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This paper considers the initial stage of radiatively driven convection, when the
perturbations from a quiescent but time-dependent background state are small. Radiation
intensity is assumed to decay exponentially away from the surface, and we consider
parameter regimes in which the depth of the water is greater than the decay scale of e of the
radiation intensity. Both time-independent and time-periodic radiation are considered. In
both cases, the background temperature profile of the water column is time-dependent.
A linear analysis of the system is performed based on these time-dependent profiles.
We find that the perturbations grow in time according to exp[(σ (t)t)], where σ(t) is a
time-dependent growth rate. An appropriately defined Reynolds number is the primary
dimensionless number characterising the system, determining the wavelength, vertical
structure and growth rate of the perturbations. Simulations using a Boussinesq model (the
Stratified Ocean Model with Adaptive Refinement) confirm the linear analysis.

Key words: buoyancy-driven instability

1. Introduction

This paper focuses on radiatively driven convection (RDC), which occurs when heat
is applied to a fluid by absorption of radiation penetrating a finite distance from
a boundary. To achieve convection, the resulting heating must result in an unstable
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buoyancy distribution developing in the fluid. In fluids where the buoyancy increases with
temperature, the radiation must be applied from below. This occurs, for example, in the
interior of stars, where the radiation from the inner core drives convection in the outer layer
(Spiegel 1971). Conversely, in fluids where buoyancy decreases with temperature, such as
fresh water below the temperature of maximum density, RDC requires that radiation be
applied from above. An example of the latter in a geophysical setting occurs in temperate
lakes during spring when the water column is below the critical temperature and solar
radiation heats the surface layer (see e.g. Bouffard et al. 2019; Cannon et al. 2019; Austin
et al. 2022). An important difference between RDC in the interior of stars and RDC in
lakes is that in the former, the horizontally (or ensemble) averaged temperature profile can
be assumed to be in a statistically steady state, that is, the amount of heat received from the
inner core is eventually transferred to the surface and lost to space, whereas in the case of
RDC in lakes heat continuously accumulates in the system. Austin et al. (2022) show that
some heat loss occurs during nighttime, but it is small compared with the net daytime heat
input. Thus, the averaged temperature never achieves steady state. Additionally, and just
as important, in lakes the radiation intensity is itself time-dependent, following a diurnal
cycle.

Radiatively driven convection as it applies to temperate lakes has been the subject of
several recent observational studies that focus on vertical velocity (Bogdanov et al. 2019;
Bouffard et al. 2019; Cannon et al. 2019) and the scale of convection cells (Forrest et al.
2008; Yang et al. 2017; Austin 2019; Bogdanov et al. 2019; Austin et al. 2022).

These studies show that in RDC systems that are driven by a cyclical radiation which
spends a significant amount in the ‘off’ state each cycle follows a consistent pattern:

(i) Onset: the beginning of each cycle starts from a relatively quiescent state.
(ii) Linear phase: warming of the water column develops a top-heavy buoyancy

distribution on which perturbations grow. In this stage, the effect of perturbations
on the averaged buoyancy field is negligible. The latter is still driven solely by the
absorbed radiation.

(iii) Nonlinear phase: the amplitude of perturbations saturates due to nonlinear
interactions.

(iv) Recovery phase: as the intensity of the radiation wanes, turbulent fluctuations
decrease in intensity, and eventually the system relaxes to a mostly quiescent state
with little or no residual stratification.

Early studies (Mironov & Terzhevik 2000; Mironov, Danilov & Olbers 2001) suggest
that if the depth is horizontally uniform, when turbulence develops, the vertical divergence
of the total heat flux (the sum of turbulent and radiative heat fluxes) becomes constant
with depth, that is, the rate of heating becomes uniform, or, which is the same, the
stratification profile becomes frozen in time (even as the fluid heats up). This suggests that
the stratification during the nonlinear phase is determined by the length of the linear phase,
since the stratification ceases to grow once turbulence sets it. Since advection operates on
the averaged vertical temperature gradient, whose temperature contrast at the end of the
linear phase is proportional to the time lapsed since the onset of radiation, the latter also
gives an estimate for the temperature fluctuations, at least until the waning solar radiation
alters the balance and turbulence starts eroding the temperature gradient. From this point
of view, the linear phase sets the characteristics of the turbulent phase. This provides the
motivation for the present study.

Motivated by observations of RDC in Lake Superior, Christopher, Le Bars & Smith
(2023) recently studied the onset of RDC by applying a time-periodic heat flux to the
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Onset of radiatively driven convection

surface of a fluid. Applying Floquet theory, they calculated the critical Rayleigh number
and normalised wavenumber as a function of normalised frequency of thermal forcing
(their figures 2 and 3), and showed that the critical Rayleigh number captures stability
properties in two-dimensional numerical simulations (their figures 8 and 9).

Although appropriate to consider the stability of the background RDC state, the analysis
in Christopher et al. cannot be used to study the evolution of perturbations at geophysical
scales. The maximum normalised frequency considered in Christopher et al. (2023) is
100, while, for example, the normalised frequency in geophysical settings such as Lake
Superior is of O(107). Moreover, their analysis does not provide the growth rate and
vertical structure of the most unstable mode, nor are any characteristics of the system
described when the Rayleigh number exceeds the critical value.

Christopher et al.’s analysis applies to cases where the time scale of evolution of
the perturbations is comparable to or larger than the period of the forcing, but at more
geophysically relevant scales the perturbations grow on a time scale much shorter than the
forcing period.

Yet, the onset is still followed by a period in time during which the perturbations are still
small, so a linearised treatment is still appropriate. With this in mind, here we develop a
theory that applies to systems in which appropriately defined Reynolds and Péclet numbers
are large, and the forcing can be time-dependent. This is not intended to provide a stability
analysis of RDC in the traditional sense. The aim of the latter is to determine over which
range of values of the relevant parameters the system develops instabilities. In our analysis,
we consider the linearised regime in the limit of large Reynolds numbers, where we expect
the system to be unstable, and we concentrate on two questions:

1. What are the wavelength, vertical structure and growth rate of the growing
perturbations during the initial linear growth stage for RDC driven at geophysical
scales?

2. How do these features relate to environmental parameters such as radiation intensity
and penetration depth?

We consider the problem from the point of view of an initial-value problem. At t = 0
radiation is applied to the surface of a motionless, unstratified fluid with a realistic
e-folding decay scale, where the radiation can be either time-independent or can have
a diurnal cycle, and we follow the growth of a perturbation from t = 0 driven by the
time-evolving background state.

We find that perturbations do not follow the typical exponential growth exp(αt), which
may be expected for instabilities that grow on an otherwise constant-in-time background
(α being the constant-in-time growth rate). Instead, the perturbations grow as exp[(σ (t)t)]
and σ(t) ∼ tn/2 with n = 1 for time-independent radiation and n = 2 for time-periodic
radiation (the latter for times shorter than the period).

This paper is organised as follows. In § 2 we linearise the equations of motions by
considering a time-varying basic state buoyancy profile which is heated by radiative
forcing, whose evolution is considered in § 3; in § 4 we estimate scalings for velocity and
buoyancy by balancing the dominant terms in perturbation equations and introduce the
relevant non-dimensional parameters; in § 5 we explore the behaviour of the perturbations
under linearised dynamics in the limit of large Reynolds number; in § 6 we use direct
numerical simulations (DNS) to confirm the prediction obtained from the linearised
equations; and finally we provide a summary and conclusions. Several appendices discuss
technical points.

973 A14-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.702


Y. Chang and A. Scotti

z = 0

z =  –H

Zo
Soez/Z0 F (t)

z

x

w = 0, ∂b/∂z = 0

w = 0, ∂b/∂z = 0

Figure 1. Schematic of RDC.

2. Radiatively driven convection in the linearised regime

We consider a fluid with a linear equation of state for the density ρ = ρ0(1 − αT), where
T is the temperature. We assume a negative thermal expansion coefficient α. The fluid
is subject to a radiative forcing applied to the surface. The applied heat flux S0ez/Z0F(t)
decays exponentially away from the surface and can be modulated in time (figure 1). The
problem under the Boussinesq approximation can be formulated as follows:

Dũ
Dt

= − 1
ρ0

∇p̃ + b̃e3 + ν∇2ũ, ∇ · ũ = 0, (2.1)

Db̃
Dt

= − B
Z0

F(t)ez/Z0 + κ∇2b̃. (2.2)

Here ũ = (ũ, ṽ, w̃) is the velocity, p̃ is the pressure deviation from the hydrostatic profile,
b̃ = g(ρ0 − ρ)/ρ0 = αgT is the buoyancy, B = (−αgSo/ρ0Cp) is the buoyancy flux due
to the radiative heat flux S0, ρ0 is the reference density, Cp is the heat capacity, g is
the gravitational acceleration, Z0 is the e-folding decay scale of the radiation flux, ν
is the molecular viscosity, κ is the molecular heat diffusivity and e3 is the unit vector
pointing upward. The surface through which radiation is applied is at z = 0 and the domain
extends below to z = −H. All thermodynamic quantities are evaluated at the reference
temperature. Mutatis mutandis, the same configuration applies to radiation applied to the
bottom of a fluid with a positive expansion coefficient, with the understanding that in this
case Z0 < 0.

For time-independent radiation

F(t) = 1, (2.3)

while for diurnal solar radiation

F(t) = sin(Ωt) if t < τDTL, else 0, (2.4)

where Ω = π/τDTL and τDTL is the daytime length.
We decompose the motion into a basic state and perturbations:

ũ = 0 + u(x, t), b̃ = b̄(z, t)+ b(x, t), p̃ = p̄ + p(x, t). (2.5a–c)
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Onset of radiatively driven convection

Here x = (x, y, z) and b̄(z, t = 0) = 0. The basic state satisfies

0 = − 1
ρ0

∇p̄ + b̄e3, (2.6)

∂ b̄
∂t

= − B
Z0

F(t)ez/Z0 + κ
∂2b̄
∂z2 . (2.7)

From here, we follow the same approach used to study the stability of Rayleigh–Bénard
convection (Chandrasekhar 1961). Subtracting the basic state momentum equation (2.6)
from (2.1) and then neglecting squares of perturbations, the linearised perturbation
momentum equation reads

∂u
∂t

= − 1
ρ0

∇p + be3 + ν∇2u. (2.8)

From (2.8) and the incompressibility condition we derive a single equation for the
Laplacian of the vertical velocity:

∂∇2w
∂t

= ∇2
h b + ν∇2∇2w. (2.9)

Here, ∇2
h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator. Subtracting the basic

state buoyancy equation (2.7) from (2.2) and then neglecting squares of perturbations, the
linearised perturbation buoyancy equation reads

∂b
∂t

+ w
∂ b̄(z, t)
∂z

= κ∇2b. (2.10)

Substituting ∇2
h b in (2.9) into ∇2

h [(2.10)], these two equations can be combined as

∂2∇2w
∂t2

+ (∇2
h w)

∂ b̄
∂z

− (ν + κ)
∂

∂t
∇2∇2w + νκ∇2∇2∇2w = 0. (2.11)

Equations (2.7), (2.9) and (2.10) will be used to find scalings for the linear system.
Equation (2.11) will be used to find the growth rate and the spatial structure of the
perturbations.

3. Evolution of the background profile

With an appropriate choice of a vertical velocity scale W0, a buoyancy scale b0 and a time
scale t0 (defined in the next section), we define dimensionless vertical velocity, buoyancy,
time and coordinates:

ŵ = w/W0, b̂ = b/b0, t̂ = t/t0, x̂ = x/Z0, ŷ = y/Z0, ẑ = z/Z0. (3.1a–f )

We also define a Reynolds number Re ≡ W0Z0/ν and a Péclet number Pe ≡ W0Z0/κ .
From the buoyancy scale, we can derive a temperature scale T0 = b0/(−αg). In the
following we dispense from decorating non-dimensional variables, and all variables except
those in § 4 are non-dimensional. The background buoyancy profile satisfies

∂ b̄
∂t

= −F(t)ez + 1
Pe
∂2b̄
∂z2 , (3.2)

where the Péclet number Pe is the ratio of the perturbation time scale (defined more
precisely later) to the diffusive time scale Z2

0/κ . This equation needs to be solved subject to
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boundary and initial conditions. For the latter, we simply choose b̄(z, 0) = 0. At the bottom
(z = −H) of the water column, the natural choice is a no-flux condition. At the surface,
we assume that the latent, sensible and long-wavelength radiative heat flux are small
compared with the incoming short-wave heat flux, and thus we approximate the surface
boundary condition with a no-flux condition as well. This approximation is suggested by
the observations of Austin et al. (2022) who report that the total increase in the heat content
of the water column as a function of time can be, to a great degree of accuracy, predicted
by integrating the equation for heat over the water column with no-flux conditions at both
boundaries. As we shall see, for large values of Pe, the evolution of the perturbations is
primarily controlled by the evolution of the stratification in the bulk of the water column
driven by the absorbed radiation. With these boundary conditions, (3.2) can be solved by
writing the solution as a standard trigonometric series. The vertical gradient of the general
solution is thus

∂ b̄
∂z
(z, t) =

∞∑
m=1

amR(λ2
m/Pe, t) sin(λmz), (3.3)

where the wavenumber λm = mπ/H, and the coefficients

am = 2λm

H
1 − (−1)me−H

1 + λ2
m

. (3.4)

The function R(s, t) describes the relaxation of the solution to the stationary state (which
is not steady for diurnal radiation):

R(s, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − e−αt

s
if F(t) = 1(steady radiation),

1
s2 +Ω2

(
s sin(Ωt)−Ω(cos(Ωt)− e−st)

)
if F(t) = sin(Ωt)

(diurnal radiation).
(3.5)

In the case of steady radiation, R(s, t) = R(st, 1)t. For diurnal radiation this is not in
general true. However, here we are interested in perturbations that grow on a time scale
much shorter than the diurnal period, i.e. Ωt � 1. In this case we can approximate

R(s, t) � Ω
st − (1 − e−st)

s2 + O((Ωt)2), (3.6)

and therefore R(s, t) � R(st, 1)t2 + O((Ωt)2). Thus we can write a general form for the
background stratification:

∂ b̄
∂z
(z, t) =

⎡
⎣ ∞∑

p=1

apR(λ2
pτ, 1) sin(λpz)

⎤
⎦ tn ≡ Sn(z, τ )tn, (3.7)

with τ = t/Pe, n = 1, 2 for steady and unsteady radiation, respectively, and Sn(z, τ ) is the
term in square brackets in (3.7) with the appropriate choice for R, the relaxation function.
Thus, for large values of the Péclet number, there are two time scales that control the
evolution of the background stratification profile: the ‘fast’ time t over which the profile
evolves in a self-similar manner, and the ‘slow’ time τ over which the overall shape of
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0

–100

–101

–102

z/�
τ

0 0.2 0.4 0.6 0.8 1.0

τ = 5 × 10–3 (viscid)

τ = 5 × 10–3 (inviscid)

τ = 5 × 10–4 (viscid)

τ = 5 × 10–4 (inviscid)

τ = 5 × 10–5 (viscid)

τ = 5 × 10–5 (inviscid)

Normalised stratification

Figure 2. Profiles of ∂ b̄/∂z normalised with fast time (solid lines) and ez (dashed lines) for different values of
τ plotted against z/

√
τ . The viscous profiles depart from the inviscid solution starting at a depth which deepens

as
√
τ .

the profile changes as the diffusive boundary layer grows at the surface. In particular, the
inviscid solution

b̄(z, t) = −ez
∫ t

0
F(t′) dt′ (3.8)

is recovered in the limit τ → 0.
For finite, but small, values of τ the inviscid solution approximates well the actual

solution except for the surface boundary layer whose thickness grows as
√
τ (figure 2).

Of course, for this to work, the penetration depth (which in our units is 1) must be much
larger than the thickness of the surface boundary layer during the time over which the
analysis is carried out. In practise, this limits the analysis to times shorter than Z2

0/κ . Thus,
our analysis cannot be applied to Rayleigh–Bénard convection driven by a time-dependent
surface heat flux (SHF convection), because that would require taking the Z0 → 0 limit.
Physically, in time-dependent SHF convection the driving signal is carried into the fluid
by the developing boundary layer itself. Whereas in RDC we have a non-trivial inviscid
solution which is modified over a slow time by diffusion effects, in SHF convection the
inviscid solution is trivial, and the background system evolves under the slow time alone.

4. Scaling and normalisation

In this section, we temporarily revert to dimensional quantities. There are two length scales
in RDC: the depth of water H and the radiation penetration scale Z0. As near-surface water
warms gradually and just starts to sink, the depth of water during the initial stages of RDC
should not play a role provided H/Z0 � 1. Thus Z0 is the natural length scale during the
onset of this process.

The basic state is the time-dependent solution to (2.7) given by (3.7). Clearly, both b̄
and ∂ b̄/∂z change continuously over time. Thus, perturbations grow against a background
state which is itself changing.
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We derive scales by balancing the dominant terms in (2.9) and (2.10). Since
growing perturbations are forced by the basic state, which is time dependent in RDC,
time-derivative terms must be retained. In the vertical momentum equation (2.9), we
assume the local vertical acceleration and buoyancy balance:

∂∇2w
∂t

∼ ∇2
Hb. (4.1)

In the buoyancy equation (2.10), we assume a balance between the local rate of increase in
buoyancy and vertical advection of buoyancy:

∂b
∂t

∼ w
∂ b̄(z, t)
∂z

. (4.2)

Three equations suffice to solve for the vertical velocity scale W0, the buoyancy scale b0
and the time scale t0.

4.1. Time-independent radiation
The inviscid solution for the background buoyancy provides a scale for the buoyancy:

b0 = B
Z0

t0, (4.3)

which in conjunction with (4.1) and (4.2) allows us to determine the other scales:

W0 = (BZ0)
1/3, b0 =

(
B2

Z0

)1/3

, t0 =
(

Z2
0

B

)1/3

. (4.4a–c)

Substituting (3.1a–f ) and (4.4a–c) into (2.11) we have

∂2∇2w
∂t2

− ∇2
HwS1(z, τ )t −

(
1

Re
+ 1

Pe

)
∂

∂t
∇2∇2w + 1

RePe
∇2∇2∇2w = 0. (4.5)

The physical interpretation of the characteristic scales (4.4a–c) is that as the RDC
develops, the perturbations grow to O(W0) and O(b0) over a time O(t0), after which the
system becomes nonlinear.

Also, note that W0 = (BZ0)
1/3 in (4.4a–c) has the same form as the Deardorff (1970)

scaling W∗ = (B∗H)1/3, which characterises the vertical velocity in SHF convection (B∗ is
the buoyancy flux applied to the surface and H is the depth of the water). However, the fact
that the two scalings are of the same form should be viewed as a coincidence, because the
two problems differ fundamentally. The Deardorff scaling characterises vertical velocity
in SHF convection in the nonlinear steady state stage, while (4.4a–c) are scalings for the
linear, time-dependent stage of RDC in which the radiation profile penetrates into fluid
with an e-folding decay scale Z0.
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4.2. Diurnal solar radiation
In this case, the inviscid solution indicates that

b0 = B
Z0
Ωt20. (4.6)

Substituting W0, b0 and t0 into (4.1), (4.2), (4.6), we have

W0

t0
= b0,

1
t0

= W0

Z0
, b0 = B

Z0
Ωt20, (4.7a–c)

which together yield

W0 = (BΩZ2
0)

1/4, b0 = (BΩ)1/2, t0 =
(

Z2
0

BΩ

)1/4

, (4.8a–c)

which are to be interpreted as their counterpart in the steady radiation case. Substituting
(3.1a–f ) and (4.7a–c) into (2.11) and working under the assumption that Ωt0 � 1 so that
the background solution retains the self-similar profile in the fast time t, we have

∂2∇2w
∂t2

− ∇2
HwS2(z, τ )t2 −

(
1

Re
+ 1

Pe

)
∂

∂t
∇2∇2w + 1

RePe
∇2∇2∇2w = 0. (4.9)

5. Evolution of perturbations

The equations for the evolution of the perturbation under steady and periodic radiation
conditions can be condensed in a single equation which in non-dimensional form reads(

∂

∂t
+ 1

Pe
∂

∂τ
− 1

Re
∇2
)(

∂

∂t
+ 1

Pe
∂

∂τ
− 1

Pe
∇2
)

∇2w = Sn(z, τ )tn∇2
Hw, (5.1)

with n = 1 describing the steady radiation case and n = 2 the diurnal cycle. This equation
describes the evolution of the perturbed vertical velocity w(x, y, z, t, τ ).

In the geophysical settings of interest, the Reynolds and Péclet numbers are large, though
not infinite, and therefore it is of consequence to consider whether (5.1) can be further
simplified. To this extent, it would be tempting to discard altogether the terms proportional
to Re−1 and Pe−1. However, this would not be appropriate, since, on physical grounds,
we expect that viscosity and diffusivity at sufficiently small scales cannot be ignored.
However, it is reasonable to expect that no high-frequency oscillations should be expected
in τ (otherwise it would be a fast time), and thus we can neglect the term Pe−1∂/∂τ .
Equation (5.1) is invariant under rotations around the vertical axis. Thus, we consider
perturbations confined to a two-dimensional vertical plane. Since (5.1) is not homogeneous
in fast time, the typical solution form eγ t with γ being a constant growth rate cannot be
applied. Therefore, we seek solutions in the form of

w(x, t) = eiKxψ(z, t, τ ), (5.2)

and we expand ψ(z, t, τ ) =∑m f K
m (t)φ

K
m(z, τ ). The φK

m(z, τ ) functions are the
eigenvectors of the Sturm–Liouville problem:

d2φm

dz2 − K2φm = − 1
Dm

K2n!Sn(z, τ )φm, φm(0, τ ) = φm(−H/z0, τ ) = 0, (5.3a,b)
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Figure 3. Solution of the Sturm–Liouville problem (5.3a,b). (a) Eigenvalue D as a function of λ.
(b) Eigenvector φ(z) for the maximal D for a given λ. Solutions are obtained by solving (5.3a,b) using a domain
−5 ≤ z ≤ 0, boundary conditions φ(−5) = φ(0) = 0 and 1000 uniform grids. The eigenvalue D controls the
growth rate in (5.8)–(5.9), (5.14) and (5.17), while the eigenvector φ(z) represents the vertical structure of
perturbations.

where Dm(K) is the corresponding eigenvalue, and normalised such that∫ 0

−H/z0

K2n!Sn(z, τ )φK
m(z, τ )φ

K
l (z, τ ) dz = δml (5.4)

with n = 1 for steady-state radiation and n = 2 for diurnal radiation. As we shall see, the
eigenvalues Dm control the growth of the perturbations in the inviscid limit.

A second simplification that we seek is to replace n!Sn(z, τ ) with its limiting value
n!Sn(z, 0) = ez in (5.1) and the attendant Sturm–Liouville problem. This assumption is
justified by considering that, by the time the linear stage of perturbation growth comes
to an end, τ is still very small. Indeed, one way to interpret the Péclet number is to see
it as the ratio of t0 (the time scale of growth of perturbations) to the diffusive time scale
Z2

0/κ . Thus at large Péclet numbers the perturbations ought to experience a background
state whose only mode of change is self-similar. In Appendix A we verify that the effect
of the neglected surface boundary layer on the spectral properties of the Sturm–Liouville
problem is small, especially on the eigenvalues Dm, which control how perturbations grow
in time.

For a given K, there are countable eigenvalues D1(K) > D2(K) > . . ., and the
corresponding eigenvectors form an orthonormal basis. Eigenvalue D1(K) as a function of
the wavelength λ = 2π/K is shown in figure 3(a), with a few representative eigenvectors
shown in figure 3(b). Note how, as K increases, the region over which the eigenvector is
non-negligible decreases. In fact, with a simple rescaling of the problem, it can be shown
that the extent of the non-zero region decreases as 1/

√
K. Although it is not possible

to give an analytic expression for Dm, we have Dm(K) = O(K2) for K � 1, whereas
Dm(K) = O(K0) for K � 1. In particular, the fact that the eigenvalues saturate at large
wavenumbers will have significant consequences. For a given horizontal wavenumber K,
substituting (5.2) into (5.1) yields a system of coupled ordinary differential equations
for the amplitude functions f K

m (t). In Appendix B we show that when the Reynolds
number is large (with fixed Prandtl number), to leading order the system decouples,
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Onset of radiatively driven convection

so that each amplitude function f K
m (t) evolves independently from the other. For a

given f K
m (t), the inviscid growth rate is controlled by the eigenvalue Dm(K). Because

we are interested in the characteristics of the fastest growing perturbations, we focus
on the case m = 1. From now on, D(K) = D1(K) and f K(t) = f K

1 (t). By introducing
the renormalised wavenumber 𝔎 = K/

√
DRe, to order O(Re−1/2) the amplitude f𝔎(t)

satisfies the following equation:

d2f𝔎

dt2
+ 𝔎2

(
1 + 1

Pr

)
df𝔎

dt
+
(

Pr−1𝔎4 − D(K)
tn

n!

)
f𝔎 = 0, (5.5)

where Pr = Pe/Re is the Prandtl number of the fluid.
In the previous equation, we can discern two limits. In the limit 𝔎 → ∞ with Re

constant, (5.5) tends to a simple differential equation with constant coefficients, whose
characteristic polynomial has roots

σ∞
1,2(𝔎) = −𝔎2{1,Pr−1}, (5.6)

both of which are real and negative and thus exponentially damped. This is to be expected
on physical grounds, as for sufficiently small wavelengths diffusive effects will smooth
out and eventually dampen fluctuations. Conversely, when 𝔎 → 0, with K constant, the
equation reduces to the modified Airy equation:

d2f 0

dt2
− D(K)

tn

n!
f 0 = 0, (5.7)

whose solution grows asymptotically as

f 0(t) ∼ 1
D(K)1/12t1/4

e(σt t)3/2, σt =
(

2
3

)2/3

D(K)1/3, as t � 1, (5.8)

when n = 1 and as

f 0(t) ∼ 23/8

D(K)1/8t1/2
e(σdt)2, σd = D(K)1/4

23/4 , as t � 1, (5.9)

when n = 2. In practice, these asymptotic formulas apply already for t = O(1), as seen
by comparing asymptotic solutions with the numerical integration of the corresponding
equations (figure 4). Note that σd and σt tend to saturate as K → ∞, whereas the viscous
damping time scale becomes increasingly shorter. On physical grounds, we can thus expect
that at a certain wavenumber, dependent on the Reynolds number, a cross-over occurs
whereby viscous damping dominates and so very little energy should be found above such
a wavenumber. To verify our intuition, we consider the general solution of (5.5). It can be
written in terms of special functions.

5.1. Time-independent radiation
We consider first the case when n = 1. In this case we have

f𝔎(t) = c1(𝔎)A(𝔎, t)+ c2(𝔎)B(𝔎, t). (5.10)

Here c1(𝔎) and c2(𝔎) are integration constants and the functions A and B can be expressed
in terms of Airy’s Ai and Bi functions

A(𝔎, t) = eσ̄ (𝔎)tAi(ζ(𝔎, t)), B(𝔎, t) = eσ̄ (𝔎)tBi(ζ(𝔎, t)),

ζ(𝔎, t) = (1 − Pr−1)2𝔎4 + 4D(K)t
4D(K)2/3

,

⎫⎪⎬
⎪⎭ (5.11)
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D = 1 D = 1f (t)
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Figure 4. Comparison between asymptotic solution and numerical solution using a third-order Runge–Kutta
(RK3) method with dt = 0.01, and initial conditions f (0) = 1 and f ′(0) = 0. The comparison is to show that
the asymptotic solution captures the growth of the numerical solution as t � 1. Solid curves are for D = 1;
dashed for D = 0.5. (a) Asymptotic solution (5.8) and numerical solution of the modified Airy equation (5.7)
with n = 1. (b) Asymptotic solution (5.9) and numerical solution of (5.7) with n = 2.

and σ̄ (𝔎) is the arithmetic mean of σ∞
i (𝔎). The integration coefficients are given by

c1(𝔎) = (σ̄ (𝔎)− 1)Bi(ζ(𝔎, 0))f ′(0)+ Bi′(ζ(𝔎, 0))f (0)
Δ(𝔎)

(5.12)

and

c2(𝔎) = −(σ̄ (𝔎)− 1)Ai(ζ(𝔎, 0))f ′(0)− Ai′(ζ(𝔎, 0))f (0)
Δ(𝔎)

, (5.13)

with Δ(𝔎) = Ai(ζ(𝔎, 0)Bi′(ζ(𝔎, 0))− Ai′(ζ(𝔎, 0)Bi(ζ(𝔎, 0)).
For t > 1 the solution can be asymptotically expressed as

f𝔎(t) ∼ eΣt t

[
𝔎4
(

Pr − 1
Pr

)2

+ 4Dt

]−1/4

,

Σt = −𝔎2

2

(
1 + Pr

Pr

)
+ 1

12Dt

[
𝔎4
(

Pr − 1
Pr

)2

+ 4Dt

]3/2

− 1
12Dt

[
𝔎4
(

Pr − 1
Pr

)2
]3/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.14)

The solution when molecular viscosity and diffusivity are equal (Pr = 1) is particularly
illuminating, since in this case the solution is simply the inviscid solution multiplied by
the viscous damping term:

f𝔎(t) ∼ 1
D(K)1/12t1/4

exp(−𝔎2t + (σtt)3/2), σt =
(

2
3

)2/3

D(K)1/3. (5.15a,b)

Neglecting the (weak) algebraic dependence on time of the prefactor, we see that evolution
of a perturbation with a horizontal wavenumber K is controlled by the time- and
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Figure 5. Asymptotic growth rate Σ versus wavelength at different times. The vertical red lines indicated the
estimated high-frequency cut-off 𝔎 = 1, i.e. λ

√
Re ≈ 2π. (a–c) Steady radiation. (d–f ) Diurnal radiation.

wavenumber-dependent growth rate:

Σt = 1
Re

(
− K2

D(K)
+ 2

3

√
D(K)tRe2

)
. (5.16)

Figure 5(a–c) shows the growth rate for a range of times as a function of the wavelength.
Note that Σt is at most O(1), which vindicates the choice of t0 as the relevant time scale
for the process.

For a given Re, there is a Reynolds-number-dependent tmin such that for t < tmin the
time-dependent growth rate Σt(K, t) < 0. This can be easily seen considering that as a
function of K the viscous damping is a convex function which tends to a value O(1/Re)
for K → 0, whereas the inviscid growth is a concave function which approaches zero as
K

√
t for small values of K (figure 6).

To find how tmin depends on Re, we consider the following ansatz: tmin = βRe−2. When
substituted into (5.16), the Reynolds number is factored out, leaving an equation for β
that can be easily solved numerically. We obtain β � 491 and a Reynolds-independent
marginal wavelength λmar � 10.7. Past tmin the range of wavelengths that experiences
growth widens. The upper limit of the range increases as Re

√
t − tmin. The lower limit

of the range decreases as Re−1/2(t − tmin)
−1/4. The peak of the growth rate rapidly

shifts to smaller wavelengths (figure 5a–c). The existence of a minimum time that
needs to elapse before instabilities can grow implies that instabilities will appear only
after the background stratification has grown sufficiently. Since the non-dimensional
time-dependent background stratification is N2 = −tez, the minimum near-surface
background stratification necessary to sustain perturbations is −tmin.
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Figure 6. Viscous damping and inviscid growth rate as a function of wavelength under steady radiation
conditions. The viscous damping is time-independent, whereas the inviscid growth rate accelerates with time.
Up to t ∼ 481Re−2, viscous damping dominates. Past this time, a widening range of wavenumbers experiences
net growth.

However, we recall that the superexponential growth given by (5.16) is not expected until
t � 1. Therefore, for large values of the Reynolds number, by the time the solution enters
the superexponential phase, a range of wavelengths is already poised to grow. Moreover,
for large values of Re, the growth rate for most wavelengths experiencing growth is only
weakly dependent on the Reynolds number. Only wavelengths that are close to either
side of the interval see a significant departure from purely inviscid growth. Thus, when
comparing our results with numerical simulations, we use the inviscid limit.

The asymptotic expression is more complicated when Pr /= 1, but as long as Pr remains
finite, there is no qualitative change in the behaviour of the solution and little quantitative
change. In fact, as we shall see, the predicted growth rate and peak wavelength at Pr = 1
match the values observed in the numerical simulation at Pr = 10.

The above analysis suggests that instabilities will always appear, provided that enough
time is allowed for the stratification to reach its critical value, regardless of the magnitude
of the Reynolds number. However, as we remarked above, (5.5) was derived in the large-Re
limit. Superexponential growth requires tmin to be �1 or larger. For values of Re greater
than 20, by the time the superexponential phase begins, there is already a range of
wavelengths with positive growth rates. Whether values of Re smaller than 20 can still
be considered ‘large’ for the purpose of the theory remains to be seen. It is certainly
reasonable to assume that no matter how small the Reynolds number is, a sufficiently
large accumulation of negative buoyancy at the surface should be able to overcome the
stabilising effect of viscosity and diffusion, but this is a question that our theory cannot
answer with certainty. Moreover, our theory works in the small-τ limit. Under highly
diffusive conditions, the growth of the surface boundary layer cannot be neglected.

5.2. Diurnal solar radiation
For the diurnal radiation case (n = 2), the general solution to (5.5) can be expressed in
terms of a combination of Hermite polynomials and hypergeometric functions, which
play the role of Airy’s functions for the n = 1 case. In this case, it is the hypergeometric
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Onset of radiatively driven convection

function that dominates the behaviour for large values of t. For large t the asymptotic
solution is

f𝔎(t) ∼ c2(𝔎)eΣdt

⎡
⎣√

2Dt +
√
𝔎4
(

Pr − 1
Pr

)2

+ 2Dt2

⎤
⎦
𝔎4/(32D)1/2((Pr−1)/Pr)2

×
[
𝔎4
(

Pr − 1
Pr

)2

+ 2Dt2
]−1/4

,

Σd = −𝔎2

2

(
1 + Pr

Pr

)
+ 1

4

[
𝔎4
(

Pr − 1
Pr

)2

+ 2Dt2
]1/2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.17)

where in this case c2(𝔎) is the coefficient of integration associated with the
hypergeometric function. The growth rate Σd is dependent on time and wavenumber,
which, when Pr = 1 can be written as (figure 5d–f )

Σd =
(

− K2

D(K)Re
+

√
Dt

2
√

2

)
. (5.18)

Relative to the steady radiation case, the growth is more gradual at the onset, and steeper
at later times, but the pattern is otherwise very similar.

In this case as well the background stratification must grow beyond a Re-dependent
critical threshold for instabilities to grow. The analysis is very similar to the one done for
the steady radiation case, with the exception that now tmin � 42Re−1 has the same value
for the marginal stability wavelength. The upper limit of the unstable range increases as
Re t, whereas the lower range decreases as (Re t)−1/2 (figure 5d–f ).

6. Comparison with numerical simulations

To validate the theory developed in the preceding section, we use the Stratified Ocean
Model with Adaptive Refinement (SOMAR) to compare the prediction of our theory
with the DNS simulations of RDC. SOMAR solves the Navier–Stokes equations under
the Boussinesq approximation (Santilli & Scotti 2015; Chalamalla et al. 2017) using an
operator splitting technique. The finite-volume discretisation is second-order in space,
while a third-order Runge–Kutta method is adopted for time marching. The Poisson
equation is solved with an efficient multigrid solver. SOMAR adjusts the time step based
on a Courant–Friedrichs–Lewy (CFL) condition to maintain stability under advection.
Viscous terms are treated implicitly.

We solve (2.1) and (2.2) in a rectangular domain extending from the surface to
the bottom. Equations are discretised with uniform grids in each direction. The initial
condition is a motionless, unstratified fluid plus perturbations of two types. The first type
is initialised with single-mode perturbations with the most unstable wavelength predicted
by (5.14) and (5.17) and the corresponding vertical structure shown in figure 3(b), with
the peak normalised by W0 being 0.001. The second type is initialised with random
temperature perturbations (normalised by T0) uniformly distributed in the range −0.01
to 0.01 over the entire domain. The boundary conditions are periodic in the horizontal
direction. At the surface and at the bottom of the domain we use free-slip conditions and
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Case Section Re Pe t0Ω δ/S D λp S Nh Nv

TLR 5.1.1 932 9323 — 0.009 0.64 0.6 1.2 166 122
THR 5.1.2 65 444 654 444 — 0.003 0.89 0.1 0.4 164 164
DLR 5.2.1 196 1959 0.09 0.013 0.51 1 1.7 161 173
DHR 5.2.2 20 908 209 080 0.26 0.004 0.83 0.15 0.5 163 205

Table 1. Configurations for the numerical simulations considered in §§ 5.1 and 5.2. For each simulation, we
list the Reynolds number Re = W0Z0/ν, the Péclet number Pe = W0Z0/κ , the ratio δ/S of the thickness of
the viscous surface layer at τ = 1/Pe to the thickness of the most unstable mode S, time scale ratio t0Ω , the
eigenvalue of the most unstable mode D, the wavelength of the most unstable mode λp, the vertical extent
(measured from the surface) of the most unstable mode S, the number of grid points Nh that resolve one
horizontal wavelength and the number of grid points Nv that resolve S in vertical. All lengths are measured in
units of Z0. In all the cases considered, the non-dimensional depth H of the domain is 5.

zero buoyancy flux. The use of free-slip conditions at the bottom removes the need to
resolve the viscous sublayer. As convective activity is mostly confined with Z0, the effect
is negligible at large Reynolds numbers.

The range of random temperature perturbations (−0.01 to 0.01) is chosen so that
nonlinear terms are at least two orders of magnitudes smaller than linear terms. The effect
of the magnitude of random perturbations is examined in Appendix D.

The configuration of all cases simulated and compared with the theory is described in
table 1. Cases TLR and THR consider time-independent radiation. The other two cases,
DLR and DHR, consider periodic radiation conditions. The non-dimensional parameters
in the time-periodic cases correspond to typical values found in Lake Onego (DLR) and
Lake Michigan (DHR).

Together, these four cases cover a wide range of Re from 200 to 65 000 with Pr =
10, which is typical for freshwater below the critical temperature. From our theory, we
expect that over such a range of Reynolds numbers, the critical wavelength and vertical
structure should vary appreciably. To capture these characteristics in each case, the choice
of grid spacing is made with the following criteria in mind. First, the vertical domain is
5 times Z0, and horizontal domain is sized to contain 100 wavelengths with the highest
growth rate λp. Second, at least 161 horizontal grid points resolve the wavelength with
the highest growth rate λp and at least 40 grid points resolve the cut-off wavelength λcut.
In the vertical we use at least 122 grid points to resolve the sharp vertical variation S
near the surface (see λp, S, Nh and Nv in table 1). Third, and finally, in addition to the
CFL condition necessary to ensure the numerical stability of the scheme, the time step is
further subject to the constraint that it should not exceed t0/40. These three rules ensure
that the numerical set-up does not bias the simulations. Sensitivity to grid resolution tests
is reported in Appendix C.

To distinguish between the linear stage (where our theory is expected to hold) and the
nonlinear stage we compare ∂b/∂t and w(∂b/∂z) in the buoyancy equation and ∂w/∂t
and w(∂w/∂z) in the z-momentum equation. We compute the root mean square (r.m.s.)
of each term for comparison. The average is taken over the vertical range in which the
eigenfunction of the most unstable wavelength varies (S in table 1 and figure 3b). The
theoretical solution is normalised so that at t = 2 it coincides with the numerical solution.

6.1. Time-independent radiation
Case TLR initialised with single-mode perturbations is shown in figure 7(a). The leftmost
column displays the time evolution of the horizontally averaged buoyancy. The red curve
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Figure 7. Evolution of RDC under time-independent radiation profile, with Re = 932 and single-mode
perturbations. (a) From rows 1 to 3, time advances. Column 1: comparison between theoretical basic state
buoyancy b̄(z, t) and horizontally averaged buoyancy profile bave. Column 2: side view of total buoyancy b̃.
Column 3: side view of perturbation buoyancy b. Column 4: side view of vertical velocity, which is also
perturbation vertical velocity w. Column 5: vertical velocity spectrum at z = −1, −2/3 and −1/3. Wavelength
λ is the wavelength of the perturbations, λp represents the theoretical most unstable wavelength and λcut the
theoretical cut-off wavelength. Note the appearance of a spectral line at half the forcing wavelength due to the
quadratic term in the equation of motion at t = 5. Only when the flow becomes fully nonlinear do we observe
energy at wavelengths smaller than λcut. (b) The r.m.s. of linear and nonlinear terms in the legend and df𝔎(t)/dt
and df 0(t)/dt as a function of time. Wavelength λp is calculated from (5.14), and D is computed via (5.3a,b).
(c) Growth rate as a function of time. The red curve is computed from the SOMAR output. The green curve is
the theoretical value (5.14).
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shows the value assumed by the theory, while the blue dashed line is calculated from the
SOMAR output. The two profiles are still identical at t = 6, while significant difference
exists at t = 7, signalling the end of the linear stage. Even towards the end of the
linear stage, the energy is still concentrated at the wavelength of the initial condition
(last column). Buoyancy and vertical velocity are shown in the central columns. The
perturbations evolve as a series of downward localised jets.

The growth of the perturbations in the simulation agrees well with that predicted by the
theory until the magnitude of the nonlinear terms catches up with the magnitude of the
linear terms around t = 6.7 (figure 7b).

We estimate the time-dependent growth rate from the simulation as

Σt ≈ 2
3

d
dt
(ln w̃), (6.1)

which compares extremely well with the theoretically predicted value (figure 7c) from t =
3 to t = 6, after which the former declines because the system approaches the nonlinear
stage. The discrepancy at earlier times may simply indicate that (6.1) is sensitive to small
change in w, since ∂w/∂t and df𝔎(t)/dt agree well (figure 7b). Note that over the interval
t = 2 and t = 6 the magnitude of the perturbation grows by three orders of magnitude.

Between 0 < t < 1, ∂w/∂t drops slightly (figure 7b). Presumably, during this time,
viscosity in (2.9) and diffusivity in (2.10) play a role in the evolution of perturbations,
because ∂ b̄/∂z in (2.10), which grows from 0, is not strong enough. This does not
contradict the balance (4.1) and (4.2) and the subsequent analysis in §§ 4 and 5.
Equations (4.1) and (4.2) target the evolution of perturbations when ∂ b̄/∂z grows
continuously, and the analysis which follows applies for t > 1.

Simulations of case TLR with white-noise perturbations are shown in figure 8. The
major difference in this case is that the spectrum contains energy over the range of
wavelengths that experience positive growth, peaked on the wavelength of maximal growth
(λp = 0.6 at Re = 932) predicted by the theory, which also predicts well the vertical
envelope of the perturbations, with a peak at z = −0.25 (figure 3b). Towards the end of
the linear stage, there is a shift of the spectrum to larger wavelengths, likely due to the
nonlinear merger of plumes. Of course, in the nonlinear stage three-dimensional effects
become dominant, which are not captured by our simulations. The spectra at different
depths essentially overlap, indicating strong coherence across the vertical dimension,
consistent with a single mode being energised.

Overall, the theory predicts well how the perturbation grows in time, though the
measured time-dependent growth rate Σt is somewhat smaller than that calculated from
the theory, though the latter is the growth rate expected from the most unstable mode,
whereas in the simulation we have a combination of modes across a range of horizontal
wavenumbers that, while following the same growth pattern, have different values of
the eigenvalue D(K). Thus it is to be expected that the measured Σt be lower than the
theoretical value based on the most unstable wavelength.

Case THR considers a much larger value of the Reynolds number (Re = 65 444). In
this case as well the averaged numerical buoyancy profile agrees well with the profile
used for the theoretical analysis up to t = 5.5, after which the numerical solution becomes
dominated by nonlinearity (figure 9a, column 1). The spectra at different depths do not
exactly overlap, as was the case at lower values of the Reynolds number, though still
peaking near the expected wavelength of maximal growth (λp = 0.1). At large values of
the Reynolds number, the growth rate of higher vertical modal orders is less sensitive to the
modal number, and therefore we expect that the flow initialised with random perturbations
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Figure 8. Same as figure 7 but with white-noise perturbations.

will exhibit a mixture of contributions from different modes. Overall, the theory captures
well the growth of the perturbations (figure 3b), though the presence of a continuum of
energised wavelengths is reflected in the overall time-dependent rate of growth, which,
while following the expected increase in time between t = 2 and t = 4.5 is lower than the
growth rate based on the most unstable wavelength and mode (figure 9c).
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columns 1–4.

6.2. Diurnal solar radiation
Simulations forced by diurnal solar radiation with single-mode perturbations agree well
with theory, as was the situation for case TLR in the preceding section. Therefore, in this
section we focus on simulations with white-noise perturbations.
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Case DLR uses parameters typical of springtime conditions in a shallow temperate lake
(Lake Onego; Bouffard et al. 2019). Compared with the other cases considered, diffusion
effects are stronger, which results in a relatively low value for the Reynolds number
(Re = 196). The agreement between the buoyancy profile computed from the simulation
and that used in the theory is good up to t = 6, after which nonlinearity dominates (first
column in figure 10a; also figure 10b indicates that the nonlinearity begins at t = 6.6). The
spectra at t = 5 peak near λ ≈ 1.2, close to the theoretical prediction λp = 1. Beginning
at t = 6 we observe a shift of the energy to longer wavelength. This may be due to the
flow becoming more nonlinear. At λp = 1 the corresponding mode-1 structure function
(figure 3b) extends to z = −1.7, with a peak at z = −0.4, which captures well the vertical
envelope of the fluctuations. The growth of the r.m.s. fluctuations is well described by the
theory (figure 10b). Over 2 ≤ t ≤ 6.6, the amplitude of the fluctuations increases by four
orders of magnitude. Setting w̃ = exp(σ t2) we compute the growth rate Σd = σ t as

Σd ≈ 1
2

d
dt
(ln w̃). (6.2)

The computed growth rate is in good agreement up to t = 6.2 (figure 10c), after which
the computed growth rate declines as the linear and nonlinear terms become comparable
(figure 10b). As was for the steady radiation cases, the calculated growth rate when the
flow is initialised with a spectrally broad-banded initial condition is somewhat lower than
the theoretically predicted value. However, the trend in time is very similar, and the same
considerations that we presented in the steady radiation case apply here as well. Overall,
the agreement between theory and simulations is good.

Case DHR is representative of a deeper lake, close to critical temperature on a cloudy
day. Such conditions are often observed in Lake Michigan and Lake Superior (Austin
2019; Cannon et al. 2019). With the role of viscosity and diffusivity diminished, the
superexponential growth rate is larger, and therefore the duration of the linear phase is
shorter. Prior to t = 5, the theoretical basic state buoyancy (4.6) and SOMAR output
coincide, after which nonlinearity becomes apparent (t = 5.5) (figure 11a, column 1). The
spectra peak around the theoretical wavelength of maximal growth (λp = 0.15), which is
almost an order of magnitude shorter than in the previous case. The vertical envelope of
the fluctuations is confined in the upper 10 % of the water column during the linear phase,
as expected from the mode-1 function associated with λp. The computed time-dependent
growth rate follows the theoretical profile well, though it is smaller than the value expected
for the the wavelength of maximal growth. Again, this is to be expected, since the range of
active wavenumbers is wide.

7. Summary and conclusions

We have considered the characteristics of the perturbations at the onset of RDC. In
this stage, the perturbations are small enough that it is permissible to linearise the
equations of motions around a quiescent background state characterised by a time-varying
buoyancy profile. We considered both steady radiation, which has been considered in
recent laboratory experiments (Bouillaut et al. 2019) and has applications to stellar
interiors (Kippenhahn, Weigert & Weiss 1990), as well as time-dependent cases, more
representative of RDC in temperate lakes during springtime and which may have
application to atmospheric convection (see e.g. figure 4 in Deardorff (1974)). As opposed
to the more traditional Rayleigh–Bénard convection, where the background state moves
heat at fixed rate from bottom to top boundary, while remaining constant in time, in
RDC the background state evolves in time, as heat is continuously added by radiation,
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Figure 10. Radiatively driven convection under time-dependent radiation at Re = 196 initialised with white
noise. Symbols and colours as in figure 7. Note that the colourbar range for columns 1–4 is greater.

and only after the onset of convection can heat be effectively redistributed in the interior.
By considering the most likely balance in the dynamical equations, we build velocity
and time scales which together with viscosity allow the definition of a Reynolds number.
We develop a theory that is valid for large values of the Reynolds number that predicts
the wavelength, vertical structure and growth rate of the perturbations during the initial
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Figure 11. Radiatively driven convection under time-dependent radiation profile at Re = 20 908 with
white-noise initial condition. Symbols and colours as in figure 7. Note that the colourbar range for columns
1–4 is smaller.

linear stage. Due to the time-dependent nature of the background state, the growth of
perturbations not significantly affected by viscous damping has the form exp[(σ t)n], where
the exponent is n = 3/2 for time-independent radiation and n = 2 for diurnal radiation. We
have confirmed the analysis by comparison with highly resolved DNS.
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The theory gives a way to estimate the duration of the linear phase. Indeed, the
latter terminates when the amplitude of the nonlinear terms becomes comparable to the
amplitude of the linear terms. In Appendix D we show that the duration of the linear phase
over a range of intensities of the residual flow at dawn is found to be between 3t0 and 6t0,
where the linear time scale t0 is given by the last of (4.7a–c). For Lake Superior, assuming
a water temperature of T = 3.5 ◦C and an e-folding scale Z0 = 10, we obtain t0 ≈ 80 min
on a cloudy day when the radiative intensity is So ≈ 200 W m−2. On a sunny day, with
the radiative intensity So ≈ 800 W m−2, the linear time scale is reduced to t0 ≈ 60 min.

If we accept that once turbulence sets in the vertical gradient in temperature stabilises,
the latter is then set by the length of the linear phase. Ceteris paribus, a weaker initial
circulation left over from the previous cycle will result in a longer linear phase and thus a
stronger stratification at the onset of the turbulent phase, that is, a stronger temperature
contrast upon which advection acts. This should result in larger r.m.s. temperature
fluctuations (relative to the background) during the day. With lakes as our geophysical
example of RDC under periodic radiation forcing, one way to test this prediction from
an observational point of view would be to correlate the strength of the fluctuations in
temperature to the strength of the residual circulation at first daylight.
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Appendix A

In this appendix we consider the Sturm–Liouville problem (5.3a,b) subject to a more
general profile for the background stratification which includes the upper boundary layer.
We compare three profiles: the inviscid profile considered earlier, and two profiles in
which the buoyancy gradient is (a) equal to zero within the region −√

τ ≤ z ≤ 0; or
(b) decreases linearly to zero within the same region. We discretise the Sturm–Liouville
problem with standard second-order differences. For the latter two cases, we resolve the
boundary layer with at least 20 points. Figure 12 compares the largest eigenvalue of the
problem as a function of wavelength: when τ = 5 × 10−3, the eigenvalues computed with
diffusive boundary layers of type (a) or (b) are virtually indistinguishable. Compared with
the inviscid profile, saturation at small wavelengths occurs more slowly, but for the same
wavelength the difference is never greater than 10 %. The difference is much smaller for
τ = 5 × 10−4. The corresponding eigenfunctions show little difference between the two
boundary layer cases. Relative to the eigenfunctions obtained from the inviscid profile, we
observe a slight shift downward of the peak in the eigenfunction when the boundary layer
is included. However, the difference is small. Since the focus of this paper is on the small-τ
regime, this justifies the use of the inviscid profile (τ = 0) in the calculations presented in
the main paper.
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Figure 12. Eigenvalue D as a function of λ for three different buoyancy profiles: inviscid profile (blue); profile
with zero stratification in the boundary layer at τ = 5 × 10−3 (red) and τ = 5 × 10−4 (crosses); profile with
stratification linearly approaching zero with the boundary layer at τ = 5 × 10−3 (circles).

Appendix B

In this appendix we present a more formal derivation of (5.5). Let us consider a given K
and let ∇2 ≡ (−K2 + d2/dz2) and ∇2

H ≡ −K2. We substitute (5.2) into (5.1) and project
over the eigenfunctions obtained solving the Sturm–Liouville problem (5.3a,b) to obtain a
set of coupled ordinary differential equations for the functions fm(t). In particular, we need
to consider integrals over the vertical domain γ = [−H/Z0, 0] that can be written as

Ip
mn =

∫
γ

(
∇2pφm(z)

)
φn(z) dz, (B1)

with p = 1, 2, 3. When p = 1, the integral reduces to

I1
mn = −δmn

Dm
, (B2)

where δmn is the Kronecker delta. When p = 2, we can use integration by parts and the
properties of the eigenfunctions to obtain

I2
mn =

∫
γ

∇2φm(z)∇2φn(z) dz = K2

DmDn

(
δmn + ε1

mn

)
, (B3)

with εp
mn ≡ ∫

γ
(epz − 1)φm(z)φn(z) dμ, where dμ = K2ez dz is the weighted measure of

the interval. Finally, again using integration by parts

I3
mn = K4

DmDn

⎛
⎜⎜⎝−δmn + ε2

mn

Dm
+ δmn + ε1

mn

K2 +

∫
γ

ez dφm

dz
φn dμ

K2

⎞
⎟⎟⎠ . (B4)
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Figure 13. Growth rates as a function of time under steady radiation profile with Re = 65 444. The resolution
is indicated in the legend.
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Figure 14. Growth rates under diurnal radiation profile with Re = 196. Symbols as in figure 13.

The functions fm(t) then must obey the following system of coupled ordinary differential
equations:

d2fm
dt2

+
∑

l

[
Dm

Re

(
1 + 1

Pr

)
I2
ml

dfl
dt

− Dm

Re2Pr
I3
ml fl

]
= −Dm

tn

n!
fm. (B5)

Introducing the rescaled wavenumber 𝔎 = K/
√

ReD1, we have

Dm

Re
I2
ml = 𝔎2 D1

Dl

(
δml + ε1

ml

)
(B6)

and

Dm

Re2 I3
ml = −𝔎4 D2

1
DmDl

(
δml + ε2

ml

)
+ O(Re−1). (B7)

Finally, we note that for finite values of 𝔎 (i.e. small wavelengths) where viscous effects
are going to be important, the eigenfunctions are non-zero in a region whose size is
O(Re−1/2) (see figure 3a). Thus, the coupling terms εi

ml = O(Re−1/2) are negligible.
Therefore, (B5) to O(Re−1/2) reduces to a set of decoupled equations for the coefficients
fm, all of the form (5.5) with D = Dm and f = fm. Since the growth rate in the inviscid
limit is proportional to the eigenvalue, we focus on the gravest mode (m = 1) which, by
definition, has the largest eigenvalue.
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Figure 15. Evolution of RDC under time-independent radiation profile, with Re = 65 444. (a) The r.m.s. of
linear and nonlinear terms. (b) Growth rates. The numbers in the legend indicate the strength of the initial
perturbations. Black curve is the theoretical value (5.14).
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Figure 16. Same as figure 15, but under diurnal radiation profile and Re = 196.
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Appendix C. Sensitivity to grid resolution

In this appendix we show grid-independent tests. We choose cases THR and DLR for
illustration because they cover the maximal and minimum Reynolds numbers Re in this
paper. As we can see from figures 13 and 14, as the grids are refined by a factor of 2 in
both x and z directions, the growth rates are identical in the linear stage (before the growth
rates drop). The only difference appears to be a slightly longer duration of the linear phase.

Appendix D. Effects of initial perturbation magnitude

This appendix examines the effect of the magnitude of the initial perturbations. Section 6
considers random temperature perturbations normalised by T0 uniformly distributed in the
range from −10−2 to 10−2. In this appendix, we compare different initial perturbation
intensities (−10−1, 10−1), (−10−2, 10−2) and (−10−3, 10−3). We choose cases THR
and DLR to examine the perturbation effect because they cover the largest and smallest
Reynolds number Re considered in our numerical experiments. In both cases, for the
largest initial perturbations, the linear terms are less than an order of magnitude greater
than the nonlinear terms (figures 15a and 16a) and the system never experiences a linear
stage. In contrast, when the initial perturbations are smaller (last two cases), the growth
rate is similar and for the case with the smallest initial condition, the duration of the
superexponential stage is indeed longer. This results in the stratification at the onset of
the nonlinear turbulent stage being stronger.
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