CHARACTERIZATIONS OF BMO AND LIPSCHITZ SPACES IN TERMS OF *^AP*,*^Q* WEIGHTS AND THEIR APPLICATIONS

DINGHUAI WANG[⊠], JIANG ZHOU and ZHIDONG TENG

(Received 7 March 2018; accepted 10 October 2018; first published online 30 January 2019)

Communicated by C. Meaney

Abstract

Let $0 < \alpha < n, 1 \le p < q < \infty$ with $1/p - 1/q = \alpha/n$, $\omega \in A_{p,q}$, $\nu \in A_{\infty}$ and let f be a locally integrable function. In this paper, it is proved that *f* is in bounded mean oscillation *BMO* space if and only if

$$
\sup_{B} \frac{|B|^{\alpha/n}}{\omega^p(B)^{1/p}} \bigg(\int_B |f(x) - f_{y,B}|^q \omega(x)^q dx \bigg)^{1/q} < \infty,
$$

where $\omega^p(B) = \int_B \omega(x)^p dx$ and $f_{v,B} = (1/v(B)) \int_B f(y)v(y) dy$. We also show that *f* belongs to Lipschitz space *Lin* if and only if space Lip_α if and only if

$$
\sup_{B} \frac{1}{\omega^p(B)^{1/p}} \Big(\int_B |f(x) - f_{\nu,B}|^q \omega(x)^q dx \Big)^{1/q} < \infty.
$$

As applications, we characterize these spaces by the boundedness of commutators of some operators on weighted Lebesgue spaces.

2010 *Mathematics subject classification*: primary 47B47; secondary 42B35. *Keywords and phrases*: *^A^p*,*^q* weights, BMO space, characterize, commutators, Lipschitz spaces.

1. Introduction

The space of functions with bounded mean oscillation *BMO* was introduced by John and Nirenberg in [\[11\]](#page-10-0) and plays a crucial role in harmonic analysis and partial differential equations; see for example, [\[7,](#page-10-1) [15\]](#page-10-2). Recall that the space *BMO* consists of all measurable functions *f* satisfying

$$
||f||_{BMO} := \sup_{B} \frac{1}{|B|} \int_{B} |f(x) - f_B| \, dx < \infty,
$$

where $f_B = (1/|B|) \int_B f(x) dx$ and the supremum is taken over all balls *B*. Some characterizations of *BMO* are given as follows characterizations of *BMO* are given as follows.

c 2019 Australian Mathematical Publishing Association Inc.

A well-known immediate consequence of the John–Nirenberg inequality is the following result.

$$
||f||_{BMO} \approx \sup_B \left(\frac{1}{|B|} \int_B |f(x) - f_B|^p dx\right)^{1/p},
$$

for all $1 < p < \infty$. Moreover, it can be proved that the above equivalence also holds for $0 < p < 1$ even though the right-hand side is not a norm in such a case (see [\[15\]](#page-10-2)).

Another deep connection was made between Muckenhoupt weights and *BMO* in the work of Muckenhoupt and Wheeden [\[13\]](#page-10-3). They proved that a function *f* is in *BMO* if and only if *f* it is of *BMO* with respect to ω for all $\omega \in A_{\infty}$. That is, if, for each $\omega \in A_{\infty}$, we define *BMO*_ω to be the collection of all ω -locally integrable functions *f* such that

$$
||f||_{BMO_{\omega}} = \sup_{B} \frac{1}{\omega(B)} \int_{B} |f(x) - f_{\omega,B}| \omega(x) dx < \infty,
$$

then $BMO = BMO_{\omega}$ and

$$
||f||_{BMO} \approx ||f||_{BMO_{\omega}}.
$$

Here $\omega(B) = \int_B \omega(x) dx$ and

$$
f_{\omega,B} = \frac{1}{\omega(B)} \int_B f(x)\omega(x) \, dx.
$$

It was recently obtained by Hart and Torres [\[8\]](#page-10-4) that, for $0 < p < \infty$ and $\omega, \nu \in A_{\infty}$,

$$
||f||_{BMO} \approx \sup_B \left(\frac{1}{\omega(B)} \int_B |f(x) - f_{\nu,B}|^p \omega(x) \, dx\right)^{1/p}
$$

For $v \equiv 1$ and $1 \le p < \infty$, the result above was obtained by Ho [\[9\]](#page-10-5). The aim of this paper is to show that *BMO* space can be characterized by $A_{p,q}$ weights. To state our results, we first recall the definitions of A_p and $A_{p,q}$ weights.

For $1 < p < \infty$ and a nonnegative locally integrable function ω , we say that ω is in the Muckenhoupt A_p class [\[12\]](#page-10-6) if it satisfies the condition

$$
[\omega]_{A_p} := \sup_B \left(\frac{1}{|B|} \int_B \omega(x) \, dx \right) \left(\frac{1}{|B|} \int_B \omega(x)^{-(1/p-1)} \, dx \right)^{p-1} < \infty.
$$

A weight function ω belongs to the class A_1 if

$$
[\omega]_{A_1} := \frac{1}{|B|} \int_B \omega(x) \, dx \Big(\underset{x \in B}{\mathrm{ess sup}} \, \omega(x)^{-1} \Big) < \infty.
$$

We write $A_{\infty} = \bigcup_{1 \le p < \infty} A_p$.
Next, we recall the det

Next, we recall the definition of $A_{p,q}$ weight introduced by Muckenhoupt and Wheeden [\[14\]](#page-10-7). For $1 < p, q < \infty$ and a nonnegative locally integrable function ω , we say that ω is in the Muckenhoupt $A_{p,q}$ class if it satisfies the condition

$$
\sup_{B}\left(\frac{1}{|B|}\int_{B}\omega(x)^{q}\,dx\right)^{1/q}\left(\frac{1}{|B|}\int_{B}\omega(x)^{-p'}\,dx\right)^{1/p'}<\infty.
$$

A weight function ω belongs to the class $A_{1,q}$ if there exists $C > 0$ such that, for every ball *B*,

$$
\left(\frac{1}{|B|}\int_B \omega(x)^q dx\right)^{1/q} \leq C \operatorname{ess}_{x \in B} \inf \omega(x).
$$

Now we return to our first subject.

THEOREM 1.1. Let $0 < \alpha < n$, $1 \le p < q < \infty$ with $1/q = 1/p - \alpha/n$, $\omega \in A_{p,q}$ and ν [∈] *^A*∞*. The following statements are equivalent.*

- $f \in BMO$.
- (a2) *There exists a constant C* > ⁰ *such that*

$$
||f||_{BMO^*} := \sup_B \frac{|B|^{\alpha/n}}{\omega^p(B)^{1/p}} \bigg(\int_B |f(x) - f_{\nu,B}|^q \omega(x)^q dx \bigg)^{1/q} \le C,
$$

where
$$
\omega^p(B) = \int_B \omega(x)^p dx
$$
.

Moreover, the norm $\|\cdot\|_{BMO^*}$ *is mutually equivalent to* $\|\cdot\|_{BMO}$ *.*

Another subject of this paper is to consider the characterizations of Lipschitz functions. For $0 < \beta < 1$, the Lipschitz space *Lip_β* is the set of functions *f* such that

$$
||f||_{Lip_{\beta}} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\beta}} < \infty.
$$

It is well known that

$$
||f||_{Lip_{\beta}} \approx \sup_{B} \frac{1}{|B|^{\beta/n}} \left(\frac{1}{|B|} \int_{B} |f(x) - f_{B}|^{q} dx\right)^{1/q}.
$$

The equivalence can be found in [\[5,](#page-10-8) pages 14 and 38] for $q = 1$ and in [\[10\]](#page-10-9) for $1 < q < \infty$. Recently, we showed that the result holds for $0 < q < 1$ in [\[16\]](#page-10-10).

In this paper, we characterize Lipschitz spaces by $A_{p,q}$ weights as follows.

THEOREM 1.2. Let $0 < \beta < 1$, $1 \le p < q < \infty$ with $1/q = 1/p - \beta/n$, $\omega \in A_{p,q}$ and $\nu \in A_{\infty}$. *The following statements are equivalent.*

- (b1) $f \in Lip_{\beta}$.
- (b2) *There exists a constant C* > ⁰ *such that*

$$
||f||_{Lip_{\beta}^*} := \sup_{B} \frac{1}{\omega^p(B)^{1/p}} \Big(\int_B |f(x) - f_{y,B}|^q \omega(x)^q dx \Big)^{1/q} \leq C.
$$

Moreover, the norm $\|\cdot\|_{Lip_{\beta}^*}$ *is mutually equivalent to* $\|\cdot\|_{Lip_{\beta}}$ *.*

β

THEOREM 1.3. Let $0 < \beta < 1$, $0 < \alpha < n$, $1 \le p < q < \infty$ with $1/q = 1/p - (\alpha + \beta)/n$, $\omega \in A_{p,q}$ *and* $v \in A_{\infty}$ *. The following statements are equivalent.*

 $f \in Lip_{\beta}$ *.*

(c2) *There exists a constant C* > ⁰ *such that*

$$
||f||_{Lip_{\beta}^{**}} := \sup_{B} \frac{|B|^{\alpha/n}}{\omega^p(B)^{1/p}} \Big(\int_B |f(x) - f_{\nu,B}|^q \omega(x)^q dx \Big)^{1/q} \leq C.
$$

Moreover, the norm $\|\cdot\|_{Lip_{\beta}^{**}}$ *is mutually equivalent to* $\|\cdot\|_{Lip_{\beta}}$ *.*

There are a number of classical results that demonstrate that *BMO* functions are the right collections for carrying out harmonic analysis on the boundedness of commutators. A well-known result of Coifman *et al.* [\[3\]](#page-10-11) states that the commutator

$$
[b, T](f)(x) = b(x)T(f)(x) - T(bf)(x)
$$

is bounded on some L^p , $1 < p < \infty$, if and only if $b \in BMO$, where *T* is the classical Calderón–Zygmund operator. Chanillo [2] proved that if $b \in BMO$ the commutator Calderón–Zygmund operator. Chanillo [[2\]](#page-10-12) proved that, if $b \in BMO$, the commutator

$$
[b, I_{\alpha}](f)(x) = b(x)I_{\alpha}(f)(x) - I_{\alpha}(bf)(x)
$$

is bounded from L^p to L^q with $1 < p < n/\alpha$ and $1/q = 1/p - \alpha/n$, where

$$
I_{\alpha}(f)(x) = \int \frac{f(y)}{|x - y|^{n - \alpha}} dy.
$$

Moreover, if $n - \alpha$ is even, the reverse is also valid. Ding [\[6\]](#page-10-13) showed that *b* is in BMO if and only if the commutator $[b, T]$ of the Calderon–Zygmund operator T is bounded on Morrey spaces. During the last thirty years, the theory has been extended and generalized in several directions. For instance, Bloom [\[1\]](#page-10-14) investigated the characterization of *BMO* spaces in the weighted setting.

As an application of Theorems [1.1,](#page-2-0) [1.2](#page-2-1) and [1.3](#page-2-2) in this paper, we will study the characterization of *BMO* and Lipschitz spaces in terms of the boundedness of the commutator of some operator on weighted Lebesgue spaces.

THEOREM 1.4. Let $0 < \alpha < n$, $1 < p < q < \infty$ with $1/q = 1/p - \alpha/n$ and $\omega \in A_{p,q}$. The *following statements are equivalent.*

(d1) $b \in BMO$.

(d2) *There exists a constant C such that*

$$
\| [b, I_{\alpha}](f) \|_{L^q(\omega^q)} \leq C \| f \|_{L^p(\omega^p)}.
$$

THEOREM 1.5. Let $0 < \beta < 1$, $1 < p < q < \infty$ with $1/q = 1/p - \beta/n$ and $\omega \in A_{p,q}$. The *following statements are equivalent.*

(e1) $b \in Lip_{\beta}$.

(e2) *There exists a constant C such that*

$$
\| [b, T](f) \|_{L^q(\omega^q)} \leq C \| f \|_{L^p(\omega^p)}.
$$

THEOREM 1.6. Let $0 < \beta < 1, 0 < \alpha < n$, $1 < p < q < \infty$ with $1/q = 1/p - (\alpha + \beta)/n$ and $\omega \in A_{p,q}$ *. The following statements are equivalent.*

(f1) $b \in Lip_{\beta}$ *.*

(f2) *There exists a constant C such that*

$$
\| [b, I_{\alpha}](f) \|_{L^q(\omega^q)} \leq C \| f \|_{L^p(\omega^p)}.
$$

Throughout this paper, all cubes are assumed to have their sides parallel to the coordinate axes. Given a Lebesgue measurable set E , χ_E will denote the characteristic function of E and $|E|$ is the Lebesgue measure of E . The letter C will be used for various constants, and may change from one occurrence to another.

2. Proof of Theorems [1.1,](#page-2-0) [1.2](#page-2-1) and [1.3](#page-2-2)

PROOF OF THEOREM [1.1.](#page-2-0) $(a1) \Rightarrow (a2)$. In [\[13\]](#page-10-3), Muckenhoupt and Wheeden proved the John–Nirenberg inequality for BMO_v . That is, there are two constants $C_1, C_2 > 0$ such that, for any $\lambda > 0$,

$$
\nu({x \in B : |f(x) - f_{\nu,B}| > \lambda}) \le C_1 \exp\left(-\frac{C_2\lambda}{\|f\|_{BMO_{\nu}}}\right) \nu(B).
$$

Since $\omega \in A_{p,q}$, we have $\mu := \omega^q \in A_q \subset A_\infty$. Then, for any ball *B* and any measurable set *F* contained in *B* there are positive constants C_0 and ϵ such that set *E* contained in *B*, there are positive constants C_0 and ϵ such that

$$
\frac{\mu(E)}{\mu(B)} \le C_0 \left(\frac{|E|}{|B|}\right)^{\epsilon}
$$

Since $v \in A_\infty$, there exists a constant *N* such that $v \in A_N$. Then

$$
\left(\frac{|E|}{|B|}\right)^N \le C \frac{\nu(E)}{\nu(B)}.
$$

This implies that

$$
\frac{\mu(E)}{\mu(B)} \le C_0 \left(\frac{\nu(E)}{\nu(B)}\right)^{\epsilon/N}
$$

and

$$
\mu({x \in B : |f(x) - f_{\nu,B}| > \lambda}) \leq C \exp\left(-\frac{C_2 \epsilon/N \cdot \lambda}{\|f\|_{BMO_{\nu}}}\right) \mu(B).
$$

For any ball *B*,

$$
\begin{aligned} \|(f - f_{\nu,B})\chi_B\|_{L^q(\mu)}^q &= q \int_0^\infty \lambda^{q-1} \mu(\{x \in B : |f(x) - f_{\nu,B}| > \lambda\}) \, d\lambda \\ &\le C \int_0^\infty \lambda^{q-1} \exp\left(-\frac{C_2 \epsilon / N \cdot \lambda}{\|f\|_{BMO_\nu}}\right) \mu(B) \, d\lambda \\ &\le C \|f\|_{BMO_\nu} \mu(B). \end{aligned}
$$

By the Hölder inequality,

$$
|Q| \leq \bigg(\int_Q \omega(x)^p dx\bigg)^{1/p} \bigg(\int_Q \omega(x)^{-p'} dx\bigg)^{1/p'}.
$$

Then it follows from $\omega \in A_{p,q}$ that

$$
\frac{\mu(B)^{1/q}|B|^{\alpha/n}}{\omega^p(B)^{1/p}} \le |B|^{1/p-1/q-1} \Big(\int_B \omega(x)^q dx \Big)^{1/q} \Big(\int_B \omega(x)^{-p'} dx \Big)^{1/p'}\n\n\le \Big(\frac{1}{|B|} \int_B \omega(x)^q dx \Big)^{1/q} \Big(\frac{1}{|B|} \int_B \omega(x)^{-p'} dx \Big)^{1/p'}\n\n\le C,
$$

and thus $f \in BMO_v$ implies that

|*B*| α/*n* ω*p* (*B*) 1/*p* Z *B* [|] *^f*(*x*) [−] *^f*ν,*^B*[|] *q*ω(*x*) *q dx*¹/*^q* [≤] *^C*^k *^f* ^k*BMO*ν

That $(a1) \Rightarrow (a2)$ follows from the equivalence of *BMO* and *BMO_v*.
 $(a2) \Rightarrow (a1)$ Now we prove that if there exists a constant *C* such t

 $(a2) \Rightarrow (a1)$. Now we prove that if there exists a constant *C* such that, for any ball *B*,

$$
\frac{1}{\omega^p(B)^{1/p}} \Big(\int_B |f(x) - f_{\nu,B}|^q \omega(x)^q dx \Big)^{1/q} \le C|B|^{-\alpha/n},
$$

then $f \in BMO$.

When $p > 1$, the Hölder inequality gives us that

$$
\int_{B} |f(x) - f_{v,B}| dx
$$
\n
$$
\leq \left(\int_{B} |f(x) - f_{v,B}|^{p} \omega(x)^{p} dx \right)^{1/p} \left(\int_{B} \omega(x)^{-p'} dx \right)^{1/p'}
$$
\n
$$
\leq C|B|^{\alpha/n} \left(\int_{B} |f(x) - f_{v,B}|^{q} \omega(x)^{q} dx \right)^{1/q} \left(\int_{B} \omega(x)^{-p'} dx \right)^{1/p'}
$$
\n
$$
\leq C||f||_{BMO^{*}} \left(\int_{B} \omega(x)^{-p'} dx \right)^{1/p'} \left(\int_{B} \omega(x)^{p} dx \right)^{1/p}
$$
\n
$$
\leq C||f||_{BMO^{*}}|B| \left(\frac{1}{|B|} \int_{B} \omega(x)^{-p'} dx \right)^{1/p'} \left(\frac{1}{|B|} \int_{B} \omega(x)^{q} dx \right)^{1/q}
$$
\n
$$
\leq C||f||_{BMO^{*}}|B|.
$$

When $p = 1$,

$$
\int_{B} |f(x) - f_{\nu,B}| dx \le \int_{B} |f(x) - f_{\nu,B}| \omega(x) dx \cdot \left\| \frac{1}{\omega} \chi_{B} \right\|_{L^{\infty}}
$$

\n
$$
\le C \Big(\int_{B} |f(x) - f_{\nu,B}|^{q} \omega(x)^{q} dx \Big)^{1/q} \cdot \left\| \frac{1}{\omega} \chi_{B} \right\|_{L^{\infty}} |B|^{\alpha/n}
$$

\n
$$
\le C ||f||_{BMO^{\ast}} |B|.
$$

We can conclude that $f \in BMO$ from the result of Hart and Torres [\[8,](#page-10-4) Theorem 5.2] with $v \equiv 1$: that is, $f \in BMO$ if and only if

$$
\sup_{B} \left(\frac{1}{\nu(B)} \int_{B} |f(x) - f_{\nu,B}|^{p} \nu(x) \, dx \right)^{1/p} < \infty
$$

for $v, v \in A_\infty$ and $0 < p < \infty$.

PROOF OF THEOREM [1.2.](#page-2-1) $(b2) \Rightarrow (b1)$. Let *x*, *y* be two fixed points. Take $B = B(x, r)$ with $r \le |x - y|$ and $U = B(x, 2|x - y|)$, and define $B_k = B(x, 2^k r)$ for $0 \le k \le \tilde{k}$, where \tilde{l} is the further as well that $2^k \times \tilde{k}$. \tilde{k} is the first integer such that $2^{\tilde{k}} r \ge |x - y|$.

Notice that, for any balls, $R_1 = B(x_1, r_1)$, $R_2 = B(x_2, r_2)$ with R_1 ⊂ R_2 and r_2 ≤ $2r_1$. When $p > 1$, then $\omega \in A_{p,q}$ and the Hölder inequality shows that

$$
|f_{R_1} - f_{\nu, R_2}|
$$

\n
$$
\leq \frac{1}{|R_1|} \int_{R_1} |f(z) - f_{\nu, R_2}| dz
$$

\n
$$
\leq \frac{C}{|R_2|} \Big(\int_{R_2} |f(z) - f_{\nu, R_2}|^p \omega(z)^p dz \Big)^{1/p} \Big(\int_{R_2} \omega(z)^{-p'} dz \Big)^{1/p'}
$$

\n
$$
\leq \frac{C}{|R_2|^{1-\beta/n}} \Big(\int_{R_2} |f(z) - f_{\nu, R_2}|^q \omega(z)^q dz \Big)^{1/q} \Big(\int_{R_2} \omega(z)^{-p'} dz \Big)^{1/p'}
$$

\n
$$
\leq \frac{C ||f||_{Lip_\beta^*}}{|R_2|^{1-\beta/n}} \Big(\int_{R_2} \omega(x)^p dx \Big)^{1/p} \Big(\int_{R_2} \omega(z)^{-p'} dz \Big)^{1/p'}
$$

\n
$$
\leq C ||f||_{Lip_\beta^*} r_1^\beta.
$$

When $p = 1$,

$$
|f_{R_1} - f_{\nu,R_2}| \leq \frac{1}{|R_1|} \int_{R_1} |f(z) - f_{\nu,R_2}| dz
$$

\n
$$
\leq \frac{C}{|R_2|} \int_{R_2} |f(z) - f_{\nu,R_2}| \omega(z) dz \cdot \left\| \frac{1}{\omega} \chi_{R_2} \right\|_{L^{\infty}}
$$

\n
$$
\leq \frac{C}{|R_2|^{1-\beta/n}} \Big(\int_{R_2} |f(z) - f_{\nu,R_2}|^q \omega(z)^q dz \Big)^{1/q} \cdot \left\| \frac{1}{\omega} \chi_{R_2} \right\|_{L^{\infty}}
$$

\n
$$
\leq \frac{C ||f||_{Lip_{\beta}^*}}{|R_2|^{1-\beta/n}} \int_{R_2} \omega(x) dx \cdot \left\| \frac{1}{\omega} \chi_{R_2} \right\|_{L^{\infty}}
$$

\n
$$
\leq C ||f||_{Lip_{\beta}^*} |R_2|^{\beta/n} \Big(\frac{1}{|R_2|} \int_{R_2} \omega(x)^q dx \Big)^{1/q} \cdot \left\| \frac{1}{\omega} \chi_{R_2} \right\|_{L^{\infty}}
$$

\n
$$
\leq C ||f||_{Lip_{\beta}^*} r_1^{\beta}.
$$

By the same argument as for $|f_{R_1} - f_{\nu,R_2}|$, we also have

$$
|f_{R_2} - f_{\nu,R_2}| \leq C ||f||_{Lip_\beta^*} r_1^\beta,
$$

which implies that

$$
|f_{R_1} - f_{R_2}| \le |f_{R_1} - f_{\nu, R_2}| + |f_{\nu, R_2} - f_{R_2}| \le C ||f||_{Lip_\beta^*} r_1^\beta.
$$

This shows that

$$
|f_B - f_U| \le \sum_{k=0}^{\tilde{k}-1} |f_{B_k} - f_{B_{k+1}}| + |f_{B_{\tilde{k}}} - f_U|
$$

$$
\le C ||f||_{Lip_\beta^*} \sum_{k=0}^{\tilde{k}-1} (2^k r)^{\beta/n} \le C ||f||_{Lip_\beta^*} |x - y|^\beta
$$

A similar argument can be made for the point *y* with $B' = B(x, r')$ and $B(x) = B(y)$ We conclude that $V = B(y, 3|x - y|)$. We conclude that

$$
|f_B - f_{B'}| \le |f_B - f_U| + |f_U - f_V| + |f_V - f_{B'}| \le C ||f||_{Lip_\beta^*} |x - y|^\beta.
$$

Consider *^x*, *^y* as in the Lebesgue difference theorem: that is,

$$
\lim_{r_j \to 0} \frac{1}{|B(x, r_j)|} \int_{B(x, r_j)} f(z) dz = f(x).
$$

Let $B_j = B(x, r_j)$, $B'_j = B(y, r'_j)$ with $j \ge 1$ be two sequence balls with $r_j, r'_j \to 0 (j \to \infty)$.
We obtain We obtain

$$
|f(x) - f(y)| \le \lim_{j \to \infty} |f_{B_j} - f_{B'_j}| \le C ||f||_{Lip_{\beta}^*}|x - y|^{\beta}.
$$

 $(b1) \Rightarrow (b2)$. For any ball $B = B(x_0, r)$,

$$
\frac{1}{\omega^{p}(B)^{1/p}} \Big(\int_{B} |f(z) - f_{\nu,B}|^{q} \omega(z)^{q} dz \Big)^{1/q}
$$
\n
$$
\leq \frac{1}{\omega^{p}(B)^{1/p}} \Big(\int_{B} \Big(\frac{1}{\nu(B)} \int_{B} |f(z) - f(z')| \nu(z') dz' \Big)^{q} \omega(z)^{q} dz \Big)^{1/q}
$$
\n
$$
\leq C ||f||_{Lip_{\beta}} |B|^{\beta/n-1} \omega^{q}(B)^{1/q} \omega^{-p'}(B)^{1/p'}
$$
\n
$$
\leq C ||f||_{Lip_{\beta}}.
$$

Which implies that

$$
\frac{1}{\omega^p(B)^{1/p}} \Big(\int_B |f(z) - f_{\nu,B}|^q \omega(z)^q \, dz \Big)^{1/q} \le C \|f\|_{Lip_\beta}.
$$

We complete the proof of Theorem 1.2.

PROOF OF THEOREM [1.3.](#page-2-2) $(c2) \Rightarrow (c1)$. We modify the proof of Theorem [1.2.](#page-2-1) We need only to check the estimates

$$
\begin{split} |f_{R_1} - f_{\nu, R_2}| \\ &\leq \frac{1}{|R_1|} \int_{R_1} |f(z) - f_{\nu, R_2}| \, dz \\ &\leq \frac{C}{|R_2|^{1 - (\alpha + \beta)/n}} \bigg(\int_{R_2} |f(z) - f_{\nu, R_2}|^q \omega(z)^q \, dz \bigg)^{1/q} \bigg(\int_{R_2} \omega(z)^{-p'} \, dz \bigg)^{1/p'} \\ &\leq \frac{C ||f||_{Lip_{\rho}^{**}}}{|R_2|^{1 - \beta/n}} \bigg(\int_{R_2} \omega(x)^p \, dx \bigg)^{1/p} \bigg(\int_{R_2} \omega(z)^{-p'} \, dz \bigg)^{1/p'} \\ &\leq C ||f||_{Lip_{\rho}^{**}} r_1^{\beta} \end{split}
$$

and

$$
\begin{split} |f_{R_1} - f_{v,R_2}| & \leq \frac{C}{|R_2|^{1 - (\alpha + \beta)/n}} \Big(\int_{R_2} |f(z) - f_{v,R_2}|^q \omega(z)^q \, dz \Big)^{1/q} \cdot \left\| \frac{1}{\omega} \chi_{R_2} \right\|_{L^\infty} \\ &\leq \frac{C ||f||_{Lip_\beta^{**}}}{|R_2|^{1 - \beta/n}} \int_{R_2} \omega(x) \, dx \cdot \left\| \frac{1}{\omega} \chi_{R_2} \right\|_{L^\infty} \\ &\leq C ||f||_{Lip_\beta^{**}} \int_{1}^{\beta} . \end{split}
$$

 $(c1) \Rightarrow (c2)$. For any ball $B = B(x_0, r)$,

$$
\frac{1}{\omega^p(B)^{1/p}} \Big(\int_B |f(z) - f_{\nu,B}|^q \omega(z)^q dz \Big)^{1/q}
$$
\n
$$
\leq \frac{1}{\omega^p(B)^{1/p}} \Big(\int_B \Big(\frac{1}{\nu(B)} \int_B |f(z) - f(z')| \nu(z') dz' \Big)^q \omega(z)^q dz \Big)^{1/q}
$$
\n
$$
\leq C ||f||_{Lip_\beta} \frac{|B|^{\beta/n} \omega^q(B)^{1/q}}{\omega^p(B)^{1/p}}
$$
\n
$$
\leq C ||f||_{Lip_\beta} |B|^{-\alpha/n}.
$$

This implies that

$$
\frac{|B|^{\alpha/n}}{\omega^p(B)^{1/p}} \bigg(\int_B |f(z) - f_{\nu,B}|^q \omega(z)^q dz \bigg)^{1/q} \leq C ||f||_{Lip_\beta}.
$$

The proof of Theorem [1.3](#page-2-2) is complete. \Box

3. Proof of Theorems [1.4,](#page-3-0) [1.5](#page-3-1) and [1.6](#page-3-2)

PROOF OF THEOREM [1.4.](#page-3-0) $(d2) \Rightarrow (d1)$. For any point $z_0 \neq 0$, let $\delta = (\frac{|z_0|}{2} \sqrt{Q} \cdot (z_0, \delta))$ denote the open cube centered at z_0 with side length 2δ . Then *n*) and $Q_0(z_0, \delta)$ denote the open cube centered at z_0 with side length 2 δ . Then, for $x \in$ $Q_0(z_0, \delta)$, $|x|^{n-\alpha}$ has an absolutely convergent Fourier series

$$
|x|^{n-\alpha} = \sum a_m e^{iv_m \cdot x}
$$

with $\sum |a_m| < \infty$, where the exact form of the vectors v_m is unrelated. Taking $z_1 = (z_0/\delta)$, we have the expansion (z_0/δ) , we have the expansion

$$
|x|^{n-\alpha} = \delta^{-n+\alpha} |\delta x|^{n-\alpha} = \delta^{-n+\alpha} \sum a_m e^{i v_m \cdot \delta x} \quad \text{for } |x - z_1| < \sqrt{n}.
$$

Given cubes $Q = Q(x_0, r)$ and $Q' = Q(x_0 - rz_1, r)$, if $x \in Q$ and $y \in Q'$, then

$$
\left|\frac{x-y}{r}-\frac{z_0}{\delta}\right|\leq \left|\frac{x-x_0}{r}\right|+\left|\frac{y-(x_0-(rz_0/\delta))}{r}\right|<\sqrt{n}.
$$

This gives

$$
b(x) - b_{Q'} = \frac{1}{|Q'|} \int_{Q'} (b(x) - b(y)) dy
$$

=
$$
\frac{1}{|Q'|} \int_{Q'} \frac{r^{n-\alpha}(b(x) - b(y))}{|x - y|^{n-\alpha}} \left| \frac{x - y}{r} \right|^{n-\alpha} dy
$$

=
$$
|Q|^{-\alpha/n} \int_{Q'} \frac{(b(x) - b(y))}{|x - y|^{n-\alpha}} \sum a_m e^{iv_m \cdot \delta(x - y/r)} dy
$$

=
$$
|Q|^{-\alpha/n} \int_{Q'} \frac{(b(x) - b(y))}{|x - y|^{n-\alpha}} \sum a_m e^{iv_m \cdot \delta(x/r)} e^{-iv_m \cdot \delta(y/r)} dy.
$$

Set

$$
f_m(y) = e^{-i v_m \cdot (\delta/r)y} \chi_{Q'}(y),
$$

\n
$$
g_m(x) = |Q|^{-\alpha/n} e^{i v_m \cdot (\delta/r)x} \chi_{Q}(x).
$$

Then, for any cube Q and $x \in Q$,

$$
|(b(x) - b_Q)\chi_Q(x)| = \left| \sum_m a_m[b, I_\alpha](f_m)(x)g_m(x) \right|
$$

$$
\leq |Q|^{-\alpha/n} \sum_m |a_m||[b, I_\alpha](f_m)(x)|.
$$

 \mathbf{r}

From the boundedness of $[b, I_{\alpha}]$ from $L^p(\omega^p)$ to $L^q(\omega^q)$ for $\omega \in A_{p,q}$, it follows that

$$
\frac{|Q|^{\alpha/n}}{\omega^p(Q)^{1/p}} \Big(\int_Q |b(x) - b_Q|^q \omega(x)^q dx \Big)^{1/q} \le C \sum_m |a_m| \frac{\|[b, I_\alpha](f_m)\|_{L^q(\omega^q)}}{\omega^p(Q)^{1/p}} \le C \sum_m |a_m| \frac{\omega^p(Q')^{1/p}}{\omega^p(Q)^{1/p}}.
$$

By the definitions of *Q* and *Q*['], there exists a constant $c_0 = c_0(|z_0|, n)$ such that $O' \subset c_0 O$. Then $Q' \subset c_0 Q$. Then

$$
\left(\frac{\mu(Q')}{\mu(Q)}\right)^{1/p} \le C \left(\frac{\mu(Q')}{\mu(c_0Q)}\right)^{1/p} \le C \left(\frac{|Q'|}{|c_0Q|}\right)^{\epsilon/p} \le C,
$$

where $\mu := \omega^p \in A_\infty$. For any *Q*,

$$
\frac{|Q|^{\alpha/n}}{\omega^p(Q)^{1/p}} \Big(\int_Q |b(x) - b_Q|^q \omega(x)^q dx \Big)^{1/q} \le C.
$$

We obtain that $b \in BMO$ by Theorem [1.1.](#page-2-0)

The proof of $(d1) \Rightarrow (d2)$ follows from [\[4\]](#page-10-15). Theorem [1.4](#page-3-0) is proved.

The proofs of Theorems [1.5](#page-3-1) and [1.6](#page-3-2) use very similar arguments, and hence we omit the details.

References

- [1] S. Bloom, 'A commutator theorem and weighted BMO', *Trans. Amer. Math. Soc.* 292 (1985), 103–122.
- [2] S. Chanillo, 'A note on commutators', *Indiana Univ. Math. J.* 31 (1982), 7–16.
- [3] R. Coifman, R. Rochberg and G. Weiss, 'Factorization theorems for Hardy spaces in several variables', *Ann. of Math.* (2) 103 (1976), 611–635.
- [4] D. Cruz-Uribe and A. Fiorenza, 'Endpoint estimates and weighted norm inequalities for commutators of fractional integrals', *Publ. Math.* 47 (2003), 103–131.
- [5] R. A. Devore and R. C. Sharpley, *Maximal Functions Measuring Smoothness*, Memoirs of the American Mathematical Society, 47 (American Mathematical Society, 1984).
- [6] Y. Ding, 'A characterization of BMO via commutators for some operators', *Northeast. Math. J.* 13 (1997), 422–432.
- [7] L. Grafakos, *Classical and Modern Fourier Analysis* (Springer, New York, 2004).
- [8] J. Hart and R. H. Torres, 'John–Nirenberg inequalities and weight invariant BMO spaces', *J. Geom. Anal.* 1 (2018), 1–41.
- [9] K.-P. Ho, 'Characterization of BMO by *a^p* weights and p-convexity', *Hiroshima Math. J.* 41 (2011), 153–165.
- [10] S. Janson, M. Taibleson and G. Weiss, 'Elementary characterization of the Morrey–Campanato spaces', *Lect. Notes Math.* 992 (1983), 101–114.
- [11] F. John and L. Nirenberg, 'On functions of bounded mean oscillation', *Comm. Pure Appl. Math.* 2 (1961), 415–426.
- [12] B. Muckenhoupt, 'Weighted norm inequalities for the Hardy maximal function', *Trans. Amer. Math. Soc.* 165 (1972), 207–226.
- [13] B. Muckenhoupt and R. Wheeden, 'Weighted bounded mean oscillation and the Hilbert transform', *Studia Math.* 54 (1975), 221–237.
- [14] B. Muckenhoupt and R. Wheeden, 'Weighted norm inequalities for fractional integrals', *Trans. Amer. Math. Soc.* 192 (1974), 261–274.
- [15] E. M. Stein, *Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals* (Princeton, NJ, 1993).
- [16] D. H. Wang, J. Zhou and Z. D. Teng, 'A note on Campanato spaces and their applications', *Math. Notes* 103 (2018), 483–489.

DINGHUAI WANG, School of Mathematical Sciences,

Nanjing Normal University, Nanjing 210023,

China

e-mail: Wangdh1990@126.com

JIANG ZHOU, College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China e-mail: zhoujiang@xju.edu.cn

ZHIDONG TENG, College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China e-mail: zhidong1960@163.com