FREE COMPLETELY REGULAR SEMIGROUPS
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A completely regular semigroup is a semigroup that is a union of groups. The aim

here is to provide an alternative characterization of the free completely regular semigroup
% on a set X to that given by J. A. Gerhard in [3, 4].

Although the structure theory for completely regular semigroups was initiated in
1941 [1] by A. H. Clifford it was not until 1968 that it was shown by D. B. McAlister [5]
that F¥ exists. More recently, in [7], M. Petrich demonstrated the existence of F¥ by
showing that completely regular semigroups form a variety of unary semigroups (that is,
semigroups with the additional operation of inversion).

In [2] Clifford investigated the structure of FY by considering it as a quotient
semigroup Fx/p of the free unary semigroup Fk on X. He gave a simple description of
Green’s relations &£, R and 9 on F%/p and showed that F{ is a free semilattice of its
@D-classes. The description of 9 was in terms of content of elements while the £-class of
an element was described modulo a description of the p-class of an element of lesser
content. Clifford enabled the p-classes of elements of content at most 2 to be explicitly
described, by providing a model for FS when |Z|=2.

J. A. Gerhard showed in [4] that an #-class of F%/p is a free group. The free
generators were described modulo solution of the word problem in F/p for words of
lesser content. With a given #-class from each %@ -class and with Petrich’s description [6]
of an arbitrary completely regular semigroup, Gerhard constructed a model for Fg.

In this paper we inductively select a unique representative wf € F for each p-class
wp € Fx/p. In particular w8 is uniquely expressed as a product of elements from X and
from {segments of a#; a € F% has smaller content than w}. It is then shown that the set
{w8; w e F¥%} with the multiplication u8 - v8 = (u8(v8))8 is isomorphic to Fx. Since they do
not appear to shorten the proofs of this paper, the results of [3, 4] are not utilized here.

In section 1 some preliminary information, especially from [2], is listed. Some
properties of Fi%/p are derived in section 2. In section 3, 6 is defined and
relevant properties are derived. A model for F¥ is obtained in the final section.

1. Definitions and preliminaries. Let Fy and FY denote respectively the free
semigroup and free completely regular semigroup on a non-empty set X. Let Fi denote
the free unary semigroup on X; that is, the free object on X in the category of semigroups
with a unary operation. Let X=X U{(, )™} where (, )"'¢ X. By [3], F% is the smallest
subsemigroup of the free semigroup Fx such that X < F% and (w) 'e F¥ for all we Fy.
There is an alternative description of Fy in [2]. Let Fk and F%' denote respectively the
semigroups Fgx and Fx with identity 1 adjoined.

Define v € Fx to be a segment of w e F if w = avb for some a, b € Fy. The segment v
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of w is said to be maximal with respect to a property P if and only if v satisfies P and for
any final segment ¢ of a and initial segment d of b then cv, vd and cvd do not satisfy P.

If u=b(a or u=a)'b where aeF% we say that the occurrence of ( or )7!
respectively is unmatched. Let ve F% denote the word obtained from v e F;z by succes-
sively deleting unmatched occurrences of ( and )™

The content of we Fk is the set

C(w) ={letters of X appearing in w}.

The left indicator L(w) of we F% is given by L(w) =a where a is the shortest initial
segment of w such that C(a) = C(w). Dually the right indicator is R(w)=b where b is the
shortest final segment of w such that C(w)= C(b). Define ¢ to be an indicator of w if
there is a segment ¢ of w such that C(¢)= C(w) and L(c)=R(¢c)=c.

For w e F¥ let {¢;; 1 =j=r} denote the set of successive segments of w such that ¢; is
an indicator and ¢; is not derivable from a proper subsegment of ¢;. Let d; denote the final
segment of w beginning with ¢;, and let ¢; denote the segment beginning and ending with
¢; and ¢;., respectively. Define I;(w) =¢;, W;(w)=d; and M;(w) = ¢; to be respectively the
jth indicator, jth remainder and jth link of w.

ExaMpLE 1.1. Let w = x;(x((x4%,) " x3) " (x5) " 1x,x4x5) " . Then

L(w) = x;%5(x4%,) ' x3, R(w) = xX;X4X3, Li(w) = X5(x4%,) 7' x5,
I (w) = x4%, X35, L(w) = x3(x2) 7' X1 X4, L(w) = x,%1 X453,
M, (w) = x5((x4%1) " x3) 'z, My(w) = x4%;%3(x2) " X1 Xa, M;(w) = x3(x2) 7' X, X4X3,
Wi(w) = xo((xa%1) 7 %3) 7 (02) T X1 XaXs, - -, WalW) = X021 Xa X3,
Note that L(w)= L(W(w))=L(M;(w))=R(M;_,(w)) (if the links exist) and I,(w)=
R(L(w)).

We next provide a simple characterization of indicators and links. Suppose v € Fx and
C(v)=Y. For any ue F%' and x, y e Y\ C(u) define v to be
(i) a left [right] Y-indicator if v=uy [v=xu],
(ii) a Y-indicator if v=xuy, x#y (or if v=x when |Y|=1), or
(i) a Y-link if v=2xux.

LemMMA 1.2. Let ve Fx and C(v) =Y. Then v is a left or right Y-indicator, Y -indicator
or Y-link if and only if v is a left or right indicator, indicator or link respectively of some
we Fx.

Proof. Let v =xux be a Y-link as in the definition. Since C(u)# Y and xe Y\ C(u)
then L(v) and R(v) are successive indicators of v, so v is a link of itself. Conversely let M
be the jth link of w where C(w) =Y. So M has exactly two indicators, namely L(w)= xa
and I,,(w)= by for some a,be Fi', xe Y\ C(a) and ye Y\ C(b). So M = xcy for some
ce Fx'. If C(c)=C(w) then R(L(c)) and L(R(c)) are indicators of w. Hence since L(w)
and I,,(w) are successive indicators then C(c)# C(w) while C(xc)= C(w)= C(cy). But
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then, since x € C(cy), if x# y we get x € C(c) and C(c) = C(w), a contradiction. Thus x =y
and M is a Y-link. The other cases follow directly from the definitions.

Let p be the least congruence on F% containing (w(w) 'w, w), (w(w)™, (w)"'w) and
(W)™, w) for all we F%.

Tueorem 1.3. (Clifford [2]). Let u, ve F%. Then
() Fx=Fx/p,
(i) up D vp if and only if C(u)=C(v), and
(iii) up R vp if and only if L(u) = ax and L(v) = bx for some x € X and a, b € F%' such
that apbora=b=1.

CoRrOLLARY 1.4. Suppose u, v € F% and p is an initial segment of u. If upv then v has
an initial segment q such that L(p) p L(q).

Proof. Assume 1#|C(u)|#|C(p)|: otherwise the result follows directly from the
theorem. Let u, v, a, b be as in Theorem 1.3(iii). S0 a p b and by [2, Lemma 5.1], a p pa,
for some a, € F¥'. Since |C(a)|<|C(u)] the result follows by induction on |C(u)|.

NortatioN. For we Fx define w" to be the product of n copies of w. Define
w™'=(w)"', w™ to be the product of n copies of w™' and w®=ww™w.

Throughout the paper assume that X is a well ordered set. We will always denote by
Y the subset Y ={x,,...,x,} of X where x; <x; in X if and only if i <j. Define

f=x,...x, and f=f°. (1)
The symbol < denotes proper inclusion of sets.

2. Some p-relationships. In this section we determine some relationships in Fx/p
and review Clifford’s models for | X|=<2.

Lemma 2.1. Let weF% and uveF% such that Cuw)cC(w). Let a=
L(w)u(vR(w)wL(w)u)"'vR(w). Then w™'pa.

Proof. Clearly (aw)p is an idempotent. By Theorem 1.3(iii) and its dual
apH wp ¥ (aw)p. So awapa and wawpw. By Theorem 1.3(1), w!p is the unique

¥ -related inverse of wp so apw™'.

LemMMA 2.2. Let we Fy have an initial segment u. Then un'wp w.

Proof. By [2, Lemma 5.1], wp uv for some ve F¥'.

The next lemma is the major step towards a decomposition of elements of Fx in
terms of their left and right indicators, indicators and links.

Lemma 2.3. Suppose w e Fy% has no segment u™" such that ue Fy% and C(u)= C(w).
Let I, = I;(w) and M, = M, (w), 1=j=<r, 1=h <r, be respectively the indicators and links of
w. Then
wpLWIT'M, ... I\ M,_, I.'R(w).
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Proof. Let W, = W,(w) be the jth remainder of w. By the definitions of section 1,
L(W;) =1, and since L(R(w))=1I, then W, = R(w). Furthermore since W; =W, then there
is a z;e X and w;e F%' such that W, =zw;, Then I;.;=R(L(w;)) and M; = z,L(w;) (if
they exist).

If w=L(w)a for some a then since I, = R(L(w)) we get W, =I,a and, by the dual of
Lemma 2.2, wp (L(w)I7'I,)a =L(w)I{'W,. Alternatively w=cd ‘e for some c,d,ee
F%!' where C(d)# C(w) and L(w)=cg for some inital segment g of d™'. Since I, =
R(L(w)) and C(w) # C(d) 2 C(g) then I, = hg and W, = hd™'e for some h. So by Lemma
2.2 and its dual

wpc(gg'd 'e)=L(w)g 'd 'ep (LWT'I)g 'd"e
=L(w)I7'h(gg'd Ve p L(w)I{'hd ‘e = L(w)I7'W,.

Hence we have wp L(w)I7'W,. If r>1 then by applying the argument to w, and using
the initial comments of the proof, wp L(w)I;'M,I;'W,. Since W, =R(w) we get the
result by repeating the argument for w,, ..., w,_,.

Recall the definition of Y and f in section 1.

COROLLARY 2.4. Let w be as in Lemma 2.3 with C(w)=Y. Then

wp LWL M . . (FLoof) 7 Moo f(FLf) 7 fR(w).

Proof. Since I, = R(L(w)) then by Theorem 1.3(iii) the idempotent (f(fI,f)"'fI)p is
L-related to (L(w))p. Hence since I, = L(M,) then by Lemma 2.2

LWIT"My p LWL LT My p LOW)f(LF) ™ M.
Likewise I, = R(M;_,) = L(M)) if j#r so
Moo I M, p Mo () M,

and.since I, = R(M,_,) = L(R(w)) then

M, I7'R(w) p M, _if(fLf)"' fR(w).
The result is now a consequence of Lemma 2.3.

Notice that if we Fx and C(w)=Y then by Lemma 2.1
w™! p LW)f(FR(w)wL(w)f)™'fR(w). 2

Hence by Corollary 2.4 any we Fx where C(w)=Y can be expressed modulo p as a
product of left and right Y-indicators, Y-indicators, Y-links and f.

LEMMA 2.5. Suppose u,v,we F¢', C(w)=Y and 1<i=<n, 1<j<n.
(i) If w=ux,...x; and R(w)=0ox,...x then wpuf(fof)"'fR(w).
(i) If w=x...xux,...x; then wpx;...x.uf(fuf)™'fux,...x;.

Proof. (i) By Theorem 1.3 the idempotent (x,.; . .. x.f ' (fof)"'fR(w))p is &L-related
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to wp. So

Wo WS - .. xf " (fof) T FR(W) p uf (fof ) fR(w).
(i) Let R(w)=wvx;...x. Since R(fux;...x)=R(w) then by (i)
wpX;... xuf(fof)'fR(w) and fux, ... x; p fuf(fvf)"'fR(w). The result follows.

DEFINITION 2.6. (i) A segment u of w e Fx is v-excluded, for v € Fg, if and only if v is
not a subsegment of u.

(n) An f—excluded segment u of we Fx is f bounded if and only if either w=u,
w = afu, w=ufb or w=afufb for some a, be F&'

(iii) Denote by Gy the free group freely generated by

{fuf, f; ue F¥, C(u)< Y and u is f-excluded}

where (fuf)™" and f~! denote respectively the inverses of fuf and f, and f is the identity. If
Y ={x} then f=x, so there exists no f-excluded u € F such that C(u)< Y. Hence Gy I8
the free group on {x}. Let G; denote the subgroup of Gy generated by F We will regard
v € Fx as an altermative expression for u e Gy if and only if a common expression can be
obtained by replacing segments of u and v that are words of Gf by their reduced forms. For

example (faf)'fbf ' denotes (faff)~'fbff ' = f*(faf) " 'fbff ! in Gy.

ExampLE 2.7. (i) Let X ={x}. By [2] F{=Gx. Let wé be the reduced form in Gy of
we Fy. By [2], for any u,ve F¥%, upv if and only if u6 =v6. So Gx ={w#, w € Fx} with
multiplication given by uf - v6 = (u6(v0))9.

(i) Let X =Y ={x, y}, so f=xy. Let A ={x}, y'; j is a non-zero integer} and Hy be
the subgroup of Gy freely generated by {fuf, f; uc A}. Let D, = G, D, = Gy, and

D, ={pfhfq; pe AU{y°, 1},qe AU{x° 1}, he Hy}.

Let S=D,UD,UD,,. Note that x°fpfpfy° and for integers i, j that x'y’ px'~'fffy/~*
and by Lemma 2.5(ii) y'x’ p y'ffx’. With these relations we can uniquely choose wf e S

such that w p w@ for all w e F%. It follows easily from [2, section 6] that for u, ve F%, upv
if and only if u6 =v6 and F¥=S ={uf; u e Fx} with multiplication u6 - v = (u6(v8))4.
The @D-classes of S are D,, D, and D,, and Hy is the ¥-class of f.

3. 6-forms. An element wfe F will be constructed from any we Fx. It will be
shown that wd pw, w80 = w8 and for u, v e Fx that (uv)8 =(u8(v0))6. These properties
will be used in the next section to show that S={w@; we F}, under the multiplication
ud - v0 = (ub(v0))6, is a semigroup isomorphic to F¥, and that wé is a unique representa-
tive of the p-class wp.

The construction of wé will depend on the following assumption. Recall the definition
of Y and f from section 1.

AssuMpTION 3.1. In the remainder of the paper assume for each we Fx where
C(w)c Y that a unique representative w@ of the p-class wp has been constructed. In
particular if |C(w)|=<2 let wd be as in Examples 2.7.
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The following definition is needed for our selection of representatives of the p-classes
fw, wf and fwf, where C(w)< Y.

DerFinmion 3.2, Define xo=1x,,1=1. For we F% where C(w)< Y let i(w) and j(w)
be respectively the least and greatest integer such that whenever 0=<i<j(w) or i(w)<i=
n+1 then x,e C(w)U{l}. Define w, e F¥' to be the shortest initial segment of
(W(xg . - - X;ewy))8 such that wxg . .. X P WLXo - . - Xj(w)- Define wg € F%' dually to be the
shortest final segment of ((X;(w) - - . Xn+1)°W)8 such that x;i,) ... Xpi1 WP Xicw) - - - Xpr1 Wre
Define

w = [(xi(w) ce. Xn+1)0W]L, w,=[w(x,... xi(w))O]R and wy =w,.

The next lemma indicates the need for Definition 3.2. To facilitate its proof we make
anather assumption.

AssumPTION 3.3. Suppose ve F, u=(x,...x,.1)% for some i and Y > C(u) > C(v).
Assume that vy is a final segment of uf. Dually assume that if u=v(x,. .. x;)° for some j
then vy is an initial segment of u@.

The assumption can be seen to be valid, by Examples 2.7, if |C(w)|=<2. We will
define @ such that the assumption will be valid when C(u) =Y (see comment after Lemma
3.11).

Lemma 3.4, Suppose v, we Fi' and C(x;...x,.1WXq...X)< Y for some i, j. Then
(1) wfpwif, fwp fwg and fwfp fwmf;

(i) if wxg...xpUXq...X; then w, =0 ;

(i) if x;. .. X WXo ... X P X .. Xy UXg . .. X; then Wyy = Upy;

(iv) Wi =Wy, Wi = Wra = Wagy = Ware

Proof. (i) Since (xo ... Xjo)’fof and w(xo . .. X))’ P wWL(Xo - - . X))’ then wfpw,f
and dually fwpfwg. Hence (with duals) fwfpf(xiw)--. Xus)"WfpfWf, sO fwpf=
fwuof p fwf p fwf.

(ii) Since C(x;...xX 4 1WXg...x)<Y then O0j<i=n-+1, i#1 and j# n. Suppose
UXg...X pWXg...X. Assume j(w)=j(v). Also assume j=j(w); otherwise multiply both
sides of the relation by suitable elements of Y. Since X,y € C(w) then wxg. .. X1 =
L(wWxg . .. Xj(wy+1)- If j>j(w) then by Corollary 1.4 there is a segment a of vx,...x; such
that L(a)=apwxy... X1 Since Xju).1 ¢ C(v) it follows by Theorem 1.3(iii) that
A=VXg ... Xjwyr1 and WXg. .. Xy PUXg . . . Xjqwy. SO assume j=j(w). The result is then
immediate if j(w)=j(v), so assume j(w)>j(v). Then C(v) < C(w) and by Assumption 3.3,
v, is an initial segment of (W(xg . .. x;)*)0. But vy Xy ... X pvXg...X; pWXo. .. X;, SO W is an
initial segment of v, Since C@)2C(v.) then j(w)=j(v,)=j(v). Since
UXg...X;pWLXo...X; then as above vy and hence w,, are initial segments of w;. By the
definition of w;; this is possible only if w, = w ;. So v_ = w,.

(i) Let U={u; % ... X4 1UXo--- X PX; ... Xy WXo...X}. Select a,beU such that
ila)=i(u) and j(b)=j(u) for all ueU. We first prove the existence of d €U such that
i(d)=i(a), j(d)=j(b). Suppose j(a)>j(b); otherwise put d =a. SO X;4)+; € C(a) and a
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has a shortest initial segment p that includes x;4y.1. SO P= X4y = L(p) for some
ce F¥'. By Corollary 1.4 and Theorem 1.3(iii) applied to X;...X,.10Xg... x; and
X Xpbxg .. X, we get XL X qCcp X X1bxo .. Xy It follows that with d =
c(xp... X)) "" then deU. We have i(c)=i(a)=i>j=j(b)=j(c) by the choice of i(a)
and j(b), hence since d €U then i(d)=i(a) and j(d)=j(b).

It sufficies to prove wy, = dps; by the same proof vy = dy,. As in the proof of (ii) we
assume j = j(w) and likewise i = i(w). Since (x;. .. X,11)°Wxq... X p (X;. .. Xus1)’dXg . .. X;
then by (i), w, =((x;. . . X,..1)°d)L. So j(d)=j{(x . .. x,.1)°d) = j(w,). Since w, €U then by
the choice of d, j(d) =j(w,). By these observations

X X Wi(Xo - Xiay)®
=X xn+1((xi . xn+1)0d)L(x0 s xi(d))o pXi... xn+1(xi e xﬂ+1)0d(x0 e xi(d))o
PXi o Xuri(Xiy - e 1) d (X -+ X))’ P X+ - X di(Xo - - Xiw)"-

Since wy = (wi(Xg . . . Xja))")r and similarly for dy,, then by the dual of (i), wa = dps.
(iv) We have wixg...Xjw)PWXg...Xjw and for z=w,, wg or wy then
Xiw) + + » Xns12X0 - + « Xj(w) P Xigw) « - - Xns1WXg - - - Xjw). The result follows by (ii) and (iii).

We now extend Definition 3.2 to include some cases where C(w)=Y.

DerinrTioN 3.5. Let u be a segment of w e F% where C(u)=C(w)=Y. Let ve F%' and
x,y € Y\ C(v). Define

u = vly if u=vy is a left Y-indicator,
ug = x{(vh) if u=xv is a right Y-indicator, and
x(v@)y if u=xvy is a Y-indicator or Y-link,
Upg =3 URY if u=vy is a left (not right) Y-indicator,
XU if u=xv is a right (not left) Y-indicator.
By Lemma 3.4 and Assumption 3.1 we easily get the following.

LEMMA 3.6. If they exist u;; =u;, Ugg =Ur and Unpan = Uppng for any ueFY,

Cluey.

Suppose w € F% and C(w) =Y. The following operations will be used in the selection
of wé. Recall the definitions of section 1 and Definitions 2.6, 3.2 and 3.5.

(61) Construct wé, from w by replacing each segment that is maximal with respect to
being a word in Gy, for any x € X, by its reduced form in Gy,,;. Clearly wd, pw.

(82) Construct w, from wé, by replacing each segment u~', where C(u)=Y and
fi# u# faf for any i and a, by L(u)f(fR(u)uL(u)f)~ YfR(u). leew1se replace segments
v™' of u where C(v)=Y, and so on. If u=f" or faf and u™' is not preceded and
succeeded by f in the spelling of w then replace u™" by fu™'f.

By (2), wh, p w. Note that if ™! is a segment of w8, and C(u)=Y then u™' € Gy and
fu='f is also a segment of wé,.

(63) Construct wés from w6, by replacing each f-bounded segment u, where
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C(u)=Y and u has r Y-indicators, by

L@f(Lf) " M . .. (FL—y (W) M, (Wf (FL (w)f) 7' fR(u).

By Corollary 2.4, wé; pw. Note that w83 is a product in Fx% of f and f—bounded
segments. We see by Definitions 3.2 and 3.5 that uy, exists for any f-bounded segment u
of wé,, where u is not an initial or final segment; otherwise u, or ug respectively exist.
This property is invariant under the operations on w6, that follow.

(64) Construct wé, from w6, by replacing each f—bounded segment u = x;a, where
C(u) =Y, a has initial segment p such that ppx;,, ... X, and L(u)=x;b# u for some i,
by Lu)f(fp~'bf)"'fp 'a. Since upx...x,p 'a then by the dual of Lemma 2.5(i),
wl, pw.

(85) Construct wés from wé, by replacing each f—bounded segment u = ax;, where
C(u)=Y, a has final segment q such that q px,...x_; and R(u) = bx; # u for some j, by
aq ' f(foq 'f)"'fR(u). Then wés p w.

(66) Construct whs from wés by replacing each f-bounded segment u = x.ax;, where
a has initial and final segments p and g respectively such that ppx,.,, ... x,,, and
qpXo...x_, for some i and j, by x;aq 'f(fp'aq”'f)fp ' ax;. By Lemma 2.5(ii), wls p w.

(87) Construct wé, from wé by replacing each f-bounded segment u by u, ug or
uyme according as u is an initial, final or other type of segment. By Lemma 3.4(i) and
Definition 3.5, w6, p w.

(¢) For we Fi% where C(w) =Y, construct w¢ from w by replacing the segment of w
that is maximal with respect to being a word of Gy by its reduced form in Gy.

(8) Define w6 = wé,¢. Then wl pw.

Notice that each f—bounded segment of wl of content Y is a left Y-, right Y- or
Y-indicator or Y-link. Furthermore w# is a product in Fx of f and f—bounded segments.
By (83), wl has a segment that is a word in Gy. We have wl = phq where he Gy, p=1or
p=uf and q=1 or q= fv where u and v are respectively the f-bounded initial and final
segments (if they exist) of wé.

The next result follows easily from the definitions.

LeEMMA 3.7. Let w=phkq where h,ke Gy, p,qeFy% and C(w)=Y. Then wl=
((ph)6(kq)6).

Lemma 3.8. If we Fx then wh = wé.

Proof. The result is immediate by Assumption 3.1 if C(w)< Y and it is easy to check
that ho = h for any h e G; (see Definition 2.6(iii)) and that u™'6 = (u6)™" for any u € Gy.
Clearly w86, =w6. Assume C(w)=Y and v is an f-bounded segment of wd. By (67),
vV=u;, Ug Or Uy for some ueFx and by Lemma 3.6 v, =v, vg=v OF Uy =0
respectively. Assume wé = vf or fuf: by duality and Lemma 3.7 we need only prove the
result in these cases. If C(v) < Y then we easily see w80 = wf. So assume C(v) =Y. Since
(64), (65) and (66) are used in the construction of v it can be easily checked that if
v = x;pa for some i, where pp X;,; ... X, then L(v)=v. Hence if v is a segment of w66,
then v is not modified by (84); similarly v is invariant under (05) and (96). If w@ = vf then
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v =L(v), so w885 = vf fR(v)f)"'fR(v)f and since v is invariant under {64), (85), (66) and
(67) then w80 = wh. Now suppose w = fuf. If v is a left Y-, right Y-, or Y-indicator then
we likewise get w@6=w@. Alternatively if v is a Y-link then wé0;=
FL)fFL()) ' fof fR(v)f)'fR(v)f and as above we get the result.

Reasoning in a similar way we get the following.
CoroLLARY 3.9. If we F% and C(w)=Y then w0 =w0 for 1=i=7.

The last three results will be used several times without comment in the following
lemmas. The next result is like Corollary 2.4 but without restrictions on inverses.

Lemma 3.10. Let weF% where Cw)=Y and w=wl, Then wo=
(LWFELW)) T fWi(w)8 and  (fw)8 = (FL(W)f(fL(w)f)™'fW1(w))6. Furthermore if
Wiw)=w#R(w) and [ is not an initial segment of w then (fW,(w))6=
(IM (W) F(FL(w)) " fWa(w))6.

Proof. Let b be the f-bounded initial segment of w; if no such segment exists then,
by (62), w has initial segment f and the results follow. If L(b)= L(w) then the expressions
for wd and (fw)@ are consequences of (63). Suppose L(b)# L(w). So w= bfc for some
b,ce Fx such that C(b)cY. Then L(w)=bgx; for some j<n, q=x,...%_; and
R(L(w))=I,(w)=dqx; for some d. By (85 and (¢), (Lw))e=
(baq™'f(fdaq™'f)~'fdqx;f)6. Since (bqq~'). = b_ and (dgq~ ") = dp by Lemma 3.4(ii), (iii)
then by (87) (L(w)f)0 = (bf(fdf)~'fI,(w)f)6. We have (fW,(w))0 = (fdfc)6 = (fdffc)6. So
by (@), (LW)FFL(W)F) " fWo(w))0 = (bffc)8 = wé. To get the second equality pre-multiply
by f throughout the proof.

With the additional restrictions b and I(w) exist. To prove the result for (fW;(w))6
proceed as above, using (03) if I,(w) is an indicator of b or (85) applied to M,(w)
otherwise.

We now deduce a result for 6 like Lemma 2.5(i).

LemMma 3.11. Let w = x,a € Fx where C(w) =Y, L(w) =xb and a has initial segment p
such that xp#f and ppXx;4q...X, for some i. Then

() wo=(LWf(fp " 'bf)"'fp " a)0 and (fw)0 = (FL(w)f(fp~'bf)"'fp 'a)6 and
(i) if r=x;...%x,.1 and w=rs then (fr"'w)6 = (fs)6.

Proof. (i) We may assume w=wl,, since w6,8=wf, L(w8,)=L(w) and
(fp '(a6,))0 = (fp~'a)6. By Lemma 3.10G) w8 =(LW)fFL(W))'fWi(w)e. If
Wi(w)# w then L(w)# I,(w) so C(b)=Y and L(p~'a)=p~'b. Hence by Lemma 3.10(i)
(fp'a)0 = (fp ' bf(fI,(w)f)"'fW,(w))8 and the result follows, using (¢). Suppose
W, (w)=w, so L(w)=1I,(w). If w=R(w) then w is f—excluded so by (03) and (84) (acting
in particular on R(w)) wl,=L(W)f(fIl,(w)f)"'fL(w)f(fp~'bf)"'fp 'a and the result fol-
lows. If w# R(w) then by Lemma 3.10

w8 = (L(W)f(L(w)) ' fM (W) (fL(w)f) ' fW,(w)) 6.
Let M;(w)=xc. Then by (64), (M (w))0=(L(w)f(fp~'bf)~'fp 'cf)6. Since
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L(p~'a)=p 'c then by Lemma 3.10() (fp~'a)8 = (fp~ ' cf(fL(w)f) ' fW,(w))8. Combining
these expressions we get the result.

(i) Let L(w) = rt. We first prove that (fr~'rtf)0 = (ftf)6. Since L(r™'rt)=r""rt then by
(83), (¢) and (67), we need to show (r rt)yms = tan. We have t=dx for some d and
xe Y\C(d) so (r"'rdx)y = (r"‘rd)gx = dgx by Definition 3.5 and the dual of Lemma
3.4(ii). If C(dx)c Y then by Lemma 3.4(iii) (dx),; = (dgx)p. If C(dx)=Y and R(dx) # dx
then by Definition 3.5 (dx),; =dgrx. Suppose C(dx)=Y and R(dx)=dx. We have
Xidy - - - Xns1dR P Xiqay - - - Xu1ad. If C(dg) < C(d) then by comparing right indicators we get
X - - - X,dg pd for some k =<n. But then X4y . . . Xu41dR P Xiay - - - Xe—1(Xk - - - X,)*dg. This is
not possible since there exists a homomorphism from Fx/p onto the free cyclic group Gy,
taking generators to x. Hence C(dg)=C(d) and R(dg) p R(d)=d so by its definition
dr = R(dg). Thus dgx and dx are p-related Y-indicators and by Theorem 1.3(iii) and
Definition 3.5 (dgX)n = (dx)y. Thus in all cases (r™'rt)amg = tvan

We have (fr'w)0 =(fs)8 when i=1 or n, by (¢) and (61). Assume the result for
i>j>1. Let i =] and proceed by induction. Since r = x;p then by comparing expressions
for w8 from (i) and Lemma 3.10(G) we get ((fI,(w)f)"1fW,(w))8 = ((fp~'bf) 'fp la)o =
((ftf)"'fs)8, by Lemma 3.7 and induction. So by Lemma 3.10(i) and the first part of the
proof

(fr='w)8 = (fr= rf (FL(w)f) " fW(w))8 = (fef (ftf) ' fs)6 = (fs)8.

Recall Assumption 3.3. We can now see that it is valid when C(u)=Y. Say
u=(x;...x,+1)° where C(u)>C(v). By Lemmas 3.10 and 3.11 u8 = (L(w)f(ftf)"'fv)0
where L(u)=(x;...x,.+)°. Since C(v) < Y then (fv)8 = fug, so u@ has final segment vg.

LemMa 3.12. Suppose a, be F%, x,ye Y\C(a) and apb. If xay is a Y-indicator or
Y-link then (fxayf)0 = (fxbyf)0. If ay is a left Y-indicator then (ayf)8 = (byf)8.

Proof. If (64), (85) and (06) do not vary the segments xay and xby then the result is
easy to check, using Definition 3.5. A similar statement applies for left Y-indicators. Let
xay be a Y-indicator. Since (64) and (65) do not vary Y-indicators assume x =Xx;, y = X;
and a =pcq where ppx;,y...%,.; and ¢px,...x_, for some i and j. Since xay is a
Y-indicator then i>j and xay is f-excluded so by (86), (87) and (o), (fxayf)6=
fxaq OpfF aq )ad) ' f(p~'ay)rd. But by Corollary 1.4 b = rds for some r, d, s such
that rpp and sp q (with r=1 or s=1 if and only if p=1 or q=1 respectively).- By
Lemma 3.4(iii) then (xaq Yy =(xbs Va, (P lagq DNy =0@"'bs")y and (p~lay)y =
(r"'by)um so (fxayf)6 = (fxbyf)6.

Now let xay be a Y-link with x =y = x; for some i, where p is an initial segment of a,
PP X1 ... X,uy and L(xay) = xd. By Lemma 3.11() (fxayf)0 = (fxdf(fp~"df)~'fp~"ayf)s.
This equation still holds if xp=f, by Lemma 3.11(ii) and (¢$). We have xby = xqe and
L(xby)=xg where ppq. Since xd and xg are p-related Y-indicators (so dpg) and
C(p~'d)<= Y we need only show that (fp~ayf)8 = (fq~'byf) 8. This follows since (p~'ay)y, =
(P 'a)ry =(q 'b)ry = (q"'by)s by the dual of Lemma 3.4(ii). By an analysis similar to the
first paragraph we get the left Y-indicator result.
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Lemma 3.13. Let we Fix and xe€ Y. Then
i (xw)8 =(x(wh))8 and (i1) (fw)0 = (f(w0))8.

Proof. (i) We may assume w = wé,. Suppose C(xw) = Y : otherwise the result follows
by Assumption 3.1. By Theorem 1.3(iii) and Lemma 3.12 (fL(xw)f(fly(xw)f)~")6 =
(FL(x(WO)YFUL(x(we)f)™M6. So by Lemma 3.10 we need to show (fW;(xw))6=
(W (x(w8)))0. If W,(xw)# xw then I,(xw)=I,(w). Using Theorem 1.3(iii) it is easy to
check, since wlpw that I,(x(w8))=1I,(w8). Then W,(xw)= W,(w) and W;(x(w8))=
W,(w6). Equating the expressions for wé and wff from Lemma 3.10(i}) we get
(fW,(w))0 = (fW,(w8))6 and hence the result. If W, (xw) = xw = R(xw) we get the result
by the dual of Lemma 3.12.

Suppose W,(xw)=xw# R(xw). If f is not an initial segment of xw then by Lemma
3.10(G1), (fW,(xw))0 = (fM, (xw)f(fL,(xw)f) "' fW,(xw))8. This equation also holds if xw =
fa. To see this let M, (xw) = fb. If Wo(xw)=Xx,...x,a and L(xw)=x;...x,b for some i<n
then (fW,(xw))8 = (fL,(xw)f(fbf)"'fa)® by Lemma 3.11. Alternatively if W,(xw) is a
segment of a, by Lemma 3.10G) (fa)d=(fbf(fL(xw)f) 'fW,(xw))8, and since
(fW,(xw))6 = (ffa)® we get the equation. Observe that since W,(xw)=xw then L,(xw)=
Ii(w) so by Lemma 3.10(), w8=(L(W)f({I,(w)f) 'fW,(xw))8. Likewise w66 =
L(wO)f(fI,(wo)f) 1 fW,(x(wB))6. Since wo=w00 then by Lemma 3.12 (fW,(xw))0 =
(fW5(x(w8)))6. Hence since M;(xw) = xL(w) p xL(w8) = M,(x(w6)), then by Lemma 3.12,
(fW1(xw)) 8 = (fW,(x(w8)))6. .

(ii) It follows by straightforward induction, based on (i), that (fw)8 = (x, ... x,w)0 =
(xy ... x,(w8))8 = (f(wB))6. 1t is easily seen that (") =F"'. So by Lemma 3.7

(F(w8)8 = (f'f(w8))8 = (F (f(w8))8) b = (F ' (fw) )b = (f ' fw)8 = (fw)8.

The next result is the key lemma of the paper. It will be used to show that
{wl; w e F%} with multiplication u8 - v8 = (u8(v8))6 is a semigroup.

LemMA 3.14. Let u, v € F% where C(uv) < Y. Then (uv)8 = (u6(v6))6.

Proof. The result is immediate if C(uv)< Y (by Assumption 3.1), or if |C(u)| =1 (by
Lemma 3.13(i)) since then uf=u by Assumption 3.1. Assume the result for C(u)<U,
some Uc Y, and proceed by induction. Suppose C(u)=U and C(uv)=Y.

Suppose C(u)< Y. Then L(uv)=uv, and L(u6(v8))= ubv, where v, p v, by Corol-
lary 1.4. Either I,(uv) = RL(uv) = u,v, and I,(u8(v8)) = u,v, where u, p u, by Corollary
1.4 or I,(uv)=I,(v) p I,(v8) = I,(u0(v)) (see Theorem 1.3(iii)). By Lemmas 3.10(i) and
3.12 we need to show (fW,(uv))0 = (fW,;(u8(v8)))6. If I,(uv)=u,v; then W;(uv)=u,v
and W,(u6(v8)) = u,(v); also u, = xa,, u, = xa, for some x € Y\ C(a,) and a,6 = a,8 by
Assumption 3.1 and Theorem 1.3(jii). By Lemmas 3.13, 3.8 and the induction assumption
(fW(uv))6 = (fxa,v)8¢ = (f(xa,v)6)8 = (f(x(a,v)0)0)6 = (f(x(a,6(v6))6)6)6 =
(f(x(a,6(v6))6)0)8 = (f(x(a(06))8)8)8 = (f(xa(v0))8)0 = (fxax(v0)) = (fW,(u6(v6)))8.
Alternatively I,(uv)=1I,(v), so W,(uv) = W,(v). Since L(v)pL(v8) and I,(v) p I,(v8),
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then equating the expressions from Lemma 3.10(i) for v6 and v66, using Lemma 3.12, we
get (fW,(uv))0 = (fW,(u6(v6)))0. X i

Now suppose C(u)=7Y and ué;=afw where w is an f-excluded segment or w=1.
Clearly (uv)0 = (u65(v65))0, so by Lemmas 3.7 and 3.9 we need only prove (fwo)6 =
((fw)e(v8))6, or equivalently (fwv)8=((fw)8(v8))6. If C(w)c Y then, with p=
Xiwy - - - Xna1, WE  get  (fw)0 = (fp~'pwo)6 = (f(p~'pwv)0)8 = (f((p~'pw)6(v8))6)6 =
(f((p~"pwg)0(v6))8)6 = (f(p~'pwr (v6))0)6 = (fp ™ pwr (v0))6 = (fwr(v6))8 = ((fw)6(v6))8
by Lemmas 3.11(ii), 3.13(ii), 3.8, the induction assumption, Definition 3.2 and (7). Now
suppose C(w)=Y, so w=R(w)=xb for some xe Y\C(b). If (84), (65) and (86) do
not vary w then (fwo)8 = (f(xbv)8)0 = (f(x((b6)(v8))6)0)0 = (f(x(b6)(v0))8)6 = (fx(b8)
(v9))8 = ((fw)6(v6))0 by Lemma 3.13, the induction assumption, Definition 3.5 and (7).
Finally suppose w=xb, L(w)=xc, and p is an initial segment of b such that
POXiiq...Xnuy fOr some i. By Lemma 3.11 (fwv)8 = (fxcf(fp 'cf) 'fp~'bv)6. Since
C(p~'b)< Y then by the above (fp 'bv)8=((fp 'b)6(v6))6. But by Lemma 3.11(),
(fw)8 = (frcf(fp~"cf)'fp )8 so (fwv) = ((fw)6(v))6.

REMARK. We have not yet shown, for C(w) = Y, that wé is a unique representative of
the class wp. This will follow from Theorem 4.1.

4. A model for FZ.

THEOREM 4.1. Let S={wl; we F¥} with a binary operation defined by uf - v =
(ub(v0))0. Then S=F%.

Proof. For any u,v,weF% we have by Lemma 3.14 that uf-:v0=(uv)8 so
(18 - v0) - wo = (uv)6 - wo = (uow)0 = ud - (vw)@ =ub - (v6 - wh). Hence S is a semigroup.

We will now check that S is completely regular. For any u, v € F¥, since u6 pu then
by Theorem 1.3(iii)) u6£v6 only if L(u)pL(v). Conversely suppose L(u)p L(v).
Since L(uf)pL{(u), assume wu=uf# and v=v0. By Lemma 3.10G) ub=
LWL fWi(u)6, by Lemma 3.12 (L(w)f)8=(L(v))8 and by (62)
and Lemma 3.9 (fW,(u)(fW,(w))"H)8=_FW,()ffW,(u)f)')6=f So with a=
(FWL (N LWL fWi(v) we get by (¢) and Lemma 3.10() that ud - af=
(ua)8 = v6. Hence ub L v if and only if L(u) p L(v). There is a dual result for R. But
then u® % (L(u)f(fR(u)L(u)f)"'fR(u)), which is an idempotent. So S is a union of
groups. We have u™' 6 =(u)"' in S by Theorem 1.3(iii) and (62).

By Lemma 3.14 S is generated by {x8; x € X}. So by the free property of Fx/p=Fx%
there is a surjective homomorphism a: F/p — S given by (xp)a = x6 for all x € X. By the
definition of multiplication in § and Lemma 3.14 then (wp)a = wé for all we F%. Since
w6 p w then « is injective, so « is an isomorphism.

Notice that since « in this proof is an isomorphism then, for each we Fk, wé is a
unique representative of wp. This is in accordance with Assumption 3.1.

Some properties of the model S for F¥ can be easily deduced. Recall the definitions
of section 1 and Definitions 2.6, 3.2 and 3.5. We first characterize the f—bounded
segments of an element of S of content Y.
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Define a € Fx to be Y-basic if and only if a satisfies the following properties.

(i) Cla)c Y, a=apm and a is f-excluded.

(ii) Suppose p, q € Fx where (p, x;...x,)€p and (q, x;...x)€p for some i=1 and
j=n If C(a)=Y and a=pb or a=bq for some b then a is a left or right Y-indicator
respectively. If C(a)=Y then a# pdq for any d.

Define a € F%' to be left (right) Y-basic if and only if a satisfies (ii) and

(i") C(a)=Y, a=a, (respectively ag), and a is f-excluded.

Define Hy to be the subgroup of Gy freely generated by {faf, f; a is Y-basic}.

Define Dy ={ufhfv; u and v are respectively left Y- and right Y-basic and h € Hy}.

COROLLARY 4.2. Let we F% and C(w) =Y. Then there is a unique left Y-basic u, a
unique right Y-basic v and a unique h € Hy such that w8 = ufhfv. In S the D-class of wo is
{r8; C(r)= C(w)} =Dy, the R-class of w8 is {r8; L(r0)=L(w8)}, the P-class of wl is
{r6; R(r0) = R(w@)}, and the #-class of wl is the free group ufH,fv.

Proof. The expression for wé follows from its definition; u is the f-bounded initial
segment of wé if it exists, otherwise u =1 (there is a dual statement for v). By Theorem
1.3(ii), {r0; C(r)= C(w)} is the P-class of wé. It can be directly checked that the free
generators of Hy are in S (by a proof along the lines of that for Lemma 3.8), as are uf and
fo for any left Y-basic u and right Y-basic v. So by Lemma 3.7, Dy = S and by Theorem
1.3(ii), Dy is the @D-class of wl. The £ and R-class characterizations are by Lemmas
3.10(i)) and 3.12. The #-class characterization then follows by the definition of Dy.

Notice that by Theorem 4.1, the construction of wf from w € Fx may be simplified by
replacing w by an alternative p-related element.

We observe that the representative w@ of the p-class of we F% is uniquely defined
modulo the choice of u8 for all u € F% where C(u)< C(w). To see this first note that the
operations (61),...,(06) and (¢) just manipulate the spelling of w. By Definitions 3.2
and 3.5 the application of (87) requires knowledge of the spelling of u# for some u ¢ Fx,
C(u) = C(w).

As mentioned in the introduction our characterization of FY is different from that of
Gerhard [4]. He determines a set of free generators of (Hy)p that are unique up to
solution of the word problem in Fi/p for words of content less than Y. By this approach.
he gets many expressions of the form (faf)p, faf € F%, for a generator. It is difficult to
determine, using the solution to the word problem for words of content less than Y,
whether two of these expressions denote the same generator. Gerhard’s model for F¥%,
based on Petrich’s structure theorem for completely regular semigroups [6, Theorem 3], is
a union of Rees matrix semigroups. The Rees matrix semigroup corresponding to the
9-class of elements of content Y has structure group (Hy)p.
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