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Abstract

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known
to work well in rare event settings, where Sn is the sum of independent, identically
distributed heavy-tailed random variables X1, . . . , Xn and N is a nonnegative, integer-
valued random variable independent of the Xi . In this paper we show how to improve
the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We
also apply our ideas to estimate the quantity E[(SN − u)+].
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1. Introduction

We consider the well-known problem of finding efficient Monte Carlo estimations of
P(Sn > u) and P(SN > u), where Sn = X1 + · · · + Xn, the Xi are nonnegative, independent,
identically distributed heavy-tailed random variables, and N is a nonnegative, integer-valued
random variable that is independent of the Xi . The estimation of these probabilities has
applications in insurance risk, financial mathematics, and queueing theory, and their efficient
Monte Carlo estimation has been the subject of extensive research in the last decade (see [1],
[4], and the references therein).

In this paper we are interested in improving the Asmussen–Kroese estimators of P(Sn > u)

and P(SN > u) introduced in [1]. Let F denote the common distribution of Xi , and let
Mn = max(X1, . . . , Xn). The Asmussen–Kroese estimators of P(Sn > u) and P(SN > u) are
respectively given by

Z1 ≡ n P(Sn > u, Xn = Mn | X1, . . . , Xn−1) = nF̄ (Mn−1 ∨ (u − Sn−1))

and

Z2 ≡ N P(SN > u, Xn = Mn | N, X1, . . . , XN−1) = NF̄ (MN−1 ∨ (u − SN−1)),

where a ∨ b = max(a, b) and F̄ (x) = 1 − F(x). These estimators appear to perform very
well for subexponential distributions in the rare event setting (see [2] for different classes of
heavy-tailed distributions, including subexponential distributions).
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When estimating P(SN > u), Asmussen and Kroese [1] suggested further variance reduction
by either stratifying over values of N or by using N as a control variate, and they concluded
that both variance reduction methods perform roughly the same.

Whereas the Asmussen–Kroese estimators do not require that the Xi be nonnegative, we
will make that assumption in this paper. In Section 2.1 we show how to use the nonnegativity
to improve their estimator of P(Sn > u). The improved estimator has a smaller variance and
requires less data simulation. In Section 2.2 we present an improved estimator of P(SN > u).
Whereas the numerical work we have carried out indicated only a small improvement in variance
when using the proposed estimator of P(Sn > u) as opposed to Z1, the improvement was
much greater when using our proposed estimator of P(SN > u) versus Z2. One part of the
reason for the greater improvement in this latter case is that the Asmussen–Kroese estimator of
P(Sn > u) can be a poor estimator when n is large. To understand why, note that the minimum
of max(Mn−1, u − Sn−1) occurs when X1 = X2 = · · · = Xn−1 = u/n. Consequently,

max
X1,...,Xn−1

Z1 = nF̄

(
u

n

)
.

Thus, for large n, the estimator can be large, and need not even be preferable to the raw
simulation estimator 1{Sn>u}. (The above also gives some intuition about why the Asmussen–
Kroese estimator can be so good, namely the right-hand side of the above equation is often
small, and so its variance is too.)

Hartinger and Kortschak [4] used the ideas underlying the Asmussen–Kroese estimators to
estimate the stop-loss transform identities, E[((SN − u)+)k], k = 1, 2 (stop-loss transforms
have applications in the pricing of stop-loss reinsurance contracts and the valuation of
catastrophe risk bonds). In Section 2.3 we give an improved estimator of E[(SN − u)+].

2. Efficient estimators of P(Sn > u) and P(SN > u)

2.1. An improved variation of the Asmussen–Kroese estimator

Our improved variation of the Asmussen–Kroese estimator of P(Sn > u) is derived by
further conditioning on the first time that the current maximum plus the current sum exceed u.
More specifically, let

R = min(n − 1, min(j ≥ 1 : Mj + Sj > u)).

Conditioning on R, X1, . . . , XR gives the estimator

E = n P(Sn > u, Xn = Mn | R, X1, . . . , XR) =
⎧⎨
⎩

n

n − R
(1 − Fn−R(MR)) if R < n − 1,

nF̄ (Mn−1 ∨ (u − Sn−1)) if R = n − 1.

To derive the last equality above when R < n − 1, note that, for the event {Sn > u, Xn = Mn}
to occur conditional on R, X1, . . . , XR , the maximum of XR+1, . . . , Xn should be larger than
MR and Xn must be the maximum of XR+1, . . . , Xn. Because E = E[Z1 | R, X1, . . . , XR],
it has a smaller variance than Z1 as well as requires less data simulation.

2.1.1. Numerical examples. In Table 1 we present numerical results for the (standard) Weibull
distribution with F̄ (x) = e−xβ

based on 105 simulation runs (performed in MATLAB®). In the
last column of Table 1 we record the estimates of P(Sn > u). The values β = 0.25, 0.5, 0.75
have also been considered in the numerical examples of [1]. Values of u have been chosen so
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Table 1: Numerical results for the Weibull distribution with F̄ (x) = e−xβ
.

β n u var(Z1) var(E) P(Sn > u)

0.50 10 32.609 0.0121 0.0119 0.1466
0.50 10 72.583 1.26 × 10−4 1.24 × 10−4 86 × 10−4

0.75 20 28.104 0.0803 0.0790 0.2490
0.75 20 43.85 0.0013 0.0012 0.0108
0.25 5 234.210 8.44 × 10−4 8.34 × 10−4 0.1099
0.25 10 7.1962 × 103 5.7 × 10−8 5.6 × 10−8 0.0011

that the order of P(Sn > u) varies from 10−1 to 10−4. As can be seen from the results, the
variance improvement in this case is very marginal.

Remark. Asmussen and Kroese [1, Theorem 3.1] showed that, for the Weibull case, their
estimator, Z1, is polynomial time for β < 0.585. That is, as a function of u, var(Z1)/ E[Z1]2−ε

is bounded in u for any ε > 0 when β < 0.585. Also, their numerical results, both for Z1 and
Z2, showed performance degradation for β outside of this critical range.

2.2. Efficient estimator of P(SN > u)

As mentioned in Section 1, Asmussen and Kroese [1] separately combined their estimator
Z2 of P(SN > u) with stratification and with using N as a control, and concluded that the
empirical performance of both methods is similar. However, it is not difficult to see that the
two variance reduction techniques can be combined. Using the independence of N and the Xi ,
the stratification identity can be written as

P(SN > u) =
l∑

n=1

P(Sn > u)Pn + P(SN > u | N > l)P̃l,

where Pn = P(N = n) and l is chosen so that P̃l = P(N > l) is small. Given that the Pn and P̃l

are analytically computable, recall that standard stratification returns an estimate of P(SN > u)

by estimating the preceding conditional probabilities. The Monte Carlo estimate of the con-
ditional probability above associated with the last truncated stratum, P(SN > u | N > l),
will be based on the sampled value of N given that it exceeds l. We suggest that the Monte
Carlo estimate of P(SN > u | N > l) be improved by using N , conditional on it exceeding l,
as a control variate. So, stratification and the control variate method can be combined and need
not be considered separately. Moreover, instead of standard stratification we suggest using
‘single simulation run stratification’ which returns an estimate of P(SN > u) after each run.
More specifically, at the beginning of a given run, we generate N , given that it exceeds l.
Then, we estimate all the conditional probabilities based on the Monte Carlo realizations
of Xi, i = 1, . . . , l, nl , where nl denotes a sampled value of N , given that it exceeds l.
(Although, in contrast to standard stratification, our Monte Carlo estimates of the quantities
P(Sn > u), n ≥ 1, obtained in a run are positively correlated, we feel that the savings in
time in using the same data to estimate them more than compensates.) The final improvement
we present is based on our earlier observation that the variance of Z1 becomes large for large
values of n. Thus, we suggest deviating from the Asmussen–Kroese estimator and instead
estimating P(Sn > u) by the estimator P(Sn > u | X1, . . . , Xn−1) = F̄ (u−Sn−1) whenever n
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Table 2: Numerical results for Weibull random variables with tail F̄ (x) = e−xβ
and geometric N with

parameter p.

β p u var(Z2) var(Zc
2) var(Ẽ) P(SN > u)

0.50 0.25 32.533 0.0083 0.0046 2.17 × 10−4 0.0316
0.50 0.10 130.1325 0.0017 0.0014 1.3 × 10−5 0.0039
0.75 0.50 3.04 0.0646 0.0216 0.0014 0.1353
0.75 0.15 63.361 4.626 × 10−4 3.564 × 10−4 4.3 × 10−7 5.234 × 10−4

0.25 0.10 409.99 0.0397 0.0144 0.00145 0.1337
0.25 0.30 10233 1.68 × 10−8 1.07 × 10−8 9.5 × 10−11 1.027 × 10−4

is such that nF̄ (u/n) > 1. Hence, with ñ = min(n : nF̄ (u/n) > 1), we propose the following
estimator of P(SN > u):

Ẽ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ñ−1∑
n=1

EnPn +
l∑

n=ñ

F̄ (u − Sn−1)Pn

+(F̄ (u − Snl−1) + c1(Nl − E[Nl]))P̃l if ñ ≤ l,

l∑
n=1

EnPn + (F̄ (u − Snl−1) + c1(Nl − E[Nl]))P̃l if l < ñ ≤ nl,

l∑
n=1

EnPn + (Enl
+ c2(Nl − E[Nl]))P̃l if nl < ñ.

Here En refers to our improved variation of the Asmussen–Kroese estimator when N = n,
and ck, k = 1, 2, are coefficients of the control variate which can be specified optimally and
estimated based on the simulation (see [3] or [5]).

2.2.1. Numerical examples. In Table 2 we compare the empirical performance of our proposed
estimator of P(SN > u), Ẽ , with that of the Asmussen–Kroese estimator,

Z2 = NF̄ (MN−1 ∨ (u − SN−1)),

and the control variate method,

Zc
2 = NF̄ (MN−1 ∨ (u − SN−1)) + c(N − E[N ]),

where c is the simulation-based estimate of the optimal coefficient of the control variable. In the
numerical examples below the Xi are (standard) Weibull random variables with tail distribution
F̄ (x) = e−xβ

, and, similar to the numerical studies of [1], N is a geometric random variable
with ‘success probability’p. In the last column of Table 2 we record the estimates of P(SN > u)

based on Ẽ and 105 simulation runs.
For this numerical example, the computing time of our proposed estimator, Ẽ , is on average 4

to 4.5 times the computing time of the estimator Zc
2, which is the Asmussen–Kroese estimator

combined with a control variate. However, the results of Table 2 indicate that substantial
variance reduction is gained using our estimator.

Remark. Most of the variance reduction gained in the above situation is due to the single-
run stratification with control idea, with a much smaller amount due to the changed estimator
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when n > ñ. (This is not too surprising because the improved estimators occurred when n was
large and so these estimators were given the small weight P(N = n).) For instance, if we had
not changed the estimator then the variances of our estimator in the first five of the six cases
considered would be 2.37 × 10−4, 1.39 × 10−5, 0.0017, 4.6 × 10−7, and 0.0017.

2.3. Efficient estimator of E[(SN − u)+]
Hartinger and Kortschak [4] gave an Asmussen–Kroese-type estimator of θ = E[(Sn−u)+].

Using the fact that θ = n E[(Sn − u)+ 1{Xn=Mn}], they proposed estimating θ by

n E[(Sn − u)+ 1{Xn=Mn} | Xn−1] = n(E[Xn | Xn > a] + (Sn−1 − u))F̄ (a),

where Xn−1 ≡ (X1, . . . , Xn−1) and a = max(Mn−1, u − Sn−1).
To obtain an improved estimator, as before, let R = min(n−1, min(j ≥ 1 : Mj +Sj > u)).

With R∗ = {R, X1, . . . , XR}, the improved estimator is n E[(Sn −u)+ 1{Xn=Mn} | R∗]. When
R = n − 1, the two estimators are equal. Now consider simulation runs with R < n − 1. Let
A ≡ {at least one of XR+1, . . . , Xn exceeds MR} and M ≡ max(XR+1, . . . , Xn). With the
notation ER∗ and PR∗ for the conditional expectation and conditional probability given R∗, we
have

ER∗ [(Sn − u)+ 1{Xn=Mn}] = ER∗
[( n∑

i=R+1

Xi + SR − u

)+
1{Xn=Mn}

∣∣∣∣ A

]
PR∗(A)

=
(

ER∗
[ n∑

i=R+1

Xi 1{Xn=M}
∣∣∣∣ A

]
+ SR − u

n − R

)
PR∗(A)

= 1

n − R

(
ER∗

[ n∑
i=R+1

Xi

∣∣∣∣ A

]
+ SR − u

)
PR∗(A), (1)

where PR∗(A) = 1 − Fn−R(MR). To calculate ER∗ [∑n
i=R+1 Xi | A] PR∗(A), let Ac denote

the complement of the event A, and use the fact that

ER∗
[ n∑

i=R+1

Xi

]
= ER∗

[ n∑
i=R+1

Xi

∣∣∣∣ A

]
PR∗(A) + ER∗

[ n∑
i=R+1

Xi

∣∣∣∣ Ac
]

PR∗(Ac),

which yields

ER∗
[ n∑

i=R+1

Xi

∣∣∣∣ A

]
PR∗(A) = ER∗

[ n∑
i=R+1

Xi

]
− ER∗

[ n∑
i=R+1

Xi

∣∣∣∣ Ac
]

PR∗(Ac)

= (n − R)(E[X] − E[X | X < MR] PR∗(Ac)). (2)

Using (2) in (1), our proposed estimator of θ becomes

θ̂ =
⎧⎨
⎩

n(E[X] − Fn−R(MR) E[X | X < MR] + SR − u

n − R
(1 − Fn−R(MR)) if R < n − 1,

n(E[Xn | Xn > a] + (Sn−1 − u))F̄ (a) if R = n − 1,

where a = max(Mn−1, u − Sn−1).
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To estimate E[(SN − u)+], we suggest using the stratification identity

E[(SN − u)+] =
l∑

n=1

E[(SN − u)+ | N = n]Pn + E[(SN − u)+ | N > l]P̃l

and a single-run stratification estimator with a control variate as in Section 2.2. Our approach
could also be used to estimate E[((SN − u)+)2], the second stop-loss transform identity
considered in [4].
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