FOURIER TRANSFORMS OF DISTRIBUTION FUNCTIONS

F. J. DYSON

A distribution function $\phi(x)$ is assumed to have the following properties:

$$
\begin{equation*}
\phi(x) \text { is non-decreasing } \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \phi(x)=0, \quad \lim _{x \rightarrow+\infty} \phi(x)=1 \\
& \phi(x)=\lim _{y \rightarrow x+0} \phi(y) \text { for every } x
\end{aligned}
$$

The Fourier transform of $\phi(x)$ is defined by the Stieltjes integral

$$
\begin{equation*}
\Phi(t)=\int_{-\infty}^{\infty} e^{-i t x} d \phi(x) . \tag{4}
\end{equation*}
$$

Let ϕ_{1} and ϕ_{2} be two distribution functions. Let a positive real number δ be given. We consider the question, does there exist a positive ϵ such that the condition

$$
\begin{equation*}
\left|\Phi_{1}(t)-\Phi_{2}(t)\right|<\epsilon \text { for all } t \tag{5}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left|\phi_{1}(x)-\phi_{2}(x)\right|<\delta ? \tag{6}
\end{equation*}
$$

There are three separate problems here. (i) We may allow ϵ to depend on δ, ϕ_{1}, and x. Then our question is, does the uniform convergence of Φ_{2} to Φ_{1} imply a point-wise convergence of ϕ_{2} to ϕ_{1} ?. The answer to this question is yes, as is well known; in fact Lévy [1, p. 49] proves a theorem which states considerably more than is needed for our problem. (ii) We may allow ϵ to depend on δ and ϕ_{1}, but not on x. Then our question is, does uniform convergence of Φ_{2} to Φ_{1} imply uniform convergence of ϕ_{2} to ϕ_{1} ? The answer to this question is also yes; we prove this in Theorem 1 below. (iii) We may allow ϵ to depend on δ only. In this case the answer is no, as we shall show by an example.

Counter-exarnple for case (iii). Let a and b be real numbers with $b>a>0$. We consider the distribution functions

$$
\begin{align*}
& \phi_{1}(x)=\left\{\begin{array}{cl}
\frac{1}{2} \log \left(\frac{x^{2}+b^{2}}{x^{2}+a^{2}}\right) / \log \left(\frac{b}{a}\right), & x \leqslant 0 \\
1, & x \geqslant 0 .
\end{array}\right. \tag{7}\\
& \phi_{2}(x)=1-\phi_{1}(-x) . \tag{8}
\end{align*}
$$

Received June 10, 1952.

Then

$$
\begin{equation*}
\phi_{1}(x)-\phi_{2}(x)=\frac{1}{2} \log \left(\frac{x^{2}+b^{2}}{x^{2}+a^{2}}\right) / \log \left(\frac{b}{a}\right), \quad \text { all } x \tag{9}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\phi_{1}(0)-\phi_{2}(0)=1 \tag{10}
\end{equation*}
$$

However, by (9) we have

$$
\begin{gather*}
\Phi_{1}(t)-\Phi_{2}(t)=i \pi \frac{t}{|t|}\left[e^{-a|t|}-e^{-b|t|}\right] / \log \left(\frac{b}{a}\right) \tag{11}\\
\left|\Phi_{1}(t)-\Phi_{2}(t)\right|<\pi / \log \left(\frac{b}{a}\right) \tag{12}
\end{gather*}
$$

Since b / a may be arbitrarily large, we see that we can satisfy (5) for any $\epsilon>0$ and still have (6) false for $\delta=1$.

Statement of theorem for case (ii).
Theorem 1. Let a positive δ and a distribution function ϕ_{1} be given. Then we can find $\epsilon>0$, depending only on δ and ϕ_{1}, such that (5) implies (6) for all x and for all ϕ_{2}.

Let $h_{\eta}(x)$ be the function defined by

$$
\begin{equation*}
h_{\eta}(x)=\max (0,1-|x / \eta|) . \tag{13}
\end{equation*}
$$

Then (4) gives

$$
\begin{equation*}
\int_{-\infty}^{\infty} h_{\eta}(x-w) d \phi(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{4 \sin ^{2} \frac{1}{2} \eta t}{\eta t^{2}} e^{i \imath v} \Phi(t) d t \tag{14}
\end{equation*}
$$

both sides being absolutely convergent integrals. If ϵ is chosen so that (5) is satisfied, then (14) gives, for every η and w,

$$
\begin{equation*}
\left|\int_{-\infty}^{\infty} h_{\eta}(x-w)\left[d \phi_{1}(x)-d \phi_{2}(x)\right]\right|<\epsilon . \tag{15}
\end{equation*}
$$

Since ϕ_{1} is non-decreasing and (3) holds,

$$
\begin{equation*}
\phi_{1}(w)-\lim _{y \rightarrow w-0} \phi_{1}(y)=\lim _{\eta \rightarrow 0} \int h_{\eta}(x-w) d \phi_{1}(x) \tag{16}
\end{equation*}
$$

the limits on both sides necessarily existing. Similarly (16) holds for ϕ_{2}. Therefore letting $\eta \rightarrow 0$ in (15), we have, for all w,

$$
\begin{equation*}
\left|\left(\phi_{1}(w)-\lim _{y \rightarrow w-0} \phi_{1}(y)\right)-\left(\phi_{2}(w)-\lim _{y \rightarrow w-0} \phi_{2}(y)\right)\right|<\epsilon . \tag{17}
\end{equation*}
$$

That is to say, at every point the discontinuities in ϕ_{1} and ϕ_{2} differ by at most ϵ. Another consequence of (15) is obtained by writing in turn $w+\eta, w+2 \eta, \ldots$, $w+N \eta$ for w and adding the resulting inequalities. From the definition of $h_{\eta}(x)$,

$$
\sum_{m=1}^{N} h_{\eta}(x-w-m \eta)=1, \quad w+\eta \leqslant k \leqslant w+N \eta,
$$

and

$$
\begin{aligned}
0 \leqslant \sum_{m=1}^{N} h_{\eta}(& x-w-m \eta) \leqslant 1 \\
& w \leqslant x \leqslant w+\eta \text { and } w+N \eta \leqslant x \leqslant w+(N+1) \eta
\end{aligned}
$$

Using the fact that ϕ_{1} and ϕ_{2} are non-decreasing, adding together (15) for these N values of w therefore gives

$$
\begin{equation*}
\int_{w}^{w+(N+1) \eta} d \phi_{2}(x)>\int_{w+\eta}^{w+N \eta} d \phi_{1}(x)-N \epsilon . \tag{18}
\end{equation*}
$$

We write for brevity $\alpha=\frac{1}{4} \delta$. We can divide the whole line $(-\infty,+\infty)$ into a finite set of intervals I_{1}, \ldots, I_{m} with the following properties. (i) Each I_{n} is closed on the left and open on the right. (ii) The total variation of $\phi_{1}(x)$ on I_{n} is less than α. Let L_{n}^{1} and R_{n}^{1} be the limits to which $\phi_{1}(x)$ tends as x tends to the left and right end-points within I_{n}. Similarly let L_{n}^{2} and R_{n}^{2} be the limits of ϕ_{2}. By (17) we have

$$
\begin{equation*}
R_{n}^{2}-R_{n}^{1}<L_{n+1}^{2}-L_{n+1}^{1}+\epsilon \tag{19}
\end{equation*}
$$

Now let λ be the length of the shortest I_{n}, let Λ be the combined length of I_{2}, \ldots, I_{m-1}, and let N be an integer greater than ($2 \Lambda / \lambda$). The choice of N and of the I_{n} depends only on δ and ϕ_{1} and is independent of ϵ. Given any I_{n} with $1<n<m$, we can choose two points x, x^{\prime} inside I_{n} such that

$$
\begin{equation*}
x^{\prime}-x>\frac{1}{2} \lambda . \tag{20}
\end{equation*}
$$

Then we apply (18) with $w=x, w+\eta=x^{\prime}$, giving

$$
\begin{equation*}
\phi_{1}\left(x^{\prime}\right)+\phi_{2}\left(x^{\prime}+N \eta\right)>\phi_{2}(x)+\phi_{1}(x+N \eta)-N \epsilon . \tag{21}
\end{equation*}
$$

By the definition of N, the point $(x+N \eta)$ belongs to I_{m} and so

$$
\phi_{1}(x+N \eta)>1-\alpha, \quad \phi_{2}\left(x^{\prime}+N \eta\right) \leqslant 1
$$

Hence (21) becomes

$$
\begin{equation*}
\phi_{1}\left(x^{\prime}\right)>\phi_{2}(x)-N \epsilon-\alpha . \tag{22}
\end{equation*}
$$

Again, applying (18) with $w=x-N \eta, w+\eta=x^{\prime}-N \eta$,

$$
\phi_{2}\left(x^{\prime}\right)+\phi_{1}\left(x^{\prime}-N \eta\right)>\phi_{1}(x)+\phi_{2}(x-N \eta)-N \epsilon,
$$

and since $\left(x^{\prime}-N \eta\right)$ belongs to I_{1} this becomes

$$
\begin{equation*}
\phi_{2}\left(x^{\prime}\right)>\phi_{1}(x)-N \epsilon-\alpha \tag{23}
\end{equation*}
$$

Let x^{\prime} and x tend respectively to the right and left to the end-points of I_{n}. Then (22) and (23) give

$$
\begin{align*}
& L_{n}^{2} \leqslant R_{n}^{1}+N \epsilon+\alpha \tag{24}\\
& R_{n}^{2} \geqslant L_{n}^{1}-N \epsilon-\alpha \tag{25}
\end{align*}
$$

These inequalities, (24) and (25), which have been proved for $1<n<m$, are trivially true also for $n=1$ and $n=m$.
Writing $n+1$ for n in (24) and combining it with (19), we find

$$
\begin{align*}
R_{n}^{2} & <R_{n}^{1}+R_{n+1}^{1}-L_{n+1}^{1}+(N+1) \epsilon+\alpha \\
& <R_{n}^{1}+(N+1) \epsilon+2 \alpha \tag{26}
\end{align*}
$$

Similarly (25) combined with (19) gives

$$
\begin{equation*}
L_{n}^{2}>L_{n}^{1}-(N+1) \epsilon-2 \alpha . \tag{27}
\end{equation*}
$$

Now R_{n}^{2} and L_{n}^{2} are the upper and lower bounds of ϕ_{2} in I_{n}, and R_{n}^{1} and L_{n}^{1} differ by at most α. Therefore (26) and (27) imply

$$
\begin{equation*}
\left|\phi_{2}(x)-\phi_{1}(x)\right|<(N+1) \epsilon+3 \alpha=(N+1) \epsilon+\frac{3}{4} \delta \tag{28}
\end{equation*}
$$

for all x in $(-\infty,+\infty)$. The choice of N depended only on δ and ϕ_{1}. Given δ and ϕ_{1} we can choose ϵ to be any number less than $(\delta /(4(N+1)))$, and then (5) will imply (6). This proves the theorem.

Additional remarks. Another theorem can be derived from Theorem 1 by weakening both the hypothesis and the conclusion slightly. Let us define the distance between two distributions ϕ_{1} and ϕ_{2} by

$$
\begin{equation*}
\left\|\phi_{1}-\phi_{2}\right\|=\max \left(\left|\left\{\phi_{1}, \phi_{2}\right\}\right|,\left|\left\{\phi_{2}, \phi_{1}\right\}\right|\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{\phi_{1}, \phi_{2}\right\}=\max _{x, x^{\prime}}\left(\min \left(x^{\prime}-x, \phi_{1}(x)-\phi_{2}\left(x^{\prime}\right)\right)\right) \tag{30}
\end{equation*}
$$

This definition of the distance is equivalent to that given by Lévy [1, p. 47]. It is easy to see that $\left\|\phi_{1}-\phi_{2}\right\|$ is the side of the largest square that can be inserted between the graphs $y=\phi_{1}(x)$ and $y=\phi_{2}(x)$ when these are plotted in cartesian coordinates in the usual way. Thus the convergence defined by $\left\|\phi_{2}-\phi_{1}\right\| \rightarrow 0$ is topologically weaker than uniform convergence of ϕ_{2} to ϕ_{1}, but topologically stronger than point-wise convergence of ϕ_{2} to ϕ_{1}. The modified form of Theorem 1 is

Theorem 2. Let δ and ϕ_{1} be given. Then we can find $\epsilon>0$ depending only on δ and ϕ_{1}, such that

$$
\begin{equation*}
\left|\Phi_{1}(t)-\Phi_{2}(t)\right|<\epsilon \text { for all } t<\frac{1}{\epsilon} \tag{31}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left\|\phi_{2}-\phi_{1}\right\|<\delta \tag{32}
\end{equation*}
$$

The proof is similar to the proof of Theorem 1, only simpler. The counterexample given previously also shows that the weaker conclusion (32) does not follow from (5) with ϵ depending only on δ.

The author is indebted to Dr. K. L. Chung for suggesting this problem to him, and for several stimulating discussions.

Reference

1. P. Lévy, Théorie de l'addition des variables aléatoires (Paris, 1937).

Cornell University

