due
to the high vorticity on the sides of the drains and the process of viscous entrainment.
The vorticity contours in this case range in value from 0.14 to 0.73. Due to the high
vorticity on the boundaries of the wedge, shown in Figure 9(b), the less dense fluid is
being spread along the bottom of the tank and mixing with the heavier fluid, forming
the three regions of heavier fluid that are enclosed by the interface. The central heavier
region has less dense fluid on the outer edges and becomes denser towards the centre.
The outer two dense regions exhibit similar behaviour with the additional localized
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(a) Approximate viscous interface and density contours
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F 9. Approximate viscous interface ρ = 0.985 (thick line) with contours of (a) density and (b)
vorticity for a tank with α = 3, β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 154.

high density regions in the corners of the tank. This again is due to the high vorticity
that develops in the corners of the tank.

When varying the dimensionless half-drain width α and keeping all other
parameters the same, the results are similar. The only differences occur in the times at
which the lighter fluid begins to exit the tank. For a tank with increased drain widths,
for example α = 4, the time of withdrawal occurs at approximately t = 118; this is the
time used to calculate the outflow flux value in Table 1. For decreased drain widths,
for example α = 2, the time to withdrawal occurs at approximately t = 224. If the
Froude number F is increased, then the time of initial withdrawal of the less dense
fluid decreases and vice versa. The density ratio has the opposite effect, that is, when
the density ratio is less than 0.97, the time of initial withdrawal of the upper fluid is
increased.

5.3. Multiple holes located asymmetrically In the case of two asymmetrically
located drain holes, equations (3.13) and (3.11) are used to produce the density
ρ(x, y, t) and vorticity ω contour diagrams, respectively. The initial conditions are
the same as previous drain hole configurations and the linearized interface function is
calculated using (4.3) together with (3.14) for case 1 and (3.15) for case 2.
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F 10. Case 1: linearized interface (dashed line) overlaid with density contours for a tank with α = 4,
β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 6.
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F 11. Case 2: linearized interface (dashed line) overlaid with vorticity contours for a tank with α = 4,
β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 6.

Figure 10 shows the linearized interface function for case 1 combined with density
contour plots, and Figure 11 shows the linearized interface function for case 2
combined with vorticity contour plots. Both figures give further evidence of the
reliability of the linearized interface function as an accurate indicator of the viscous
interface at early times in the withdrawal process and that vorticity is greatest at
locations on the viscous interface where the interface changes most rapidly.

Figure 12(a) shows a tank with configuration as defined by case 1, with α = 3. In
this configuration, it was found that at time t = 90 the approximate viscous interface
shown as the thick black line spans the right two thirds of the drain and thus the lighter,
upper fluid starts to be withdrawn out of the tank through this drain hole and produces
the now familiar wedge formation along the viscous interface. This withdrawal time is
in agreement with what was found in the single drain hole case and is to be expected,
due to the fact that the central drain hole has little influence on the fluid particles above
the right-hand wall and can therefore be considered as the left side of the single drain
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(a) Viscous interface and density contours
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F 12. Case 1: approximate viscous interface ρ = 0.985 (thick line) and density contours for a tank
with α = 3, β = 20, λ = 0.75, F = 0.03 and D = 0.97. Results are shown at (a) t = 90 and (b) t = 172.

hole tank. For times t > 90, the wedge formation remains and there is a continual
withdrawal of the less dense fluid across the right two thirds of the drain.

Figure 12(b) shows the same tank but at the later time t = 172. This is the time at
which the less dense fluid starts to be withdrawn from the central drain hole. At this
time, a more pronounced wedge in the contours has formed, isolating three distinct
regions of fluid, one of less dense fluid above the interface and two regions of heavier
fluid. There is a considerable drop in heavier fluid volume being withdrawn from this
central hole compared to previous cases, as the withdrawal of fluid only occurs across
one third of the drain, due to high vorticity near the sides of the drains. This behaviour
is consistent with other values of α. When α = 4 and all other parameters are kept the
same, the time of approximate initial withdrawal through the right drain hole is t = 72,
and at t = 134 the upper fluid starts to withdraw from the left drain hole. These values
are used to determine the outflow flux in Table 1. The vorticity again has its absolute
maximum along the contour approximation to the viscous interface; this is not shown
here in the interest of brevity. Similar outcomes occur at other values of the parameters
α, F and D.

Figure 13 shows the approximate viscous interface as defined by the density contour
ρ = 0.985 overlaid on stream function contours. The stream function contours were

https://doi.org/10.1017/S1446181112000259 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181112000259


274 J. M. Cosgrove and L. K. Forbes [22]

y

0

0.5

1

1.5

x

Approximate viscous interface and 
stream function contours

–15 –10 –5 0 5 10 15–20 20

F 13. Approximate viscous interface ρ = 0.985 (dashed line) and stream function contours for a tank
with α = 3, β = 20, λ = 0.75, F = 0.03 and D = 0.97 at t = 172.

computed using the modified form of equation (3.3). The loop in the bottom left corner
is not significant, since Ψ ≈ 0 in that corner. The streamlines give further evidence that
the density contour ρ = 0.985 is a good approximation to the viscous interface as the
interface is tangential to streamlines near both drains.

For case 2 of asymmetrically located drain holes, it was found that the time in
which the less dense fluid begins to withdraw out of the right drain is t = 78, and it
occurs over the right two thirds of the drain. At this time the heavier lower fluid is
still being withdrawn from the left drain. At time t = 122 the upper fluid begins to be
withdrawn from the left drain. From this time onwards there is a continual outflow of
the upper fluid across the entire right drain and the right two thirds of the left drain. The
density contour plots combined with the approximate viscous interface are shown in
Figures 14(a) and (b), respectively. For α = 4, the respective approximate withdrawal
times out through the right and left drain holes are t = 62 and t = 96, and are used to
calculate the total outflow flux in Table 1.

Figures 12 and 14 were produced using M = N = 31 Fourier coefficients and were
compared to the same plots when M = N = 25 Fourier coefficients are used. Varying
the number of Fourier coefficients does not influence the withdrawal times and thus
the results are unchanged, but it does reduce the wave peaks on the density contours
marginally, in the same way as was shown when comparing Figures 4(a) and (b). In
the interest of brevity, the plots using a truncation with M = N = 25 are not shown
here, but this comparison confirms the convergence of the numerical results.

Table 1 gives a summary of the total outflow flux for all tank configurations with
F = 0.03 for α = 3 and 4. The total outflow flux was computed using equations (5.1)
and (5.2). In the tank configurations discussed above with α = 3 and α = 4, the
outflow flux and thus the withdrawal volume are greatest when the drain holes are
symmetrically placed along the line of withdrawal, followed by the asymmetric case 1.
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F 14. Case 2: approximate viscous interface ρ = 0.985 (thick line) and density contours for a tank
with α = 3, β = 20, λ = 0.75, F = 0.03 and D = 0.97. Results are shown at (a) t = 78 and (b) t = 122.

6. Conclusions and discussion

This paper has focused on withdrawing fluid from a rectangular tank containing
a two-layered viscous fluid. The tanks themselves were designed with single and
multiple drain holes, not necessarily symmetrically placed. The aim was to achieve
maximum withdrawal volume of the denser fluid before the viscous interface reaches
the sink or sinks. It was observed that the linearized inviscid interface lay directly in
the centre of the nonlinear viscous interfacial region at early times in the withdrawal
process, and it was therefore concluded that the approximate viscous interface could be
taken to be the density contour ρ = 0.985. In this paper, we have taken the withdrawal
time to be when the contour ρ = 0.985 first makes contact with the drain. However,
there is some arbitrariness in this definition, which could lead to different times of
withdrawal. This was also encountered by Stokes et al. [11] (see in particular their
Figure 5).

It was found that, as the outflow rate and drain width increased, the time at which
the less dense fluid started to be withdrawn from the tank decreased. This withdrawal
time increased as the density ratio between the two fluids was decreased. For tanks
with two symmetrically located drain holes, the depressions in the density contours
were much less pronounced than for a single drain hole located symmetrically and for
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multiple drain holes located asymmetrically. Also, the time at which the less dense
fluid starts to withdraw from the multiple symmetrically located drain hole tank far
exceeds the times for the other tank configurations and thus the volume of lower fluid
being withdrawn is maximized. This implies that the outflow of heavier fluid is much
smoother and more efficient for a tank with two symmetrically located drain holes
compared with other tank configurations. Therefore, in situations where the heavier
fluid is being selectively withdrawn, it is best to have multiple drain holes that are
evenly spaced along the line of withdrawal. This is because wave formation at the
interface is suppressed, so delaying the time at which the interface reaches the drain
holes.

Like in the work of Forbes and Hocking [4], the linearized interface between the two
fluids coincides with the nonlinear interfacial region for early times in the withdrawal
process, until nonlinear and viscous effects take over. Nevertheless, the curvature
singularities encountered by Forbes and Hocking [4] for wide drains were not seen
here, and this may be a consequence of the viscous effects, and the vorticity they
create.

It was anticipated that the interface between the fluids might roll up on itself and
create a reverse mushroom type formation as found by Forbes [3]. However, this
formation did not eventuate in the cases considered in this study. It is, however,
still possible that such effects may be produced at different parameter values or sink
geometries, but this awaits further work.
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