FOURIER TRANSFORMS OF DISTRIBUTION FUNCTIONS

F. J. DYSON

A distribution function $\phi(x)$ is assumed to have the following properties:

(1)
$$\phi(x)$$
 is non-decreasing

(2)
$$\lim_{x \to -\infty} \phi(x) = 0, \quad \lim_{x \to +\infty} \phi(x) = 1,$$

(3)
$$\phi(x) = \lim_{y \to x+0} \phi(y) \text{ for every } x.$$

The Fourier transform of $\phi(x)$ is defined by the Stieltjes integral

(4)
$$\Phi(t) = \int_{-\infty}^{\infty} e^{-itx} d\phi(x).$$

Let ϕ_1 and ϕ_2 be two distribution functions. Let a positive real number δ be given. We consider the question, does there exist a positive ϵ such that the condition

(5)
$$|\Phi_1(t) - \Phi_2(t)| < \epsilon \text{ for all } t$$

implies

(6) $\left|\phi_1(x) - \phi_2(x)\right| < \delta ?$

There are three separate problems here. (i) We may allow ϵ to depend on δ , ϕ_1 , and x. Then our question is, does the uniform convergence of Φ_2 to Φ_1 imply a point-wise convergence of ϕ_2 to ϕ_1 ?. The answer to this question is yes, as is well known; in fact Lévy [1, p. 49] proves a theorem which states considerably more than is needed for our problem. (ii) We may allow ϵ to depend on δ and ϕ_1 , but not on x. Then our question is, does uniform convergence of Φ_2 to Φ_1 imply uniform convergence of ϕ_2 to ϕ_1 ? The answer to this question is also yes; we prove this in Theorem 1 below. (iii) We may allow ϵ to depend on δ only. In this case the answer is no, as we shall show by an example.

Counter-example for case (iii). Let a and b be real numbers with b > a > 0. We consider the distribution functions

(7)
$$\phi_1(x) = \begin{cases} \frac{1}{2} \log\left(\frac{x^2 + b^2}{x^2 + a^2}\right) / \log\left(\frac{b}{a}\right), & x \le 0\\ 1, & x \ge 0. \end{cases}$$

(8)
$$\phi_2(x) = 1 - \phi_1(-x).$$

Received June 10, 1952.

Then

(9)
$$\phi_1(x) - \phi_2(x) = \frac{1}{2} \log \left(\frac{x^2 + b^2}{x^2 + a^2} \right) / \log \left(\frac{b}{a} \right),$$
 all x ,

and in particular

(10)
$$\phi_1(0) - \phi_2(0) = 1.$$

However, by (9) we have

(11)
$$\Phi_1(t) - \Phi_2(t) = i\pi \frac{t}{|t|} \left[e^{-a|t|} - e^{-b|t|} \right] / \log\left(\frac{b}{a}\right),$$

(12)
$$|\Phi_1(t) - \Phi_2(t)| < \pi/\log\left(\frac{b}{a}\right).$$

Since b/a may be arbitrarily large, we see that we can satisfy (5) for any $\epsilon > 0$ and still have (6) false for $\delta = 1$.

Statement of theorem for case (ii).

THEOREM 1. Let a positive δ and a distribution function ϕ_1 be given. Then we can find $\epsilon > 0$, depending only on δ and ϕ_1 , such that (5) implies (6) for all x and for all ϕ_2 .

Let $h_{\eta}(x)$ be the function defined by

(13)
$$h_{\eta}(x) = \max(0, 1 - |x/\eta|).$$

Then (4) gives

(14)
$$\int_{-\infty}^{\infty} h_{\eta}(x-w) \, d\phi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{4\sin^2 \frac{1}{2}\eta t}{\eta t^2} e^{itw} \, \Phi(t) \, dt,$$

both sides being absolutely convergent integrals. If ϵ is chosen so that (5) is satisfied, then (14) gives, for every η and w,

(15)
$$\left|\int_{-\infty}^{\infty}h_{\eta}(x-w)[d\phi_{1}(x)-d\phi_{2}(x)]\right| < \epsilon.$$

Since ϕ_1 is non-decreasing and (3) holds,

(16)
$$\phi_1(w) - \lim_{y \to w = 0} \phi_1(y) = \lim_{\eta \to 0} \int h_\eta(x - w) \, d\phi_1(x),$$

the limits on both sides necessarily existing. Similarly (16) holds for ϕ_2 . Therefore letting $\eta \to 0$ in (15), we have, for all w,

(17)
$$|(\phi_1(w) - \lim_{y \to w = 0} \phi_1(y)) - (\phi_2(w) - \lim_{y \to w = 0} \phi_2(y))| < \epsilon.$$

That is to say, at every point the discontinuities in ϕ_1 and ϕ_2 differ by at most ϵ . Another consequence of (15) is obtained by writing in turn $w + \eta$, $w + 2\eta$, ..., $w + N\eta$ for w and adding the resulting inequalities. From the definition of $h_{\eta}(x)$,

$$\sum_{m=1}^{N} h_{\eta}(x - w - m\eta) = 1, \qquad \qquad w + \eta \leqslant x \leqslant w + N\eta,$$

/ \

and

$$\begin{split} 0 \leqslant \sum_{m=1}^{N} h_{\eta}(x - w - m\eta) \leqslant 1, \\ w \leqslant x \leqslant w + \eta \text{ and } w + N\eta \leqslant x \leqslant w + (N+1)\eta. \end{split}$$

Using the fact that ϕ_1 and ϕ_2 are non-decreasing, adding together (15) for these N values of w therefore gives

(18)
$$\int_{w}^{w+(N+1)\eta} d\phi_2(x) > \int_{w+\eta}^{w+N\eta} d\phi_1(x) - N\epsilon.$$

We write for brevity $\alpha = \frac{1}{4}\delta$. We can divide the whole line $(-\infty, +\infty)$ into a finite set of intervals I_1, \ldots, I_m with the following properties. (i) Each I_n is closed on the left and open on the right. (ii) The total variation of $\phi_1(x)$ on I_n is less than α . Let L_n^1 and R_n^1 be the limits to which $\phi_1(x)$ tends as x tends to the left and right end-points within I_n . Similarly let L_n^2 and R_n^2 be the limits of ϕ_2 . By (17) we have

(19)
$$R_n^2 - R_n^1 < L_{n+1}^2 - L_{n+1}^1 + \epsilon.$$

Now let λ be the length of the shortest I_n , let Λ be the combined length of I_2, \ldots, I_{m-1} , and let N be an integer greater than $(2\Lambda/\lambda)$. The choice of N and of the I_n depends only on δ and ϕ_1 and is independent of ϵ . Given any I_n with 1 < n < m, we can choose two points x, x' inside I_n such that

$$(20) x' - x > \frac{1}{2}\lambda.$$

Then we apply (18) with w = x, $w + \eta = x'$, giving

(21)
$$\phi_1(x') + \phi_2(x' + N\eta) > \phi_2(x) + \phi_1(x + N\eta) - N\epsilon.$$

By the definition of N, the point $(x + N\eta)$ belongs to I_m and so

$$\phi_1(x+N\eta) > 1-\alpha, \quad \phi_2(x'+N\eta) \leqslant 1.$$

Hence (21) becomes

(22)
$$\phi_1(x') > \phi_2(x) - N\epsilon - \alpha$$

Again, applying (18) with $w = x - N\eta$, $w + \eta = x' - N\eta$,

$$\phi_2(x') + \phi_1(x' - N\eta) > \phi_1(x) + \phi_2(x - N\eta) - N\epsilon,$$

and since $(x' - N\eta)$ belongs to I_1 this becomes

(23)
$$\phi_2(x') > \phi_1(x) - N\epsilon - \alpha.$$

Let x' and x tend respectively to the right and left to the end-points of I_n . Then (22) and (23) give

(24) $L_n^2 \leqslant R_n^1 + N\epsilon + \alpha,$

(25)
$$R_n^2 \ge L_n^1 - N\epsilon - \alpha.$$

556

These inequalities, (24) and (25), which have been proved for 1 < n < m, are trivially true also for n = 1 and n = m.

Writing n + 1 for n in (24) and combining it with (19), we find

(26)
$$R_{\pi}^{2} < R_{n}^{1} + R_{n+1}^{1} - L_{n+1}^{1} + (N+1) \epsilon + \alpha < R_{n}^{1} + (N+1) \epsilon + 2\alpha.$$

Similarly (25) combined with (19) gives

(27)
$$L_n^2 > L_n^1 - (N+1) \epsilon - 2\alpha.$$

Now R_n^2 and L_n^2 are the upper and lower bounds of ϕ_2 in I_n , and R_n^1 and L_n^1 differ by at most α . Therefore (26) and (27) imply

(28)
$$\left|\phi_2(x) - \phi_1(x)\right| < (N+1)\epsilon + 3\alpha = (N+1)\epsilon + \frac{3}{4}\delta$$

for all x in $(-\infty, +\infty)$. The choice of N depended only on δ and ϕ_1 . Given δ and ϕ_1 we can choose ϵ to be any number less than $(\delta/(4(N+1)))$, and then (5) will imply (6). This proves the theorem.

Additional remarks. Another theorem can be derived from Theorem 1 by weakening both the hypothesis and the conclusion slightly. Let us define the distance between two distributions ϕ_1 and ϕ_2 by

(29)
$$||\phi_1 - \phi_2|| = \max(|\{\phi_1, \phi_2\}|, |\{\phi_2, \phi_1\}|),$$

where

(30)
$$\{\phi_1, \phi_2\} = \max_{x,x'} (\min (x' - x, \phi_1(x) - \phi_2(x'))).$$

This definition of the distance is equivalent to that given by Lévy [1, p. 47]. It is easy to see that $||\phi_1 - \phi_2||$ is the side of the largest square that can be inserted between the graphs $y = \phi_1(x)$ and $y = \phi_2(x)$ when these are plotted in cartesian coordinates in the usual way. Thus the convergence defined by $||\phi_2 - \phi_1|| \rightarrow 0$ is topologically weaker than uniform convergence of ϕ_2 to ϕ_1 , but topologically stronger than point-wise convergence of ϕ_2 to ϕ_1 . The modified form of Theorem 1 is

THEOREM 2. Let δ and ϕ_1 be given. Then we can find $\epsilon > 0$ depending only on δ and ϕ_1 , such that

(31)
$$|\Phi_1(t) - \Phi_2(t)| < \epsilon \text{ for all } t < \frac{1}{\epsilon}$$

implies

$$(32) ||\phi_2 - \phi_1|| < \delta.$$

The proof is similar to the proof of Theorem 1, only simpler. The counterexample given previously also shows that the weaker conclusion (32) does not follow from (5) with ϵ depending only on δ .

F. J. DYSON

The author is indebted to Dr. K. L. Chung for suggesting this problem to him, and for several stimulating discussions.

Reference

1. P. Lévy, Théorie de l'addition des variables aléatoires (Paris, 1937).

Cornell University