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Summary

Parentage studies often estimate the number of parents contributing to half-sib progeny arrays by

counting the number of alleles attributed to unshared parents. This approach is compromised

when an offspring has the same heterozygous genotype as the shared parent, for then the

contribution of the unshared parent cannot be unambiguously deduced. To determine how often

such cases occur, formulae for co-dominant markers with n alleles are derived here for P
h
, the

probability that a gi�en heterozygous parent has an offspring with the same heterozygous genotype,

and P
a
, the probability that a randomly chosen offspring has the same heterozygous genotype as the

shared parent. These formulae have been derived assuming Mendelian segregation with either (1)

an arbitrary mating system, (2) random mating or (3) mixed mating. The maximum value of P
a

under random mating is 0±25 and occurs with any two alleles each at a frequency of 0±5. The

behaviour with partial selfing (where reproduction is by selfing with probability s, and random

mating otherwise) is more complex. For n% 3 alleles, the maximum value of P
a

occurs with any

two alleles each at a frequency of 0±5 if s! 0±25, and with three equally frequent alleles otherwise.

Numerically, the maximum value of P
a

for n& 4 alleles occurs with n*% n alleles at equal

frequencies, where the maximizing number of alleles n* is an increasing function of the selfing rate.

Analytically, the maximum occurs with all n alleles present and equally frequent if s& 2}3. In

addition, the potential applicability of these formulae for evolutionary studies is briefly discussed.

1. Introduction

Empirical studies of mating systems often attempt to

estimate the true number of parents contributing to

half-sib progeny arrays (Levine et al., 1980; Parker &

Kornfield, 1996; Jones & Avise, 1997; Moran &

Garcia-Vazquez, 1998; Bollmer et al., 1999). This

situation frequently arises in both plants and animals

when a set of offspring share one parent in common

but could have multiple unshared parents. For

example, a litter in mice would have the mother as the

shared parent, but different offspring might have been

sired by different fathers (Baker et al., 1999). Several

methods exist to estimate the true number of unshared

parents contributing to such half-sib arrays (Levine et

al., 1980; Parker & Kornfield, 1996; Kellogg et al.,

1998; DeWoody et al., 2000). For many of these

* Corresponding author. Tel :­1 (706) 542 1455. Fax: ­1 (706)
542 3910. e-mail : asmussen!arches.uga.edu

methods, the estimate is derived from the number of

distinct gametotypes (single locus alleles or multilocus

haplotypes) that were contributed by the unshared

parents ; this is deduced by subtracting out the allele

that was contributed by the shared parent. For

instance, if at a given locus the shared parent of a half-

sib progeny array has the genotype A
i
A

j
and an

offspring has the genotype A
i
A

k
, then the shared

parent contributed the A
i
allele and, thus, the unshared

parent contributed the A
k

allele.

Difficulties can arise, however, when attempting to

determine the contribution of the unshared parent. As

observed by many researchers (Kellogg et al., 1998;

Kichler et al., 1999; Fiumera et al., 2001), if the

shared parent and one of its offspring both have the

same heterozygous genotype, then the contribution of

the shared parent and therefore that of the unshared

parent cannot be unambiguously determined. For

example, if both the shared parent and one of its

offspring have the diploid genotype A
i
A

j
, then it
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cannot be deduced whether the shared parent con-

tributed the A
i
or the A

j
allele. If these ambiguous

cases are common, they will hinder attempts to

estimate the true number of parents contributing to

half-sib progeny arrays based on counting the number

of gametotypes contributed by the unshared parents.

Given this potential difficulty, it would be useful to

have simple analytic formulae for the probability that

a given heterozygous shared parent of genotype A
i
A

j

has an offspring of the same heterozygous genotype

A
i
A

j
. In addition, it would be valuable to be able to

calculate easily the probability that a randomly chosen

offspring from a randomly chosen progeny array has

the same heterozygous genotype as the shared parent.

Researchers have calculated the first probability in the

process of deriving exclusion probabilities for specific

allelic systems (Boyd, 1955; Weiner, 1968) and

assuming random mating (Evett & Weir, 1998). To

our knowledge, no published formulae exist for the

second value, and no formulae exist for either of these

probabilities for the general case of co-dominant

markers with n alleles and an arbitrary mating system.

Here we derive explicit analytic formulae for the n-

allele case for (1) the probability, P
h
, that a gi�en

heterozygous parent has an offspring with the same

heterozygous genotype and (2) the overall probability

of ambiguity, P
a
, which is the probability that a

randomly chosen offspring has the same heterozygous

genotype as the shared parent. We first derive the

general formulae assuming only Mendelian segre-

gation and then present simplifications for the special

cases of fully random mating and mixed-mating

populations. For ease of exposition, we will refer to

the shared parent as the female (m) and the unshared

parent as the male (l), but analogous derivations and

formulae apply if the male is the shared parent.

2. The probability of ambiguous offspring

(i) General case with arbitrary mating system

We first derive the probability, P
h
¯P(O¯A

i
A

j
rm¯

A
i
A

j
), that a heterozygous parent (m) of genotype A

i
A

j

has an offspring (O) of the same heterozygous

genotype A
i
A

j
for the general case with an arbitrary

mating system. Assume Mendelian segregation at a

single, autosomal, diploid locus with n alleles (A
"
,

A
#
, …, A

n
) where the frequency of allele A

i
is p

i
for

i¯1, 2, …, n and p
"
­p

#
­I­p

n
¯1. Conditioning

on all possible types of male genotypes and sub-

stituting in the expected frequency of A
i
A

j
offspring

for each of the respective matings shows that

P
h
¯ 3

k%m

P(O¯A
i
A

j
rA

i
A

j
m¬A

k
A

m
l)

¬P(l¯A
k
A

m
rm¯A

i
A

j
)

¯ "

#
P(l¯A

i
A

i
rm¯A

i
A

j
)­"

#
P(l¯A

j
A

j
rm¯A

i
A

j
)

­"

#
P(l¯A

i
A

j
rm¯A

i
A

j
)

­ 3
k1i,j

"

%
p(l¯A

i
A

k
rm¯A

i
A

j
)

­ 3
k1i,j

"

%
P(l¯A

j
A

k
rm¯A

i
A

j
). (1)

The second quantity of interest, the probability,

P
a
¯3

i! j
P(O¯m¯A

i
A

j
), that a randomly chosen

offspring has the same heterozygous genotype as the

shared parent, is then obtained by conditioning on the

genotype of the female,

P
a
¯ 3

i! j

P(O¯A
i
A

j
rm¯A

i
A

j
)P(m¯A

i
A

j
), (2)

where P(O¯A
i
A

j
rm¯A

i
A

j
)¯P

h
is given by equation

(1) and P(m¯A
i
A

j
) is the female genotype frequency

at this locus.

(ii) Random mating

Equations (1) and (2) take on a simple form when

there is random mating with respect to genotype at

this locus and Hardy–Weinberg frequencies. For this

case, P
h

can be derived by substituting the latter into

equation (1), or simply by noting that an A
i
A

j
female

can either pass on her A
i
allele (with probability 0±5)

and the male the A
j
allele (with probability p

j
), or her

A
j
allele (with probability 0±5) and the male the A

i

allele (with probability p
i
). Thus, for a random mating

population at Hardy–Weinberg equilibrium, the

probability that a given heterozygous female (A
i
A

j
)

has an offspring with the same heterozygous genotype

(A
i
A

j
) is

P
h
¯ "

#
(p

i
­p

j
), (3)

where p
i
and p

j
are the frequencies of the alleles A

i
and

A
j
, respectively. This formula can also be derived via

descent measures (Evett & Weir, 1998, p. 117).

Substituting equation (3) and the Hardy–Weinberg

genotype frequencies into equation (2) (see Appendix

A), we then find that the corresponding probability

that a randomly chosen offspring has the same

heterozygous genotype as the shared parent is

P
a
¯ 3

n

i="

p#
i
(1®p

i
). (4)

(iii) Mixed mating

Equations (1) and (2) are also substantially simplified

in mixed-mating populations where a proportion of

females s self-fertilize and the remaining females

(1®s) outcross, where 0 ! s!1. P
h

here follows

directly from the law of total probability (Ross, 1997)

by conditioning on whether the female selfs or

outcrosses. The probability that a given heterozygous
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female has an offspring of the same heterozygous

genotype is thus

P
h
¯ "

#
[s­(1®s)(p

i
­p

j
)], (5)

which is simply the weighted average of the values

under pure selfing (1}2) and random mating, "
#
(p

i
­p

j
).

Substituting equation (5) and the mixed-mating

equilibrium genotype frequencies of heterozygotes

(Marshall & Weir, 1979) into equation (2) then reveals

that the probability that a randomly chosen offspring

has the same heterozygous genotype as the shared

parent is

P
a
¯

E

F

1®s

2®s

G

H

A

B

s
E

F

1®3
n

i="

p#
i

G

H

­2(1®s)3
n

i="

p#
i
(1®p

i
)

C

D

. (6)

If s¯ 0, equations (5) and (6) reduce to the random

mating equations (3) and (4) respectively.

(iv) Multiple loci

Most empirical studies of parentage utilize data from

multiple, unlinked molecular markers. It would be

useful to calculate the probability, P
T
, that a randomly

chosen offspring will not have the same heterozygous

genotype as the shared parent at any of the multiple

loci surveyed. Under this condition, the contribution

of the unshared parent will be unambiguous at all

the loci. As the markers are independent, P
T

is given

by simply multiplying their probabilities (1®P
a
)

together.

3. Factors affecting the probability of ambiguity

(i) Effects of allele frequency distribution

How frequently ambiguous offspring occur is de-

termined by the maximum and minimum values of P
h

and P
a
. The probability that a given heterozygous

female has an offspring of the same heterozygous

genotype, P
h

from equations (3) and (5), is a

monotonically increasing function of the combined

frequencies of the two associated alleles (p
i
­p

j
),

ranging in both random and mixed-mating popu-

lations from a greatest lower bound of 0 for two rare

alleles to a maximum of 1}2 when these are the only

alleles in the population.

The behaviour of the overall probability of am-

biguity, P
a
, is more complex (Appendix B). We first

consider a random mating population. The maximum

of P
a
is then 0±25 and occurs with two alleles, each at

a frequency of 0±5. For any number of alleles n, P
a

approaches this maximum as the allele frequency

distribution approaches that of two equally frequent

alleles with all other alleles at a frequency near 0 (see

0 0·2 0·4 0·6 0·8 1
0

0·05

0·15

0·1

0·2

0·25

0·3

frequency of A1 allele

pr
ob

ab
il

it
y 

(P
a)

Fig. 1. Probability (P
a

from equation (4)) that a
randomly chosen offspring has the same heterozygous
genotype as the shared parent in a random mating
population, for n¯ 2 alleles. P

a
is simply p

i
(1®p

i
) which

has a maximum value of 0±25 when both alleles have a
frequency of 0±5, and declines to 0 as the frequency of
the A

"
allele approaches either 0 or 1.

Fig. 1 and 2 for examples with two and three alleles).

As expected, P
a

has a minimum value of 0, which

occurs when the locus is monomorphic (Figs. 1, 2). In

addition, with equally frequent alleles, P
a

rapidly

decreases from 0±25 to 0 according to the formula P
a

¯ (1}n)(1®1}n), as the number of alleles (n) at the

locus increases from two to infinity. Finally, as the

number of marker loci with equally frequent alleles

increases, P
T
, the probability that a randomly chosen

offspring does not have the same heterozygous

genotype as the shared parent at any of the loci

decreases (Fig. 3).

The situation is considerably more complex in

mixed-mating populations (Fig. 4). Although the

minimum value of P
a

is still always zero and occurs

when the locus is monomorphic or the selfing rate is 1

(because there are then no heterozygotes at equi-

librium), the maximum value is governed by a complex

interaction between the selfing rate (s) and the number

of alleles (n) at that locus. For n¯ 2 alleles the

maximum value of P
a
occurs with those two alleles at

equal frequencies. For n¯ 3 alleles, the maximum

value of P
a

also occurs with any two alleles each at a

frequency of 0±5 when s!1}4, but with three equally

frequent alleles when s"1}4. A final analytical result

is that when s& 2}3, the maximum of P
a

with % n

alleles occurs with n equally frequent alleles and this

maximum monotonically increases with n.

In numerical analyses with n¯ 2, 3, …, 100 alleles

and selfing rates s¯ 0, 0±01, …, 0±99, 1 the maximum

of P
a

always occurred with n*% n equally frequent

alleles, but the number of alleles n* maximizing P
a

increases with the selfing rate. For any number of

alleles n%100, the maximum of P
a

always occurred

with two equally frequent alleles if s!1}4; with

three equally frequent alleles if 1}4! s! 5}11 (0±25

to 0±45); four equally frequent alleles if 5}11! s!
11}21 (0±45 to 0±52); five equally frequent alleles if
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Fig. 2. Probability (P
a

from equation (4)) that a randomly chosen offspring has the same heterozygous genotype as the
shared parent in a random mating population, for n¯ 3 alleles. The maximum value of 0±25 is approached when any
two of the alleles approach equal frequencies of 0±5. The minimum value of 0 is approached when any one of the allele
frequencies approaches 1. With three, equally frequent alleles, P

a
¯ 0±22.

pr
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y 
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T
)
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0

0·2

0·4

0·6

0·8

1

number of loci

Fig. 3. Probability that a randomly chosen offspring will
not have the same heterozygous genotype as the shared
parent at any of the loci in a random mating population,
as a function of the number of loci surveyed and the
number of equally frequent alleles at each locus. P

T

declines as the number of loci surveyed increases or as
marker polymorphism decreases.

11}21! s!19}34 (0±52 to 0±56); and so on (see also

Fig. 4). Empirically, the maximum of P
a

appears to

occur with n* equally frequent alleles, where s(n*)

! s! s(n*­1) and s(n) is an increasing function of

n given by equation (A6) (Appendix B).

(ii) Effect of selfing rate

The selfing rate affects both the probability that a

given heterozygous female has an offspring of the

same heterozygous genotype (P
h
) and the probability

that a randomly chosen offspring has the same

pr
ob

ab
il

it
y 

(P
a)

0
0

0·05

0·1

selfing rate (s)
0·2 0·4 0·6 0·8 1

0·15

0·2

0·25

0·3

s=1/4
s=5/11

s=2/3

Fig. 4. Probability (P
a

from equation (6)) that a
randomly chosen offspring will have the same
heterozygous genotype as the shared parent in a mixed-
mating population as a function of the selfing rate (s). P

a

is shown for allele frequency distributions with 2, 3, 5 and
10 equally frequent alleles. With 2 or 3 equally frequent
alleles, P

a
strictly declines with s. For 5 or 10 equally

frequent alleles, P
a

first increases but then decreases, as s
increases from 0 to 1.

heterozygous genotype as the shared parent (P
a
). First

consider the effects of selfing rate on P
h
(from equation

5). If there are only two alleles at the marker locus, P
h

always equals 0±5 regardless of the value of s or the

allele frequencies. If there are more than two alleles,

P
h
, the probability that a heterozygous female has an

offspring of the same heterozygous genotype, strictly

increases with the selfing rate (s), from "

#
(p

i
­p

j
) when

s¯ 0, to 0±5 when s¯1. Finally, in the extreme case

of a purely selfing population (i.e. s¯1), the value of
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P
h

is independent of the allele frequency distribution

and always equals 0±5.

Although P
h
strictly increases with increased selfing

(for n& 3 alleles), the behaviour of P
a

is more

complex (see Appendix C). For n% 3 alleles, P
a

strictly decreases with increased selfing. For n& 4

alleles, however, the behaviour depends upon the

allele frequencies in the population and is specifically

determined by the sign of the quantity

1®3
n

i="

p#
i
®33

n

i="

p#
i
(1®p

i
)¯ 33

i! j

p
i
p
j
(#
$
®p

i
®p

j
). (7)

If this quantity is zero or negative, then P
a

strictly

decreases with s. If, however, this quantity is positive,

P
a

first increases and then decreases with s, as s

increases from 0 to 1 (Fig. 4).

4. Discussion

Extensive efforts, both empirical and theoretical, have

focused on estimating the number of parents con-

tributing to half-sib progeny arrays when the genotype

of the shared parent is known (Levine et al., 1980;

Parker & Kornfield, 1996; Kellogg et al., 1998;

Moran & Garcia-Vazquez, 1998; DeWoody et al.,

2000; Fiumera et al., 2001). Many of the empirical

studies count the number of gametotypes contributed

by the unshared parents at co-dominant molecular

markers by subtracting out the contribution of the

shared parent. However, this cannot be done unambig-

uously when the shared parent and an offspring have

the same heterozygous genotype. If this is a common

occurrence, estimates of parental numbers may be

seriously compromised. To assess how often such

ambiguities occur, we have derived and analysed

general formulae for co-dominant markers with n

alleles for the probability that (1) a gi�en heterozygous

parent has an offspring with the same heterozygous

genotype (P
h
) and (2) a randomly chosen offspring has

the same heterozygous genotype as its shared parent

(P
a
).

In random mating populations, the maximum of P
a

(0±25) occurs with two equally frequent alleles, and P
h

is maximized (0±5) when there are only two alleles in

the population, whatever their frequencies. The effects

of selfing may not be as intuitively obvious. Although

P
h

is still maximized with two alleles, the allelic

distribution which maximizes P
a

is governed by a

complex interaction between the number of alleles

and the selfing rate (s) in the population. Furthermore,

while P
h
strictly increases with higher selfing rates, P

a

can either strictly decrease or first increase with s since

it is a convolution of P
h
and the equilibrium frequency

of heterozygotes (which is a decreasing function of s).

In essence, our probabilities of ambiguity predict

the amount of information apt to be gained (or lost)

in parentage studies. They should then be expected, in

some way or other, to be related to other types of

information indices. Therefore, it is not surprising

that factors that influence exclusion probabilities

(Jamieson & Taylor, 1997) or the PIC index (Botstein

et al., 1980) also affect the probabilities considered

here. For example, in random mating populations, as

the number of equally frequent alleles at a given locus

increases, both the probability of not being able to

exclude a given parent and the probability that a

randomly chosen offspring has the same heterozygous

genotype as the shared parent (P
a
) decrease to 0. In

each case, the amount of information expected to be

gained increases with increased marker poly-

morphism.

Given that most parentage studies now employ

highly polymorphic molecular markers, P
a
is likely to

be much lower than the maximum value of 0±25 in

random mating populations. It is possible, however,

that a large proportion of progeny in any single

progeny array might have the same heterozygous

genotype as the shared parent. For example, P
h
from

equation (3) shows that if the shared parent has a

heterozygous genotype composed of two relatively

common alleles (each at a frequency of 0±20), then on

average 20% of her progeny will have her same

heterozygous genotype. Such progeny arrays must

either be analysed with the reduced information

available, which can lead to statistically significant

underestimates of parental numbers (Fiumera et al.,

in preparation) or through an alternative method not

relying on counting the number of gametotypes.

Although explicit likelihood equations may be difficult

to formulate (Harshman & Clark, 1998), a likelihood

approach based upon offspring genotypes may prove

valuable in such cases. An alternative (and potentially

preferable) likelihood approach would incorporate P
h

andP
a
, while still basing estimates of parental numbers

on counting the number of distinct gametotypes.

Although initially derived for forensic and parent-

age inference, these probabilities will probably find

application in a wider array of questions in evol-

utionary genetics. For instance, genetic analysis of

progeny arrays may reveal patterns of non-random

mating that would not be evident by focusing only on

the adult population (e.g. Schoen & Clegg, 1986).

Higher proportions of ambiguous offspring than

expected under random mating might reflect in-

breeding by some parents whereas lower proportions

might reflect outbreeding. Without knowing the

expected frequency of ambiguous offspring under

random mating (i.e. P
a
and P

h
derived here), it would

be impossible to detect deviations with any level of

statistical confidence.

In this (and other) practical applications, it is

important to recognize that our derivations assume

that each offspring was sired by a random unshared
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parent from the population. In nature, however, most

half-sib progeny arrays contain multiple offspring

from each unshared parent and therefore each

offspring within a given array may not represent an

independent sample. This discrepancy can easily be

corrected. The observed level of ambiguity can be

calculated via Monte Carlo simulations from reduced

empirical data sets, each including only a single

offspring from each shared parent (repeated thousands

of times to generate distributions). The corrected

frequency of ambiguous offspring observed in the

empirical data would then be compared with the

expected frequency (calculated from the probabilities

derived here) to test for statistical differences. Lastly,

and of considerable practical importance, using P
h

and P
a

in a priori power analyses for parentage and

other applications (thus taking into account the

information lost from ambiguity) can increase the

efficiency of experimental designs, thereby saving

limited resources.

Appendix A. Formal derivation of P
h

and P
a

(i) P
a

for random mating populations

Substituting equation (3) and the Hardy–Weinberg

genotype frequencies into equation (2) reveals that

P
a
¯ 3

i! j

P(O¯m¯A
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i="

p#
i
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i
). (A1)

(ii) P
h

and P
a

for mixed-mating populations

After substituting in the mixed-mating equilibrium

genotype frequencies of males in the population

(Marshall & Weir, 1979), equation (1) becomes

P
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Substituting equation (A2) and the mixed-mating

equilibrium genotype frequencies of heterozygotes

(Marshall & Weir, 1979) into equation (2) reduces the

formula for P
a

to

P
a
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i! j

"

#
[s­(1®s)(p

i
­p
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)]
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Appendix B. Calculating the maximum value of P
a

Equation (A3) reduces to (A1) when s¯ 0 and thus

(A3) applies for all 0% s!1. Since P
a

in equation

(A3) is a continuous function of n®1 independent

variables on a closed bounded region (p
i
& 0 for i¯

1, 2, …, n®1 ; 3n−"
i="

p
i
%1), it has a maximum there.

This occurs either on the boundary of the allele

frequency space where one or more alleles is absent, or

at an admissible critical point inside where all the first

partial derivatives are zero.

(i) Determining the critical points

For P
a

in equation (A3),

UP
a

Up
i

¯ 2

E

F

1®s

2®s

G

H

(p
i
®p

n
)[2®3s®3(1®s)(p

i
­p

n
)],

which equals zero if and only if either p
i
¯ p

n
or p

i
¯

(2®3s)}3(1®s)®p
n
. A potential critical point thus

has k of the allele frequencies equalling p*¯
(2®3s)}3(1®s)®p

n
and the remaining n®k (includ-

ing p
n
) equalling p

n
, where k¯ 0, 1, 2, …, n®1.

Remembering that p
"
­p

#
­I­p

n
¯1 we have 1¯

(n®k)p
n
­k((2®3s)}3(1®s)®p

n
), and thus

p
n
¯

3®2k­3s(k®1)

3(1®s)(n®2k)
(A4)

and

p*¯
2(n®k)­3s(1®n­k)®3

3(1®s)(n®2k)
. (A5)

The conditions under which the critical points

determine valid allele frequencies (all p
i
" 0), as well

as the corresponding P
a

values, will be treated

separately for random mating and mixed-mating

populations.

(ii) Random-mating populations

If n¯ 2, (A4) and (A5) determine a valid critical point

with all p
i
" 0 only when k¯ 0, for which p

"
¯ p

#
¯

0±5. If n& 3, then the critical points are valid if and
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Table A1. Critical points and corresponding �alue of P
a

under random

mating, gi�en the number of alleles (n) and the �alid k �alue

n k valuesa Critical points P
a

2 0 p
"
¯ p

#
¯ "

#
0±25

3 0, 1 p
"
¯ p

#
¯ p

$
¯ "

$
0±222

& 4 0 p
"
¯…¯ p

n
¯ "

n
(n®1)}n#

1 p
n
¯1}3(n®2), p*¯ (2n®5)}3(n®2) (n®1)(4n®9)}27(n®2)#

a For n& 3, critical points for k¯1 are the same as for k¯ n®1.

only if k¯ 0, 1, or n®1 (Table A1) ; however, since k

¯1 and k¯ n®1 provide the same critical points,

only the cases of k¯ 0 and k¯1 are relevant.

We will now demonstrate that for n& 2 alleles, P
a

has a maximum value of 0±25, which occurs when-

ever any two of the alleles have a frequency of 0±5 (i.e.

p
i
¯ p

j
¯ 0±5 for some i1 j and p

k
¯ 0 for k1 i, j).

Consider first the cases of n¯ 2 and n¯ 3 alleles. For

n¯ 2 alleles, P
a
¯ 0 at the two boundary points, p

"
¯

0 and p
"
¯1, and P

a
¯ 0±25 at the one critical point,

p
"
¯ p

#
¯ 0±5. The maximum value of P

a
for n¯ 2

alleles is then 0±25 and occurs when p
"
¯ p

#
¯ 0±5. For

n¯ 3 alleles, the maximum occurs either on a

boundary corresponding to one of the three possible

two-allele subsystems (i.e. (i) p
"
¯ 0 and 0% p

#
%1 ;

(ii) p
#
¯ 0 and 0% p

"
%1 ; or (iii) p

#
¯1®p

"
and

0% p
"
%1) or at the unique internal critical point, p

"

¯ p
#
¯ p

$
¯1}3. Since P

a
(1}3, 1}3, 1}3)¯ 0±222, the

maximum value of P
a

is 0±25 and occurs at the three

points on the boundary where p
i
¯ p

j
¯ 0±5 for some

i1 j and p
k
¯ 0 for k1 i, j. Finally, mathematical

induction can be used to prove that the maximum

value of P
a
is 0±25 with two equally frequent alleles for

any number of alleles ; this follows by showing that for

n& 4 alleles the maximum value of P
a

at the critical

points occurs at those with k¯1 and is less than 0±25

for all n.

(iii) Mixed-mating populations

The central critical point p
i
31}n (with k¯ 0) always

exists, and equations (A4) and (A5) show that the

critical points for k&1 exist if and only if s! 2}3 and

either k! n}2, 3(1®s)}(2®3s), (2n®3®3s(n®1))}
(2®3s) or k is greater than each of these three

quantities. The number of valid critical points depends

upon both the number of alleles (n) and the selfing

rate (s). As for random mating, the critical points

defined by k¯k* are the same as those for k¯ n®k*,

but with selfing those for k"1 can also be valid (e.g.

k¯ 2 for s¯ 0±4 and n¯ 5 alleles). For s& 2}3, the

only valid critical point is with all alleles at equal

frequencies (p
i
31}n).

For n¯ 2 alleles, the maximum occurs at the only

valid critical point, where p
"
¯ p

#
¯ 0±5 (with k¯ 0),

at which P
a
¯ "

#
((1®s)}(2®s)) from (6). For n¯ 3

alleles, the critical points defined by k¯1 are valid if

and only if s!1}3, and at these points P
a
¯

2(2®3s)}(9(1®s)(2®s)), which is always less than P
a

¯ 2(1®s)(2­s)}9(2®s) at the central critical point

with p
"
¯ p

#
¯ p

$
¯1}3 (for k¯ 0). Finally, P

a
(1}2,

1}2)"P
a
(1}3, 1}3, 1}3) if and only if s!1}4.

Therefore, for n¯ 3 alleles, the maximum of P
a

occurs at all the boundary points with only two of the

alleles present at equal frequency if s!1}4, and with

three equally frequent alleles if s"1}4. For s¯1}4,

P
a

is maximized by either two or three equally

frequent alleles.

For n& 4 alleles, the analysis is much more

complicated. First, when s& 2}3, the only valid critical

point is for k¯ 0 when all alleles are equally frequent

(p
i
31}n) where P

a
¯ ((1®s)}(2®s))(n®1)[2­s(n®

2)]}(n#). In addition, P
a
(1}n, 1}n, …, 1}n)"

P
a
(1}(n®1), 1}(n®1), …, 1}(n®1)) if and only if

s"
2(n#®3n­1)

(n®2)(3n®1)
¯ s(n) (A6)

where s(n) increases from 1}4 to 2}3 as n increases

from 3 to ¢. Thus, if s& 2}3, the maximum of P
a

with n alleles occurs at the central critical point (p
i
3

1}n). Further results for s! 2}3 can be obtained

numerically as discussed in the text.

Appendix C. The effects of selfing

The effect of s on P
a

is determined by the sign of

¦P
a

¦s
¯

2A®3B­4(B®A)s®(B®A)s#

(2®s)#

where A¯1®3n

i="
p#
i
, B¯ 23n

i="
p#
i
(1®p

i
) and p

i
is

the frequency of allele A
i
. Two different scenarios are

possible. If 2A®3B% 0, ¦P
a
}¦s is always negative

implying that P
a
strictly decreases with s. If 2A®3B"

0, ¦P
a
}¦s switches sign from positive to negative

implying that P
a
initially increases but then decreases

with s, as s increases from 0 to 1.

For n¯ 2 alleles, 2A®3B is clearly always % 0

implying that P
a
strictly decreases with s, whatever the

allele frequencies. We now show that the same is true

https://doi.org/10.1017/S0016672301005237 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005237


A. C. Fiumera and M. A. Asmussen 170

for n¯ 3 alleles, by showing that both the minimum

and maximum of

2A®3B¯18p
"
p
#
p
$
®2(p

"
p
#
­p

"
p
$
­p

#
p
$
)

are % 0. Since 2A®3B is a continuous function on a

closed bounded region (p
"
& 0, p

#
& 0, p

"
­p

#
%1),

the minimum and maximum occur either on the

boundary of the admissible allele frequency space or

at a valid critical point inside. The latter are the

central point (p
"
, p

#
)¯ (1}3, 1,3), and the three points

(p
"
, p

#
)¯ (1}9, 1}9), (1}9, 7}9) or (7}9, 1}9). The

maximum value of 2A®3B is thus 0 at p
"
¯ p

#
¯ p

$
¯

1}3 and at the three boundary points where one allele

is fixed (p
"
¯1 or p

#
¯1 or p

$
¯1). The minimum

value is ®1}2 and it occurs at the three points on the

boundary with two equally frequent alleles [(p
"
, p

#
)¯

(1}2, 1}2), (1}2, 0) or (0, 1}2)]. This implies that for n

¯ 3 alleles, 2A®3B is always % 0 and, therefore, P
a

strictly decreases with s for all allele frequency

distributions.

For n& 4 alleles the behaviour is more complex

because the sign of 2A®3B varies with the allele

frequency distribution. For example, with n& 4

equally frequent alleles, p
i
31}n!1}3 and 2A®3B

¯ 63
i! j

p
i
p
j
(#
$
®p

i
®p

j
)" 0, and thus P

a
first increases

and then decreases with s, as s increases from 0 to 1.

For other allele frequency distributions, such as four

alleles with p
"
¯ p

#
¯ p

$
¯ ε and p

%
¯1®3ε,

2A®3B% 0 and P
a

strictly decreases with s, for

0% ε%1}8. The sign-conserving property of con-

tinuous functions ensures that this is also true for

n" 4 alleles near these frequencies. These results

imply that for n& 4 alleles both 2A®3B% 0 and

2A®3B" 0 occur, along with the two alternative

behaviours of P
a
, depending upon the actual allele

frequencies.
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