
ENDOMORPHISM RINGS OF QUASI-INJECTIVE 
MODULES 

B. L. OSOFSKY 

Y. Utumi (14 and 15) obtained some interesting results on self-injective 
rings. He showed that, if R is right self-injective, then so is R/J, where J is 
the Jacobson radical of R. Also, if R is right self-injective and regular, then 
R is left self-injective <=> for any set of orthogonal idempotents {^}, 11* etR 
is an essential extension of ]£* © etR. This note extends these results to endo-
morphism rings of quasi-injective modules. 

Let R be a ring with identity 1, M R a unital right jR-module. M R is called 
injective if it is a direct summand of every i^-module containing it. The fol­
lowing are well-known properties of injective modules (see 1, Chapter 1). 

(1.1) A direct summand of an injective module is injective. 
(1.2) A finite direct sum of injective modules is injective. 
(1.3) If AR Ç BR, and / : A —» M, where M is injective, t h e n / extends to 

a m a p / : B -> M. 
(1.4) If for any right ideal I oi R and m a p / : I —* M, there is an m £ M 

such that f(x) = mx for all x Ç / , then M is injective. 
MR is called an essential extension of NR, written M ' 2 N or N C ' M, 

if M 3 iV and for all KR Ç Af, X Pi iV = 0 ^ K = 0. Every i f B has an 
injective essential extension called the injective hull of M. Every injective 
module containing M contains an isomorphic copy of this injective hull. (See 
Eckmann and Schopf 2.) 

NR is called closed in MR if NR has no essential extension in MR. I t is 
called complemented in MR if there exists B R Ç M such that AT" is a maximal 
element in the set of all submodules of M which have zero intersection with B. 

MR is called quasi-injective if, for all NR Ç MR and all / : N —> M, f ex­
tends to a map from M to M. This condition is weaker than injectivity. For 
example, any simple module is quasi-injective but not necessarily injective. 

LEMMA 1. Let NR Ç MR. Then N is closed in M t=> N is complemented in M. 

Proof. This is an immediate consequence of Proposition 1.7 of Miyashita 
(9). 

LEMMA 2. Any closed submodule of a quasi-injective module M is quasi-
injective and a direct summand of M. 

Proof. This is Proposition 4.3 of (9). 
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COROLLARY 3. Let N R be a closed submodule of the quasi-infective module MR. 
Let P Ç Jlf, f: P —> JV. Then f extends to a map from M to N. 

Proof. Ex tend/ to a map from Jlf to M and follow this by a projection onto 
the direct summand JV. 

LEMMA 4. Let M be quasi-injective, JV C Jlf. Then there is a direct summand 
P of M such that P ' 2 JV. 

Proof. By Zorn's lemma, one can find a maximal essential extension P of 
JV in M. Since K'^P'^N implies K ' 2 JV, P is closed. By Lemma 2, P 
is a direct summand of Jlf. 

If M, JV, and P are as in Lemma 4, P will be called a quasi-injective closure 
of JV in Jlf. Unlike the injective hull of JV, quasi-injective closures of JV in 
distinct quasi-injective modules need not be isomorphic. However, two quasi-
injective closures P and P' of JV in Jlf must be isomorphic. For the identity 
of JV extends to a m a p / from P to P' whose kernel has zero intersection with 
JV. Since P ' 3 JV, / is a monomorphism. By (9, Proposition 4.4), P ~ P'. 

Property 1.2 for injective modules does not hold for quasi-injective modules. 
However, the following weaker version is sufficient for our purpose. 

LEMMA 5. Let M be quasi-injective, M = A 0 B = C 0 D zvhere i H C = 0. 
Then the projection of C on B is a direct summand of B, and A 0 C is a direct 
summand of M. 

Proof. Let w project M on B with kernel A. Then w restricted to C is a 
monomorphism. Let a: ir (C) —> C be its inverse, a extends to a map: B —» C. 
Then air is the identity of C, so B = ir(C) © kernel a. We show that 
M = A © C © kernel cr. 

Let x G Tkf. Then x = a + 7r(c) + d for some a £ A, c £ C, d G kernel o\ 
Moreover, 7r(c) = c — a' for some a' £ A. Then 

x = (a — a') + c + d Ç 4̂ + C + kernel a, 

and therefore 4̂ + C + kernel <r = Jlf. 
Let a -{- c + d = 0} a £ A, c £ C, d G kernel cr. Then c = —a — d, thus 

7r(c) = — d G ir(C) H kernel o- = 0. Thus a + £ = 0, and therefore a and c 
are in A C\ C = 0. We conclude that the sum is direct. 

A ring R is called regular if every finitely generated right ideal is generated 
by an idempotent. Every finitely generated left ideal of a regular ring is also 
generated by an idempotent. 

We note that, for any module MR, NR Ç Jlf is a direct summand of M if 
and only if there is an idempotent e = e2 G HornR(M> M) such that JV = eM. 

In the following, Jlf will denote a quasi-injective P-module; A = HomR(MR, 
MR)\ e,f, and g will denote idempotents in A; J = the Jacobson radical of A; 
A = A/J ; and for x G A, x will denote its image in A. If NR C PR, where P 
is a direct summand of Jlf, then E(N) will denote any quasi-injective closure of 
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N in P. By the above, N is a closed quasi-injective submodule of M <=> N = eM 
for some e = e2 G A. 

References to (14) indicate that Utumi's proof goes through with very 
minor changes. 

LEMMA 6. Let x = x2 (E A. Then there exists an e = e2 £ A such that x = ë. 

Proof. See (7), or (14, Corollary 3.2). 

We will henceforth write idempotents in A as ë, /, or g. Of course, the 
lifting idempotent need not be a unique idempotent of A. 

LEMMA 7. / = {x £ A| kernel x C ' M}f and A is regular. 

Proof. See Utumi (11, or 14, Lemma 4.1). 

1. Right self-injectivity of A. It is well known that A need not be a 
right self-injective ring. For example, the £-adic integers equal Homz{Zv*, 
Zpoo) are not self-injective. However, if / = 0, then AA must be injective. (See 
Johnson and Wong (6).) Moreover, if M = R, A = R, then M is injective by 
1.4 and AÂ is injective by Utumi's theorem. In this section we show that 
Utumi's result is true in general; that is, the quasi-injectivity of M implies 
injectivity of AA-

LEMMA 8. Let e A H / A = 0. Then there exists a g = g2 £ A such that 
fA = gA and gë = 0. 

Proof. Since A is regular by Lemma 7, A = ëA © / A © Î. Let /A = ÂX, 
il 0 J = (T _ h)I for h = h2 e A. Then hf = / , fh = h, and 

h = hf + h(ï - f) = / + fh(T - /) . 

Set g = / + /A(l — ./)• Then gA = /A, g2 = g, and g = h, thus 

6 = (1 — h)ë + gë => gë = 0. 

LEMMA 9. N Q' M =ï eN C ' eAf /or ail e = e2 G A. 

Proof. This is (14, Lemma 2.2) with right ideals replaced by submodules 
of M. Let eM^K, K C\ eN = 0. Let y G if H iV. Then y = ey since 
if C gM, and therefore y £ eN r\ K = 0. Hence if = 0 since N Q' M. 

LEMMA 10. Let ëj G Â, ël H / Â = 0. rAe» eM C\fM = 0, eAC\fA = 0, 
awd eA + /A = gA /or some g = g2 6 A. 

Proof. By Lemma 8, we may assume t h a t / ë = 0. Then/e G / . By Lemma 7, 
iV = kernel/e C ' M. Then eN C\fM = 0, so by Lemma 9, eMC\fM = 0. 
(See 14, Lemma 3.4.) Since x 6 eA P i /A takes ikf to eMC\fM, eAC\fA = 0. 
Moreover, eM ®fM is a direct summand of M by Lemma 5. Hence there 
is a g = g2 G A such that eikf © / i f = gM. ge = e and g/* = / , so gA^DeA+fA. 
Let Tri project M on gM with kernel fM + (1 - g)M, TT2 project i f on fM 
with kernel eikf + (1 — g)M. Then g = ewi + fr2 £ eA + / A . Thus 
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eA+fA = g A. 

LEMMA 11. Let {e\i G J\ be idempotents in A such that ^etA is direct. 
Then ^eiA is direct, J^ e%^ is direct, and if J is finite, X etA = eA for some 
e = e2 G A, where eM = £ © etM. 

Proof. Since independence of modules depends only on finite sums, it 
suffices to consider only the case when J' is finite. If J has only one element, 
the lemma is true. Now assume the lemma for all sets of n — 1 idempotents 
d. Then if J^n

i=i ëtA is direct, 

n— 1 n— 1 

^ etA = e'A, e'M = X ^M", 

and the sums are direct. Since 
n _ _ _ 

X ë*A = ê'A ©ê"wA, 

by Lemma 10, e'A P\ e„A = 0, and 

X) ©e<A = e'A ®enA = eA 

for some e = e2 G A, where 

eAf = e'M © enM = X) © eiM-
i=l 

THEOREM 12. Ax is infective. 

Proof. Let 7 be a right ideal of A, / : I —> A. Let {êt\ i G */} be a maximal 
set of idempotents in I such that ^etA is direct. Then 7 '~D S t e ^ A , since 
xA H ^iç-fëiA = 0 implies xA + Xlze/^A is a direct sum. Since A is regular 
by Lemma 7, xA = f A for some / = f2 G A. Then / = 0 by the maximality 
of {ët\ieJ}. 

By Lemma 11, J j € / ^ A is direct. Hence we may define a A-homomorphism 
cj>: ^i^eiA —* A by (frief) = x ^ for all i f i , where Xj is any element in A 
such that/(ë*) = xtei. 

Define ^: ^ ^ ^ M - ) Af by 

( m \ w 

3=1 ' 3=1 

\p is an i^-homomorphism if it is well-defined. Let ]T JLX ê râ  = 0. By Lemma 11, 
^21=i ejA = eA for some e = e2 G A. Then £;- = ee;, and 

( m \ w m 

X ^ J = X <t>(ej)m3 = X) <t>(e)e3mj 
3=1 / J = l j = l 

m 

= «K )̂ X ^iw i = 0, 
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thus \f/ is well-defined. Since M is quasi-injective, \p extends to an element 
X G A. Then for all u G M", 

\ei(u) = X(et(u)) = yp(ei(u)) = <j>{e^){u) = x^^u). 

Then Xë* = ô̂ ë* =/(£*) for all i £_*/, and (X — / ) E * € J ^ A = 0. Let x € /, 
and set i£ = {z G A| xz G E ^ ^ A Î . Then (Xx — f{x))K — 0. Since 

Let A(X# — f(x)) = Aë, where ë = ë2. Then ëA Pi K = 0, so ëA = 0 and 
f{x) = Xx for all x £ I. Then AX is injective by 1.4. 

The argument used in proving Theorem 12 is basically that of Johnson 
and Wong; see (6). 

We have as immediate corollaries the theorems whose proofs were modified 
to prove Theorem 1. 

COROLLARY 13 (Utumi). Let R be a right self-injective ring. Then R/J(R) 
is a right s elf-injective ring. 

COROLLARY 14 (Johnson-Wong). Let MR be quasi-injective, and A = 
HomR(MR, MR) regular. Then AA is injective. 

As in Utumi's work, we can show that an arbitrary set of orthogonal 
idempotents in A lifts orthogonally to A. Indeed, the following lemma and 
theorem are a minor modification of (14, Theorem 4.9). 

LEMMA 15. Let Eë*A be direct, and eAf'D ^etM. Then ëA ' 2 E^A. 

Proof. Since A is regular, we need only show any non-zero right ideal 
generated by an idempotent intersects E^zA non-trivially. Let / G ëA, 
/ A H E ^ A = 0. By Lemma II, f M © J2eM is a direct sum. Since ef — f G / , 
by Lemma 7 there is an N C ' M such that (ef — f)N = 0. Hence fN C eM. 
Since « I ' D E^Af, /iV '^fN Pi X>fAf = 0. Thus fN = 0. By Lemma 9, 
fM'^fN = 0, so fM = 0. Then / = 0 and ëA ' 2 Eë*A. 

THEOREM 16. Le/ {ë̂ l i G «/} #e a «^ of orthogonal idempotents in A. Then 
there exists {j\\ i G */} £ A 0/ orthogonal idempotents such that ft = ë*. 

Proof. By Lemma 11, J^etM is direct. Let eAf = £(X>*Af). For i G J, 
let ĝ Af = - E ( E ^ ^ A f ) be a quasi-injective closure of E ^ i ^ A f in #Af. Then 
e<Af H E ^ t ^;Af = 0 =» e*AT n g,Af = 0 so 

M = etM ®giM © (1 - e)M = etM © (1 - *<)Af. 

By Lemma 5, 

M = eM ®giM © (1 - et){l - e)M ®K, 

where X Ç ( 1 - e*)Af. Since (1 - e) = ^ ( 1 - e) + (1 - e,)(l - e), i£ = 0. 
Now let ft project M on etM with kernel g*Af © (1 — et)(l — e)M. Then 
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ft2 = fu Cifi = fufi^i = eu and if i ^ j , ftej = 0 so /*/, =_fiejfjj= 0. Thus 
{/i| i G ^ } are orthogonal idempotents, and e{A = ftA, ëfA — /*A for all i. 
By Lemma 15, g*A'2 L^A- Since /<(Z)^ë /A) = ( L ^ z / ^ A ) = 0, we 
have, as in the proof of Theorem 12, that ft(giA) = ei(gtA) = 0. Moreover, 
/,(T - ët)(î - c) = 0. Hence (Ï - /<)Â 3 g J © (Ï - ë<) ( ï - ë)Â. Since 

Â = êÂ © giX 0 (Ï - ë<) (ï - ê)Â, 

(ï - ft)Â = (ï - cOÂ = I,Â © (ï - ê,)(ï - ê)Â. 
Then 

2. Left self-injectivity of A. Let {et\ i G , /} be a family of orthogonal 
idempotents of A. Then there exists a map <j>: M —> 11^^ ê Af given by 
0(w) = (tffra). <£ is an isomorphism between X^^/ e*Af C M and 

£<€• © e f M C Ui^etM. 

(j) is then a monomorphism on any essential extension of Y,etM in AT, in 
particular on EÇ^etM). As in Utumi's work (12), we investigate when <j> 
is onto. 

LEMMA 17. (i) <j> is onto <=>for allf: £ Aet —> A f̂, /Aère existe aw m G Af such 
thatf{\) = \m for all X G ]£Ae*. 

(ii) 0 0W/0 =$ for allf: £Aez- —> AA, ^Aere exists a y G A swc/z that f(\) = X7 
for a// A G £A^i. 

Proof, (i) Let 0 be onto, and let/ : X^Ae* —> M}f(et) = etxt. Let (etxt) = 4> (m). 
Then ê ra = etXi = f(et) for all i G «/, so Xra = /(X) for all X G ^Ae*. 

Conversely, let every / : ^Ae* --> AT be given by right multiplication by 
some m G Af. Let (epc*) G II^Af. Define/: X]A^ —» Af by/(gj) = e ^ . Then 
there exists w G Af with ê m = epc*, so 0(m) = (etXi). 

(ii) L e t / : ^Ae* —> A, f(e{) = e^i. Define 7 G A by y(x) = <t>~1(eiXix) for 
all x G M. Then 0*7 (x) = ei\t(x) for all x G M, i ^ J', so £,7 = e ^ = f(et) 
for all * G . / . 

LEMMA 18. Le/ </> &e onto for every set {et\ i G */} 0/ orthogonal idempotents. 
Let {N j\j G ^/} fre a family of independent submodules of M. Then TIN j ' 3 ^Njm 

Moreover, if M in injective, then TlNj'ÇI J^Njfor every set of independent sub-
modules implies <j> is onto for every set of orthogonal idempotents. 

Proof. Let {Nj\j G ^ } be a family of independent submodules of M, and 
let eM = E(J^jefE(Nj)). Let N* be a quasi-injective closure of J2i^jNt 

in eM. Let ej project M on E(Nj) with kernel Nj* + (1 — e)M. Then 
lej\j ^c-r\ is a set of orthogonal idempotents, and ef — e3 for all j . Let 
(̂ j-x̂ ) G HejM. Since </> is onto, there exists m G M such that </> (m) = (ejXj). 
Then <j>(ern) = (ejem) = {e^m), so <j> restricts to an isomorphism from eM to 
n ; € / ejM. Then lie,- Af O J^ejM. Since ^AT ; 3 TV,- for all j , Y,ejM'^ ^Nj. 
Hence £7V,. Ç ; I l i V / ç n^AT. 
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Conversely, assume M is injective. Let {e^ i G J] be a set of orthogonal 
idempotents of A. Then E{^eiM) is injective, so <£(£(X^Jkf)) is a direct 
summand of TletM. Thus TletM ' 2 ^LetM implies 0 is onto. 

LEMMA 19. Let S be a right s elf-injective regular ring. Then S is left s elf­
in jective ^ for every set {et\ i G J\ of orthogonal idempotents andf: J^Se* ~> S, 
there is an m (z S such that f{u) = um for all u G J^Se*. 

Proof. See Utumi (15, §3). 

THEOREM 20. Let <j> be onto for every orthogonal set of idempotents 
{et\i G y\ Ç A. Then XA is injective. 

Proof. By Theorem 12, AÂ is injective. Hence we need only show that for 
any set {ë*| i G J>\ of orthogonal idempotents of A, and / : J^Ae* —• A, there 
exists 7 G A with f{et) = ety for all i G «A 

By Theorem 16, we may assume that {ez-| i G «/} are orthogonal idem­
potents of A. Let f(êi) = efki. By Lemma 17 (ii), there exists 7 G A such 
that ea = et\i for all i G J. Then ë f̂ = ë̂ X* = /(ë*) for all i G */. Lemma 19 
then shows that XA is injective. 

COROLLARY 21. If M is injective, then HNt
f^ ^Ntfor any independent 

family of submodules of M implies XA is injective. 

Proof. Apply Lemma 18 and Theorem 20. 

We note that <j> is not always onto, even if XA is injective. Let Mz = £ © ^v* > 
where the sum is over all primes p. Then M is injective, A = II />-adic 
integers is commutative, so XA is injective, but TlZp* is not an essential 
extension of M. This same example shows that the converse to Lemma 17 (ii) 
is false. 

The hypothesis M injective cannot be removed from the second part of 
Lemma 18. For let R be a direct product of fields TlFh and let M — ]T/<Y 
Then M is quasi-injective, TlFf ' 2 ^Pu but <j> is clearly not onto. 

3. Singular submodule equal to 0. For each x G M, N C M, let 

(N : x)B = {r G R\xr G N], (N : *)A = {X G A| Xx G N}. 

Z(MR) = {x G M\ (0:x)RQ'RR}, Z(AM) = {x G M\ ( 0 : x ) A C ' A A } . 

Then Z(MR) (Z(AM)) is a submodule of MR (AM). 
In this section we will assume that Z(MR) = 0. We can then get nicer 

forms of the theorems of § 2. 

LEMMA 22. Z(MR) = 0 implies 7 = 0. Hence A = Â. 

Proof. Let X G J. Then kernel X C ' i f by Lemma 2. Let x G M. Then 
(0 : Xs)B = (kernel X : x) R ÇZ' R so Xx G Z(M«) = 0. Hence M = kernel X 
so X = 0. 
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LEMMA 23. Let x G M, E(xR) = eM. Then Xx = 0 <^ \e = 0 for all X 6 A. 

Proof. If Xe = 0, then \(ex) = \x = 0. 

Let Ax = 0. For y £ M, (xR : e^)^ ^ ' ^/z a n d Xey(xR : e;y)s = 0. Hence 
Xey 6 Z(Jl/fl) = Oso Ae = 0. 

COROLLARY 24. Z(AM) = 0. 

Proof. Let O ^ x f t f , E(xR) = eM. Then (0 : x)A H Ae = 0 by Lemma 
23. 

THEOREM 25. 7f Z(MR) = 0, A i ^ is infective <̂> <£ w onto for all {et\i £ J} 
orthogonal idempotents. 

Proof. By Lemma 17, 0 is onto <=> for / : ^Ae2- —» A f̂ there exists m G Jkf 
such that f (A) = Am for all A G X)Ae*. It is then clear that tM injective => 0 
is onto. 

Let 4> be onto for all {et\ i G J^}, A^ ^ A, / : I —> M. Let {Ax*} be a maxi­
mal set of independent principal subideals of / . By Theorem 20, AA is in­
jective. Let Ae be an injective hull of I in A. Then ^Axt + A(l — e) is a 
direct sum, and since A = A is regular, 7 ' 2 SAx* so A ' 2 SAXj+A(l — a). 
Let ^ project A on Ax^ with kernel the injective hull of J^j^iAxj © A(l — e). 
Then {et} VJ {1 — e\ is a set of orthogonal idempotents. If we s e t / ( l — e) =0 , 
/ maps ^Aet + A(l — e) —> M. By Lemma 17, there exists m G M such 
that /(w) — ww = 0 for all u G J^Ae{ + A(l — e). Let 3/ G A, and set 
f(y) = ym. J: A-+M. Let z G I. Then A ' 2 (X>e* : 2), and 

Œ>e< :*)[/(*) - / ( * ) ] = 0 

since / and / agree on X^Ae*. Thus ]{z) = /(s) by Corollary 24, and A M is 
injective by 1.4. 

Even in the case where Z(MR) = 0, we cannot conclude that AA injective 
implies \M injective, M = Y,Fi} R = HFt is a counterexample to this. M 
here is only quasi-injective, not injective. I t is unknown whether one can 
have Z(MR) = 0, MR injective, and AA injective, but not AM injective. We 
also note that in the above example, &M is quasi-injective. Whether this is 
always true is also unknown. 
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