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The Eureka theorem of Gauss

STAN DOLAN

1.  Introduction
On 10th July 1796, when he was still a teenager, Gauss famously wrote

EΥPHKA! in his diary when recording the completion of a proof that every
positive integer is the sum of at most three triangular numbers.

Gauss's proof is included in his book, Disquisitiones Arithmeticae [1],
which was published in 1801. No short exposition of Gauss's proof appears
to be extant but [2] is an excellent guide to understanding Gauss's work.

The purpose of this Article is to give a relatively short algebraic proof
of the Eureka theorem using Gauss's approach and without recourse to
results which were not available to Gauss, for example Dirichlet's theorem
on primes in arithmetic progressions. The notations of group theory and of
matrix algebra will be employed to simplify the algebra. These concepts are
implicit in Gauss's development of the underlying theory but not explicitly
used by him. Quadratic reciprocity, with standard Jacobi symbols, will be
used and modern proofs can readily be found, for example in [3].

The difficulty that Gauss faced in expressing his arguments without
using the notation of matrix algebra should not be underestimated. A good
example of this is given in Section 235 of [1]. There, after seven pages of
calculations using 23 numbered equations, Gauss ends by saying:
‘The calculation, which would be too long to include here, we leave to the reader.’

The matrix algebra that we will require is relatively elementary. The
following results about cofactors will prove especially useful.

For any  matrix , let  denote its cofactor matrix. Then for any
 matrices  and  we have

3 × 3 A A⎯

3 × 3 A B

AB
⎯

= A
⎯

 B
⎯

, AT
⎯

= A
⎯ T and  A

⎯⎯
= det (A) A.

In particular, for a symmetric matrix ,M

UMU T
⎯ ⎯⎯⎯ ⎯

= U
⎯

 M
⎯

 U
⎯ T.

A transformation of  by  is therefore the same as a transformation of
by . We shall denote the element in row  and column  of a matrix  by .

M U M⎯

U⎯ i j A Aij

2.  Equivalent forms and matrices
Gauss's proof of the Eureka theorem was based upon his analysis of the

representation of integers as quadratic polynomials ax2 + bxy + cy2.
We will make the following definitions.

• If  and , then
will be termed a form. The quantity  is termed the
discriminant of the form.

a > 0 gcd (a, b, c) = 1 f (x, y) = ax2 + bxy + cy2

Δ = b2 − 4ac
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• Although much of what we shall prove is true more generally, we
will assume throughout that all forms have a given discriminant

, such that  and  is the product of  distinct
primes, .
Δ ≡ 5 (mod 8) Δ < 0 |Δ| r

p1p2… pr

• The notation  will sometimes be used for . For non-zero , we
can write , since the value of  is determined by  and .

[a, b, c] f a
[a, b, −] c a, b Δ

It will prove useful to think of  as the matrix productax2 + bxy + cy2

( ) ( ) ( ) .x y
a 1

2b
1
2b c

x
y

If  and  are symmetric matrices of the same dimension, we define them to
be equivalent if there is a matrix  such that 

R S
U

URU T = S,
where  has integer coefficients and . Since the inverse of
has integer coefficients this is clearly an equivalence relation.

U det (U ) = 1 U

Matrix equivalence corresponds to a change of variables
 since( ) = ( )Ux y X Y

( ) ( ) ( ) = ( ) ( ) ( ) ,x y
a 1

2b
1
2b c

x
y X Y

A 1
2B

1
2B C

X
Y

where . In this case, we shall now prove that

 is a form if  is a form. We can then define them to be
equivalent forms.

( ) = U ( ) U T
A 1

2B
1
2B C

a 1
2b

1
2b c

[A,  B,  C] [a,  b,  c]

Lemma 1:  Let a form  be transformed into  by

 where  is an integer matrix of determinant 1.

[a, b, c] [A, B, C]

U = ( )p q
r s

U

(i) .A = f (p, q) > 0
(ii)  is a form which represents precisely the same integers as

.
[A, B, C]
[a, b, c]

Proof:
(i) Multiplying out: . ThenA = ap2 + bpq + cq2 = f (p, q)

4af (p, q) = (2ap + bq)2 − 	q2 > 0, and so  f (p, q) > 0.
(ii) The transformation multiplies the discriminant by  and so the

discriminant is unaltered. Since the inverse of  is also a matrix with
integer coefficients,  is a factor of . Thus

 is a form. 

|U |2 = 1
U

gcd (A, B, C) gcd (a, b, c) = 1
[A, B, C]

Since the change of variables is invertible, the equivalent forms
and  represent precisely the same integers.

[a, b, c]
[A, B, C]
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The next two lemmas enable us to replace forms by simpler equivalent
forms.
Lemma 2:

(i) A matrix ,  is equivalent to a matrix ,

for any integer . Note that by a suitable choice of  we can suppose
.

( )a b
b −

a ≠ 0 ( )a b + am
b + am −

m m
|b + am| ≤ 1

2 |a|
(ii) A  symmetric matrix with rational coefficients and determinant

is equivalent to a matrix  with .

2 × 2 D

( )a b
b c

|a| ≤ 4
3 |D|

(iii) There is only a finite number of equivalence classes of forms of a given
discriminant.

Proof:

(i) , as required.( ) ( ) ( ) = ( )1 0
m 1

a b
b −

1 m
0 1

a b + am
b + am −

(ii) By multiplying the symmetric matrix by a suitable integer, we can
suppose without loss of generality that it has integer coefficients. Let

 be the matrix of an equivalent form with the smallest possible

absolute value of a diagonal element. Transforming by  if

necessary, we can assume .

( )a b
b c

( )0 1
−1 0

|a| ≤ |c|
If , then there is nothing to prove. Otherwise, by Lemma 2(i), we
can suppose . Then 

a = 0
|b| ≤ 1

2 |a|
a2 ≤ |ac| = |D + b2| ≤ |D| + 1

4a2 ⇒ a2 ≤ 4
3 |D| .

(iii) By parts (i) and (ii), a given form is equivalent to a form  with
 and . Thus there is only a finite number of

possibilities for  and  and each such choice determines the value of .

[a, b, c]
|b| ≤ a a2 ≤ 1

3 |	|
a b c

Lemma 3:
(i) Let  be a form. For any non-zero integer ,  is

equivalent to a form  where  is coprime to .
f = [a, b, c] m f

[a′, −, −] a′ m
(ii) Let , ,  be a finite sequence of (not necessarily distinct)

classes of forms. Then, for each  and some integer , there is a form
, such that the  are pairwise coprime and coprime to .

�1 �2 �3, …
i b

[ai, b, −] ∈ �i ai 	

Proof:
(i) We can suppose  is square-free. Let , where m m = αβγδ

gcd (m, a, b) = β, gcd (m, a, c) = γ, gcd (m, a) = αβγ.
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Then  is coprime to . Let  and  be integers such that
.  Then  is equivalent to a form with matrix

f (α, δ) m ε μ
αμ − δε = 1 f

( ) ( ) ( ) = ( ) , .
α δ
ε μ

a 1
2b

1
2b c

α ε
δ μ

f (α, δ) −
− −

 as required

(ii) By part (i), we can choose forms  such that each  is
coprime to . Then all the  are odd and we can solve the
equations

[ai, bi, −] ∈ �i ai + 1
a1… ai	 bi

b ≡ bi (mod 2ai) .
Applying the method of Lemma 2(i) then completes the proof.

3.  The class group
Gauss's proof of the Eureka Theorem depended upon his theory of the

composition of forms. This idea is important in its own right and is a
fundamental concept in algebraic number theory. However, the algebra of
Gauss’s discovery is so involved that many details were not included in
Disquisitiones Arithmeticae. Thus, in article 240, Gauss says:

It would take too much time to derive all 37 of these equations.
We will be satisfied with establishing some of them as a pattern
for the rest.

We will write  to denote the equivalence of forms  and . The
equivalence class of  will be denoted by . We shall adopt an approach
based upon the following simple idea given in [2].

f ∼ g f g
f (f )

If two forms are and , where is a divisor of
then is a form and we can define a

composition, , by .

[a, b, −] [a′, b, −] 4aa′
b2 − 	 [aa′, b, −]

∗ [a, b, −] ∗ [a′, b, −] = [aa′, b, −]
Now let  and  be any two, not necessarily distinct, equivalence classes
of forms. By Lemma 3(ii) we can find forms  and

 in  and  respectively, where  and  are coprime. Then
 is a multiple of both  and  and therefore of . It is therefore

natural to try to define  to be  but we can only do this if
we can prove that all possible choices of  and  lead to the same
equivalence class. 

� �′
f = [a, b, −]

f ′ = [a′, b, −] � �′ a a′
1
4 (b2 − 	) a a′ aa′

� ∗ �′ �aa′, b, −�
f f ′

Lemma 4:
Let  and , where  is

a multiple of  and  is a multiple of . Then
.

[a, b, −] ∼ [A, B, −] [a′, b, −] ∼ [A′, B, −] b2 − 	
4aa′ B2 − 	 4AA′

[aa′, b, −] ∼ [AA′, B, −]

Proof:
   By Lemma 3(ii), there are forms  and

 such that ,  and  are pairwise coprime. It is
sufficient to prove that  and  are (separately)

[α, β, −] ∼ [a, b, −]
[α′, β, −] ∼ [a′, b, −] α α′ aa′AA′

[aa′, b, −] [AA′, B, −]
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equivalent to  and so there is no loss of generality in just
considering the case when .

[αα′, β, −]
gcd (aa′, AA′) = 1

We can solve the equations

� ≡ 1 (mod 2) , � ≡ b (mod aa′) , � ≡ B (mod AA′) .
Then, by Lemma 2(iii),  and
for  any divisor of  or . Therefore there is no loss of generality in just
considering the case .

[x, b, −] ∼ [x, �, −] [x, B, −] ∼ [x, �, −]
x aa′ AA′

B = b
Since  and  are equivalent there are integers  and

and an integral matrix of determinant 1,  such that 

[a, b, −] [A, b, −] c C

U = ( )r s
t u

( ) ( ) = ( ) ( ) ,r s
t u

a 1
2b

1
2b c

A 1
2b

1
2b C

u −t
−s r

where  divides  and .a′ c C
Then  and so  divides . Therefore1

2rb + sc = 1
2rb − tA a′ t

( ) ( ) = ( ) ( ) ,
r sa′
t
a′ u

aa′ 1
2b

1
2b c

a′

Aa′ 1
2b

1
2b C

a′

u − t
a′

−sa′ r
and so . Similarly,  and
so, as required, .

[aa′, b, −] ∼ [Aa′, b, −] [Aa′, b, −] ∼ [AA′, b, −]
[aa′, b, −] ∼ [AA′, b, −]

We can therefore define the composition of equivalence classes in the
manner described just before Lemma 4. It is now straightforward to
establish a group structure for the composition of equivalence classes.

The class group theorem
Let  be the set of equivalence classes of forms of discriminant .

Under composition of classes,  is an abelian group, called the class
group.

CL (	) 	
CL (	)

Proof:

Let . Then  and so

. Then, by Lemma 2(i),  for any
odd integer . Let  and  be any three, not necessarily distinct,
classes of forms. By Lemma 3, we can find integers  and , with the
pairwise coprime, such that . Then:

�0 = �1,  1, −� ( ) ( ) ( ) = ( )1 −1
1 0

1 1
2

1
2 −

1 1
−1 0

− 1
2

1
2 1

[1,  1, −] ∼ [−, 1, 1] �0 = �1,  b, −� = �−, b, 1�
b �1, �2 �3

Ai B Ai
�i = �Ai, B, −�

 and so we have closure and commutativity,
 and so  is associative,

 and so  is
the identity,
and so  contains inverses.

�1 ∗ �2 = �A1A2, B, −� = �A2A1, B, −�
(�1 ∗ �2) ∗ �3 = �1 ∗ (�2 ∗ �3) = [A1A2A3, B, −] ∗
�0 ∗ �1 = 〈[1, B, −] ∗ [A1, B, −]〉 = �A1, B, −� = �0 �1

�1 ∗ �−, B, A1� = 〈[A1, B, −] ∗ [−, B, A1]〉 = 〈1
4 (B2 − 	), B, 1〉 = �0

CL (	)
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Let . Then the map  is a group
homomorphism from  onto the subgroup . The kernel is

 and so . The next
theorem will give us a useful bound on the number of elements in .

S (	) = {�2 | � ∈ CL (	)} � → �2

CL (	) S (	)
T (	) = {� ∈ CL(	) | �2 = �0} |CL (	)| = |S (	)| |T (	)|

T (	)

The counting theorem 
.[CL (	) : S (	)] ≥ 2r − 1

Proof:
Let  be a positive divisor of . Then  is odd and

 is a form. Let .

a 	 = −p1p2… pr a
⎡⎢⎣a, a,

a2 − 	
4a

⎤⎥⎦ �(a) = 〈a, a,
a2 − 	

4a 〉
Let . The matrix  transforms  into

 and so

c = 1
4a (a2 − 	) ( )1 −1

1 0
[a, a, c]

[c, a, a]

[a, a, c] ∗ [a, a, c] = [a, a, c] ∗ [c, a, a] = [ac, a, 1] .
Therefore  and .� (a)2 = �0 �(a) ∈ T (	)

There are  positive divisors of . However some of these may
produce forms in the same class. So suppose that . Since  is
a square-free positive multiple of both  and  we can write

2r 	
�(a) = �(A) −	

a A

a = PQ, A = PR, −	 = PQRS,
where  are pairwise coprime positive integers. Since
must represent , there are integers  and  such that

P, Q, R, S [a, a, c]
A x y

ax2 + axy +
a2 − 	

4a
y2 = A

⇒      a2 (2x + y)2 − 	y2 = 4aA

⇒  PQ (2x + y)2 + RSy2 = 4PR.
Then  is a factor of  and  is a factor of . Let  and

, then
R 2x + y P y 2x + y = RX

y = PY

QRX2 + PSY2 = 4.
Either , in which case , or , in which case .
Hence each equivalence class of forms contains at most 2 forms of the type

 and so .

QR = 1 a = A PS = 1 aA = −	

⎡⎢⎣a, a,
a2 − 	

4a
⎤⎥⎦ [CL (	) : S (	)] = |T (	)| ≥ 2r − 1

4.  The representation theorem
Modern mathematical interest in the representation of integers as

 for given integers  and  probably started withax2 + bxy + cy2 a, b c
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Fermat's proof that any prime of the form can be expressed as the
sum of two squares.

4k + 1

The general representation of integers by a form is still the subject of active
research. Some of the deep mathematical ideas involved are explained
extremely well in [4]. We shall avoid some of the difficulties by considering
representations modulo the discriminant  of the form. First, we will extend
Lemma 2(ii) to  matrices.

	
3 × 3

Lemma 5:
Let  be a  symmetric matrix with rational coefficients and

determinant .  Then  is equivalent to a matrix  with

.

M 3 × 3

D M ( )a b ∗
b c ∗
∗ ∗ ∗

a2 ≤
4 |ac − b2|

3
≤

64 |aD|
27

Proof: 
As in Lemma 2(ii) we can assume that  has integer coefficients. We

can further assume that  is the minimum possible for all
matrices equivalent to . Then  since, otherwise, we could

use Lemma 2(ii) to apply a transformation of the form  which leaves

 unchanged and reduces .

M
|M11| + |M⎯33|

M M2
11 ≤ 4

3 |M⎯33|

( )L O
O 1

M⎯33 |M11|
Similarly, suppose it is not the case that .

Applying Lemma 2(ii) again, there is a transformation of  of the form

 which leaves  unchanged and reduces . We therefore obtain

the contradiction that the transformation  leaves  unchanged and

reduces . 

M⎯2
33 ≤ 4

3 |M⎯⎯11| = 4
3 |M11D|

M⎯

( )1 O
O K⎯

M⎯
⎯

11 |M⎯33|

( )1 O
O K

M11

|M⎯33|
Hence , as required.M2

11 ≤ 4
3 |M⎯33| ≤ 64

27 |M11D|

Lemma 6:
Let  be an integer quadratic with  and let

 be any odd integer. Then there is an integer value of  such that
 and  are coprime.

a + bx + cx2 gcd (a, b, c) = 1
M x
a + bx + cx2 M
Proof:

Let  be any prime divisor of .p M
If  does not divide  then choose .p a x ≡ 0 (mod p)
If  divides  and  then choose .p a bc x ≡ 1 (mod p)
If  divides only  then choose .p a x ≡ b

c (mod p)
Then  is coprime to  and, by the Chinese Remainder
Theorem, we can choose an  which works for all prime divisors of .

a + bx + cx2 p
x M
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The representation theorem for squares
If the forms in equivalence class  represent, modulo , a square

coprime to  then .
� 	

	 � ∈ S (	)

Proof:
From Lemma 3(i) we can suppose that . with  odd

and coprime to . Then there are integers  with  coprime to ,
such that

f = [a, b, c] ∈ � a
	 L, M, N N 	

aL2 + bLM + cM2 ≡ N2 (mod 	) .
Multiplying throughout by the inverse of , modulo , we have integers

 such that
N 	

l, m, n

al2 + blm + cm2 = 1 + n	.

Let  then . Any matrix  equivalent to

has integral  and then, from Lemma 5,  is equivalent to a matrix

 with  integers and . Then ,

and 

A = ( )a 1
2b −1

2m
1
2b c 1

2l

−1
2m 1

2l −n

|A| = −1
4 M A

M11 A

( )0 0 E
0 F G
E G H

2E, F,2G, H E2F = 1
4 E = ±1

2 F = 1

( ) ( ) ( ) = ( ) .
1 0 0

−4EG 1 0
H 0 −2E

0 0 E
0 1 G
E G H

1 −4EG H
0 1 0
0 0 −2E

0 0 −1
2

0 1 0
−1

2 0 0

Hence there is an integral matrix  of determinant  such thatU ±1

A = U ( ) U T.
0 0 −1

2

0 1 0
−1

2 0 0

In this equation,  can be replaced by  for any

integer .

U U (x) = U ( )1 0 0
2x 1 0
x2 x 1

x
By considering the determinant of , we haveU

U
⎯

31U 31 + U
⎯

32U 31 + U
⎯

33U 31 = ±1

and therefore .gcd (U⎯31,  U⎯32, U⎯33) = 1
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Now .U (x)⎯⎯⎯ ⎯
33 = ( )( )

⎯ ⎯⎯⎯⎯⎯⎯ ⎯

= x2U⎯31 − x U⎯32 + U⎯33U⎯31 U⎯32 U⎯33

1 0 0
2x 1 0
x2 x 1

By Lemma 6 we can therefore choose a value of  such that  is coprime
to . For this value of  let 

x U⎯33
	 x

U (x) = ( ) .
p q −
r s −
− − −

Then , where  is coprime to .
Therefore

( )U (x) = ( )r −p 0 0 u − u = qr − ps 	

f (r, −p) = ( ) A( ) = ( ) ( ) ( ) = u2.r −p 0
−r
p
0

0 u −
0 0 −1

2

0 1 0
−1

2 0 0

0
u
−

If  and  have a common factor , then  is also a factor of . By cancelling,
we can therefore suppose that  and  are coprime integers such that

.

p r t t u
p r

f (r, −p) = u2

Let  and  be integers such that . Then α β βr + αp = 1

( ) ( ) ( ) = ( ) .
r −p
α β

a 1
2b

1
2b c

r α
−p β

u2 ∗
∗ ∗

Then there are integers  such that , where  is coprime to
and therefore to . Then  is a form and .

v, w f ∼ [u2, v, w] u 	
v [|u| , v, w |u|] [u2, v, w] = [|u| , v, w |u|]2

Let  be the multiplicative group of integers modulo
and let  be the subgroup of squares. Two elements  and  of  are in the
same coset of  in  if, and only if, 

G |	| = p1p2… pr
S x y G

S G

( x
pi

) = ( y
pi

) , for 1 ≤ i ≤ r.

Hence there are  cosets of  in . Furthermore, precisely  of these
cosets contain the elements such that , i.e. such that an even
number of  are .

2r S G 2r − 1

( x
|	|) = 1

( x
pi) −1

We are now in position to determine which integers can be represented
modulo  by establishing a close connection between  and .	 CL (	) / S (	) G / S

The representation theorem 
• A form represents, modulo , all the integers in a particular coset of

and no integer of  in any other coset.
	 S

G
• An integer  of  is represented by a form modulo  if, and only if,

.
m G 	

( m
|	|) = 1
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Proof:
Let  be any form of discriminant . By Lemma 3(i) we can suppose

that  is a form  with  odd and coprime with . Since
 we have . By quadratic reciprocity, since
, we have . Let .

Then 

f 	
f [a, b, c] a 	

	 = b2 − 4ac (	
a ) = 1

|	| ≡ 3 (mod 4) ( a
|	|) = (|	|

a )(−1
a ) = (	

a ) = 1 m = ar2 + brs + cs2

m = a (r +
bs
2a)2

+
4ac − b2

2a
s2 ∈ aS and ( m

|	|) = ( a
|	|) = 1.

Conversely, let  and  be classes of forms in distinct cosets of
in . By Lemma 3 we can suppose  and

, where  and  are pairwise coprime. If  and  are in
the same coset of  in , then  and, by the representation of squares
theorem, , a contradiction. Thus, by the counting theorem, we
have at least  cosets of  in  (and therefore precisely  cosets)
containing elements which are represented by forms modulo .

� �′ S (	)
CL (	) � = �a, b, c�

�′ = �a′, b′, c′� a, a′ 	 a a′
S G aa′ ∈ S

��′ ∈ S (	)
2r − 1 S G 2r − 1

	

We can now prove the Eureka theorem by applying the method used in [2].

5.  A proof of the Eureka theorem 
Theorem:

Every positive integer is the sum of at most three triangular numbers.

Proof:
Let  be a positive integer and define  to be the square-free part of

. Let , then  and
n u

8n + 3 	 = −u 	 ≡ 5 (mod 8)

(−2
|	|) = (−1

|	|) ( 2
|	|) = (−1)(|	| − 1)/2 (−1)(|	|2 − 1)/8 = 1.

So, by the representation theorem and Lemma 3(i), there is a form
such that ,  and .

[a, b, c]
gcd (a, 	) = 1 b2 − 4ac = 	 ax2 + bxy + cy2 ≡ −2 (mod	)

Let ,  and  then  and  are coprime,
 and . Also,

and so there is an integer  such that .

A = 2a C = 2c u = −	 A u
AC ≡ b2 (mod u) A > 0 (2ax + by)2 + (4ac − b2)y2 ≡ −8a (mod	)

X −A ≡ X2 (mod u)
Then  and  are coprime and so there is an integer  such that

 and .
X u Y

b ≡ XY (mod u) C ≡ −Y2 (mod u)
Now consider the symmetric matrix

M = ( ) ( ) ( ) = ( ) .
1 0 0
0 1 0

−Y
u −X

u 1

A b 0
b C 0
0 0 1

u

1 0 −Y
u

0 1 −X
u

0 0 1

A b ∗
b C ∗
∗ ∗ ∗

 and the coefficients of  are the integers|M| = 1 M

A, b, C, −
AY + bX

u
, −

bY + CX
u

,
(A + X2) (C + Y2) − (b − XY)2

u2
.
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Note that , with equality

if, and only if, . This property is called positive-definiteness and
both  and any equivalent matrix will also be positive-definite.

( )( )( ) =
(Ax + by)2 + uy2

A
+

z2

u
≥ 0x y z

A b 0
b C 0
0 0 1

u

x
y
z

x = y = z = 0
M

 By Lemma 5,  is equivalent to an integer matrix  with

 and so  or . By positive definiteness,  and then

M ( )r s t
s ∗ ∗
t ∗ ∗

r2 ≤ 64|r|
27 |r| = 0 1 r = 1

( ) ( ) ( ) = ( ) .
1 0 0
−s 1 0
−t 0 1

1 s t
s ∗ ∗
t ∗ ∗

1 −s −t
0 1 0
0 0 1

1 O
O N

By similarly applying Lemma 2(ii) to  we see that  is equivalent to the
identity matrix. Then  is also equivalent to the identity matrix and so

 for some integer matrix .

N M
M−1

M−1 = YYT Y
Let . Then, applying cofactors, ( ) = ( ) Yα β γ 0 0 1

u = ( ) M−1 ( ) = α2 + β2 + γ2.0 0 1
0
0
1

Then  is also the sum of three squares. Working modulo 8 these
squares must all be odd, and so we have 

8n + 3

8n + 3 = (2A + 1)2 + (2B + 1)2 + (2C + 1)2

⇒ n =
A (A + 1)

2
+

B (B + 1)
2

+
C (C + 1)

2
.

‘EΥPHKA!  num=�+�+�’; a truly astonishing result for a 19-year old to
have proved.
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