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Abstract

Let 0 < α < n, 1 ≤ p < q < ∞ with 1/p − 1/q = α/n, ω ∈ Ap,q, ν ∈ A∞ and let f be a locally integrable
function. In this paper, it is proved that f is in bounded mean oscillation BMO space if and only if

sup
B

|B|α/n

ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
<∞,

where ωp(B) =
∫

B ω(x)p dx and fν,B = (1/ν(B))
∫

B f (y)ν(y) dy. We also show that f belongs to Lipschitz
space Lipα if and only if

sup
B

1
ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
<∞.

As applications, we characterize these spaces by the boundedness of commutators of some operators on
weighted Lebesgue spaces.
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1. Introduction

The space of functions with bounded mean oscillation BMO was introduced by John
and Nirenberg in [11] and plays a crucial role in harmonic analysis and partial
differential equations; see for example, [7, 15]. Recall that the space BMO consists
of all measurable functions f satisfying

‖ f ‖BMO := sup
B

1
|B|

∫
B
| f (x) − fB| dx <∞,

where fB = (1/|B|)
∫

B f (x) dx and the supremum is taken over all balls B. Some
characterizations of BMO are given as follows.
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A well-known immediate consequence of the John–Nirenberg inequality is the
following result.

‖ f ‖BMO ≈ sup
B

( 1
|B|

∫
B
| f (x) − fB|

p dx
)1/p

,

for all 1 < p < ∞. Moreover, it can be proved that the above equivalence also holds
for 0 < p < 1 even though the right-hand side is not a norm in such a case (see [15]).

Another deep connection was made between Muckenhoupt weights and BMO in the
work of Muckenhoupt and Wheeden [13]. They proved that a function f is in BMO
if and only if f it is of BMO with respect to ω for all ω ∈ A∞. That is, if, for each
ω ∈ A∞, we define BMOω to be the collection of all ω-locally integrable functions f
such that

‖ f ‖BMOω
= sup

B

1
ω(B)

∫
B
| f (x) − fω,B|ω(x) dx <∞,

then BMO = BMOω and
‖ f ‖BMO ≈ ‖ f ‖BMOω

.

Here ω(B) =
∫

B ω(x) dx and

fω,B =
1

ω(B)

∫
B

f (x)ω(x) dx.

It was recently obtained by Hart and Torres [8] that, for 0 < p <∞ and ω, ν ∈ A∞,

‖ f ‖BMO ≈ sup
B

( 1
ω(B)

∫
B
| f (x) − fν,B|pω(x) dx

)1/p
.

For ν ≡ 1 and 1 ≤ p < ∞, the result above was obtained by Ho [9]. The aim of this
paper is to show that BMO space can be characterized by Ap,q weights. To state our
results, we first recall the definitions of Ap and Ap,q weights.

For 1 < p <∞ and a nonnegative locally integrable function ω, we say that ω is in
the Muckenhoupt Ap class [12] if it satisfies the condition

[ω]Ap := sup
B

( 1
|B|

∫
B
ω(x) dx

)( 1
|B|

∫
B
ω(x)−(1/p−1) dx

)p−1
<∞.

A weight function ω belongs to the class A1 if

[ω]A1 :=
1
|B|

∫
B
ω(x) dx

(
ess sup

x∈B
ω(x)−1

)
<∞.

We write A∞ =
⋃

1≤p<∞ Ap.
Next, we recall the definition of Ap,q weight introduced by Muckenhoupt and

Wheeden [14]. For 1 < p, q < ∞ and a nonnegative locally integrable function ω,
we say that ω is in the Muckenhoupt Ap,q class if it satisfies the condition

sup
B

( 1
|B|

∫
B
ω(x)q dx

)1/q( 1
|B|

∫
B
ω(x)−p′ dx

)1/p′

<∞.
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A weight function ω belongs to the class A1,q if there exists C > 0 such that, for every
ball B, ( 1

|B|

∫
B
ω(x)q dx

)1/q
≤ C ess inf

x∈B
ω(x).

Now we return to our first subject.

Theorem 1.1. Let 0 < α < n, 1 ≤ p < q < ∞ with 1/q = 1/p − α/n, ω ∈ Ap,q and
ν ∈ A∞. The following statements are equivalent.

(a1) f ∈ BMO.
(a2) There exists a constant C > 0 such that

‖ f ‖BMO∗ := sup
B

|B|α/n

ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
≤ C,

where ωp(B) =
∫

B ω(x)p dx.

Moreover, the norm ‖ · ‖BMO∗ is mutually equivalent to ‖ · ‖BMO.

Another subject of this paper is to consider the characterizations of Lipschitz
functions. For 0 < β < 1, the Lipschitz space Lipβ is the set of functions f such that

‖ f ‖Lipβ := sup
x,y

| f (x) − f (y)|
|x − y|β

<∞.

It is well known that

‖ f ‖Lipβ ≈ sup
B

1
|B|β/n

( 1
|B|

∫
B
| f (x) − fB|

q dx
)1/q

.

The equivalence can be found in [5, pages 14 and 38] for q = 1 and in [10] for
1 < q <∞. Recently, we showed that the result holds for 0 < q < 1 in [16].

In this paper, we characterize Lipschitz spaces by Ap,q weights as follows.

Theorem 1.2. Let 0 < β < 1, 1 ≤ p < q <∞ with 1/q = 1/p − β/n, ω ∈ Ap,q and ν ∈ A∞.
The following statements are equivalent.

(b1) f ∈ Lipβ.
(b2) There exists a constant C > 0 such that

‖ f ‖Lip∗β := sup
B

1
ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
≤ C.

Moreover, the norm ‖ · ‖Lip∗β is mutually equivalent to ‖ · ‖Lipβ .

Theorem 1.3. Let 0 < β < 1, 0 < α < n, 1 ≤ p < q < ∞ with 1/q = 1/p − (α + β)/n,
ω ∈ Ap,q and ν ∈ A∞. The following statements are equivalent.
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(c1) f ∈ Lipβ.
(c2) There exists a constant C > 0 such that

‖ f ‖Lip∗∗β := sup
B

|B|α/n

ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
≤ C.

Moreover, the norm ‖ · ‖Lip∗∗β is mutually equivalent to ‖ · ‖Lipβ .

There are a number of classical results that demonstrate that BMO functions
are the right collections for carrying out harmonic analysis on the boundedness of
commutators. A well-known result of Coifman et al. [3] states that the commutator

[b,T ]( f )(x) = b(x)T ( f )(x) − T (b f )(x)

is bounded on some Lp, 1 < p < ∞, if and only if b ∈ BMO, where T is the classical
Calderón–Zygmund operator. Chanillo [2] proved that, if b ∈ BMO, the commutator

[b, Iα]( f )(x) = b(x)Iα( f )(x) − Iα(b f )(x)

is bounded from Lp to Lq with 1 < p < n/α and 1/q = 1/p − α/n, where

Iα( f )(x) =

∫
f (y)

|x − y|n−α
dy.

Moreover, if n − α is even, the reverse is also valid. Ding [6] showed that b is in BMO
if and only if the commutator [b, T ] of the Calderón–Zygmund operator T is bounded
on Morrey spaces. During the last thirty years, the theory has been extended
and generalized in several directions. For instance, Bloom [1] investigated the
characterization of BMO spaces in the weighted setting.

As an application of Theorems 1.1, 1.2 and 1.3 in this paper, we will study the
characterization of BMO and Lipschitz spaces in terms of the boundedness of the
commutator of some operator on weighted Lebesgue spaces.

Theorem 1.4. Let 0 < α < n, 1 < p < q < ∞ with 1/q = 1/p − α/n and ω ∈ Ap,q. The
following statements are equivalent.

(d1) b ∈ BMO.
(d2) There exists a constant C such that

‖[b, Iα]( f )‖Lq(ωq) ≤ C‖ f ‖Lp(ωp).

Theorem 1.5. Let 0 < β < 1, 1 < p < q < ∞ with 1/q = 1/p − β/n and ω ∈ Ap,q. The
following statements are equivalent.

(e1) b ∈ Lipβ.
(e2) There exists a constant C such that

‖[b,T ]( f )‖Lq(ωq) ≤ C‖ f ‖Lp(ωp).

Theorem 1.6. Let 0 < β < 1, 0 < α < n, 1 < p < q <∞ with 1/q = 1/p − (α + β)/n and
ω ∈ Ap,q. The following statements are equivalent.
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(f1) b ∈ Lipβ.
(f2) There exists a constant C such that

‖[b, Iα]( f )‖Lq(ωq) ≤ C‖ f ‖Lp(ωp).

Throughout this paper, all cubes are assumed to have their sides parallel to the
coordinate axes. Given a Lebesgue measurable set E, χE will denote the characteristic
function of E and |E| is the Lebesgue measure of E. The letter C will be used for
various constants, and may change from one occurrence to another.

2. Proof of Theorems 1.1, 1.2 and 1.3

Proof of Theorem 1.1. (a1)⇒ (a2). In [13], Muckenhoupt and Wheeden proved the
John–Nirenberg inequality for BMOν. That is, there are two constants C1,C2 > 0 such
that, for any λ > 0,

ν({x ∈ B : | f (x) − fν,B| > λ}) ≤ C1 exp
(
−

C2λ

‖ f ‖BMOν

)
ν(B).

Since ω ∈ Ap,q, we have µ := ωq ∈ Aq ⊂ A∞. Then, for any ball B and any measurable
set E contained in B, there are positive constants C0 and ε such that

µ(E)
µ(B)

≤ C0

(
|E|
|B|

)ε
.

Since ν ∈ A∞, there exists a constant N such that ν ∈ AN . Then(
|E|
|B|

)N
≤ C

ν(E)
ν(B)

.

This implies that
µ(E)
µ(B)

≤ C0

(
ν(E)
ν(B)

)ε/N
and

µ({x ∈ B : | f (x) − fν,B| > λ}) ≤ C exp
(
−

C2ε/N · λ
‖ f ‖BMOν

)
µ(B).

For any ball B,

‖( f − fν,B)χB‖
q
Lq(µ) = q

∫ ∞

0
λq−1µ({x ∈ B : | f (x) − fν,B| > λ}) dλ

≤ C
∫ ∞

0
λq−1 exp

(
−

C2ε/N · λ
‖ f ‖BMOν

)
µ(B) dλ

≤ C‖ f ‖BMOν
µ(B).

By the Hölder inequality,

|Q| ≤
( ∫

Q
ω(x)p dx

)1/p( ∫
Q
ω(x)−p′ dx

)1/p′

.
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Then it follows from ω ∈ Ap,q that

µ(B)1/q|B|α/n

ωp(B)1/p ≤ |B|1/p−1/q−1
( ∫

B
ω(x)q dx

)1/q( ∫
B
ω(x)−p′ dx

)1/p′

≤

( 1
|B|

∫
B
ω(x)q dx

)1/q( 1
|B|

∫
B
ω(x)−p′ dx

)1/p′

≤ C,

and thus f ∈ BMOν implies that

|B|α/n

ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
≤ C‖ f ‖BMOν

.

That (a1)⇒ (a2) follows from the equivalence of BMO and BMOν.
(a2)⇒ (a1). Now we prove that if there exists a constant C such that, for any ball B,

1
ωp(B)1/p

( ∫
B
| f (x) − fν,B|qω(x)q dx

)1/q
≤ C|B|−α/n,

then f ∈ BMO.
When p > 1, the Hölder inequality gives us that∫

B
| f (x) − fν,B| dx

≤

( ∫
B
| f (x) − fν,B|pω(x)p dx

)1/p( ∫
B
ω(x)−p′ dx

)1/p′

≤ C|B|α/n
( ∫

B
| f (x) − fν,B|qω(x)q dx

)1/q( ∫
B
ω(x)−p′ dx

)1/p′

≤ C‖ f ‖BMO∗

( ∫
B
ω(x)−p′ dx

)1/p′( ∫
B
ω(x)p dx

)1/p

≤ C‖ f ‖BMO∗ |B|
( 1
|B|

∫
B
ω(x)−p′ dx

)1/p′( 1
|B|

∫
B
ω(x)q dx

)1/q

≤ C‖ f ‖BMO∗ |B|.

When p = 1,∫
B
| f (x) − fν,B| dx ≤

∫
B
| f (x) − fν,B|ω(x) dx ·

∥∥∥∥∥ 1
ω
χB

∥∥∥∥∥
L∞

≤ C
( ∫

B
| f (x) − fν,B|qω(x)q dx

)1/q
·

∥∥∥∥∥ 1
ω
χB

∥∥∥∥∥
L∞
|B|α/n

≤ C‖ f ‖BMO∗ |B|.

We can conclude that f ∈ BMO from the result of Hart and Torres [8, Theorem 5.2]
with υ ≡ 1: that is, f ∈ BMO if and only if

sup
B

( 1
υ(B)

∫
B
| f (x) − fν,B|pυ(x) dx

)1/p
<∞

for υ, ν ∈ A∞ and 0 < p <∞. �
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Proof of Theorem 1.2. (b2)⇒ (b1). Let x, y be two fixed points. Take B = B(x, r)
with r ≤ |x − y| and U = B(x, 2|x − y|), and define Bk = B(x, 2kr) for 0 ≤ k ≤ k̃, where
k̃ is the first integer such that 2k̃r ≥ |x − y|.

Notice that, for any balls, R1 = B(x1, r1),R2 = B(x2, r2) with R1 ⊂ R2 and r2 ≤ 2r1.
When p > 1, then ω ∈ Ap,q and the Hölder inequality shows that

| fR1 − fν,R2 |

≤
1
|R1|

∫
R1

| f (z) − fν,R2 | dz

≤
C
|R2|

( ∫
R2

| f (z) − fν,R2 |
pω(z)p dz

)1/p( ∫
R2

ω(z)−p′ dz
)1/p′

≤
C

|R2|
1−β/n

( ∫
R2

| f (z) − fν,R2 |
qω(z)q dz

)1/q( ∫
R2

ω(z)−p′ dz
)1/p′

≤
C‖ f ‖Lip∗β

|R2|
1−β/n

( ∫
R2

ω(x)p dx
)1/p( ∫

R2

ω(z)−p′ dz
)1/p′

≤ C‖ f ‖Lip∗βr
β
1 .

When p = 1,

| fR1 − fν,R2 | ≤
1
|R1|

∫
R1

| f (z) − fν,R2 | dz

≤
C
|R2|

∫
R2

| f (z) − fν,R2 |ω(z) dz ·
∥∥∥∥∥ 1
ω
χR2

∥∥∥∥∥
L∞

≤
C

|R2|
1−β/n

( ∫
R2

| f (z) − fν,R2 |
qω(z)q dz

)1/q
·

∥∥∥∥∥ 1
ω
χR2

∥∥∥∥∥
L∞

≤
C‖ f ‖Lip∗β

|R2|
1−β/n

∫
R2

ω(x) dx ·
∥∥∥∥∥ 1
ω
χR2

∥∥∥∥∥
L∞

≤ C‖ f ‖Lip∗β |R2|
β/n

( 1
|R2|

∫
R2

ω(x)q dx
)1/q
·

∥∥∥∥∥ 1
ω
χR2

∥∥∥∥∥
L∞

≤ C‖ f ‖Lip∗βr
β
1 .

By the same argument as for | fR1 − fν,R2 |, we also have

| fR2 − fν,R2 | ≤ C‖ f ‖Lip∗βr
β
1 ,

which implies that

| fR1 − fR2 | ≤ | fR1 − fν,R2 | + | fν,R2 − fR2 | ≤ C‖ f ‖Lip∗βr
β
1 .
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This shows that

| fB − fU | ≤
k̃−1∑
k=0

| fBk − fBk+1 | + | fBk̃
− fU |

≤ C‖ f ‖Lip∗β

k̃−1∑
k=0

(2kr)β/n ≤ C‖ f ‖Lip∗β |x − y|β.

A similar argument can be made for the point y with B′ = B(x, r′) and
V = B(y, 3|x − y|). We conclude that

| fB − fB′ | ≤ | fB − fU | + | fU − fV | + | fV − fB′ | ≤ C‖ f ‖Lip∗β |x − y|β.

Consider x, y as in the Lebesgue difference theorem: that is,

lim
r j→0

1
|B(x, r j)|

∫
B(x,r j)

f (z) dz = f (x).

Let B j = B(x, r j),B′j = B(y, r′j) with j ≥ 1 be two sequence balls with r j, r′j→ 0( j→∞).
We obtain

| f (x) − f (y)| ≤ lim
j→∞
| fB j − fB′j | ≤ C‖ f ‖Lip∗β |x − y|β.

(b1)⇒ (b2). For any ball B = B(x0, r),
1

ωp(B)1/p

( ∫
B
| f (z) − fν,B|qω(z)q dz

)1/q

≤
1

ωp(B)1/p

( ∫
B

( 1
ν(B)

∫
B
| f (z) − f (z′)|ν(z′) dz′

)q
ω(z)q dz

)1/q

≤ C‖ f ‖Lipβ |B|
β/n−1ωq(B)1/qω−p′(B)1/p′

≤ C‖ f ‖Lipβ .

Which implies that
1

ωp(B)1/p

( ∫
B
| f (z) − fν,B|qω(z)q dz

)1/q
≤ C‖ f ‖Lipβ .

We complete the proof of Theorem 1.2. �

Proof of Theorem 1.3. (c2)⇒ (c1). We modify the proof of Theorem 1.2. We need
only to check the estimates

| fR1 − fν,R2 |

≤
1
|R1|

∫
R1

| f (z) − fν,R2 | dz

≤
C

|R2|
1−(α+β)/n

( ∫
R2

| f (z) − fν,R2 |
qω(z)q dz

)1/q( ∫
R2

ω(z)−p′ dz
)1/p′

≤
C‖ f ‖Lip∗∗β

|R2|
1−β/n

( ∫
R2

ω(x)p dx
)1/p( ∫

R2

ω(z)−p′ dz
)1/p′

≤ C‖ f ‖Lip∗∗β rβ1
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and

| fR1 − fν,R2 |

≤
C

|R2|
1−(α+β)/n

( ∫
R2

| f (z) − fν,R2 |
qω(z)q dz

)1/q
·

∥∥∥∥∥ 1
ω
χR2

∥∥∥∥∥
L∞

≤
C‖ f ‖Lip∗∗β

|R2|
1−β/n

∫
R2

ω(x) dx ·
∥∥∥∥∥ 1
ω
χR2

∥∥∥∥∥
L∞

≤ C‖ f ‖Lip∗∗β rβ1 .

(c1)⇒ (c2). For any ball B = B(x0, r),

1
ωp(B)1/p

( ∫
B
| f (z) − fν,B|qω(z)q dz

)1/q

≤
1

ωp(B)1/p

( ∫
B

( 1
ν(B)

∫
B
| f (z) − f (z′)|ν(z′) dz′

)q
ω(z)q dz

)1/q

≤ C‖ f ‖Lipβ
|B|β/nωq(B)1/q

ωp(B)1/p

≤ C‖ f ‖Lipβ |B|
−α/n.

This implies that

|B|α/n

ωp(B)1/p

( ∫
B
| f (z) − fν,B|qω(z)q dz

)1/q
≤ C‖ f ‖Lipβ .

The proof of Theorem 1.3 is complete. �

3. Proof of Theorems 1.4, 1.5 and 1.6

Proof of Theorem 1.4. (d2)⇒ (d1). For any point z0 , 0, let δ = (|z0|/2
√

n) and
Q0(z0, δ) denote the open cube centered at z0 with side length 2δ. Then, for x ∈
Q0(z0, δ), |x|n−α has an absolutely convergent Fourier series

|x|n−α =
∑

ameivm·x

with
∑
|am| < ∞, where the exact form of the vectors vm is unrelated. Taking z1 =

(z0/δ), we have the expansion

|x|n−α = δ−n+α|δx|n−α = δ−n+α
∑

ameivm·δx for |x − z1| <
√

n.

Given cubes Q = Q(x0, r) and Q′ = Q(x0 − rz1, r), if x ∈ Q and y ∈ Q′, then∣∣∣∣∣ x − y
r
−

z0

δ

∣∣∣∣∣ ≤ ∣∣∣∣∣ x − x0

r

∣∣∣∣∣ +

∣∣∣∣∣y − (x0 − (rz0/δ))
r

∣∣∣∣∣ < √n.
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This gives

b(x) − bQ′ =
1
|Q′|

∫
Q′

(b(x) − b(y)) dy

=
1
|Q′|

∫
Q′

rn−α(b(x) − b(y))
|x − y|n−α

∣∣∣∣∣ x − y
r

∣∣∣∣∣n−α dy

= |Q|−α/n
∫

Q′

(b(x) − b(y))
|x − y|n−α

∑
ameivm·δ(x−y/r) dy

= |Q|−α/n
∫

Q′

(b(x) − b(y))
|x − y|n−α

∑
ameivm·δ(x/r)e−ivm·δ(y/r) dy.

Set

fm(y) = e−ivm·(δ/r)yχQ′(y),
gm(x) = |Q|−α/neivm·(δ/r)xχQ(x).

Then, for any cube Q and x ∈ Q,

|(b(x) − bQ)χQ(x)| =
∣∣∣∣∣∑

m

am[b, Iα]( fm)(x)gm(x)
∣∣∣∣∣

≤ |Q|−α/n
∑

m

|am||[b, Iα]( fm)(x)|.

From the boundedness of [b, Iα] from Lp(ωp) to Lq(ωq) for ω ∈ Ap,q, it follows that

|Q|α/n

ωp(Q)1/p

( ∫
Q
|b(x) − bQ|

qω(x)q dx
)1/q
≤ C

∑
m

|am|
‖[b, Iα]( fm)‖Lq(ωq)

ωp(Q)1/p

≤ C
∑

m

|am|
ωp(Q′)1/p

ωp(Q)1/p .

By the definitions of Q and Q′, there exists a constant c0 = c0(|z0|, n) such that
Q′ ⊂ c0Q. Then (

µ(Q′)
µ(Q)

)1/p
≤ C

(
µ(Q′)
µ(c0Q)

)1/p
≤ C

(
|Q′|
|c0Q|

)ε/p
≤ C,

where µ := ωp ∈ A∞. For any Q,

|Q|α/n

ωp(Q)1/p

( ∫
Q
|b(x) − bQ|

qω(x)q dx
)1/q
≤ C.

We obtain that b ∈ BMO by Theorem 1.1.
The proof of (d1)⇒ (d2) follows from [4]. Theorem 1.4 is proved. �

The proofs of Theorems 1.5 and 1.6 use very similar arguments, and hence we omit
the details.
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