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A completely regular semigroup is a semigroup that is a union of groups. The aim
here is to provide an alternative characterization of the free completely regular semigroup
Fx on a set X to that given by J. A. Gerhard in [3, 4].

Although the structure theory for completely regular semigroups was initiated in
1941 [1] by A. H. Clifford it was not until 1968 that it was shown by D. B. McAlister [5]
that Fx exists. More recently, in [7], M. Petrich demonstrated the existence of F£ by
showing that completely regular semigroups form a variety of unary semigroups (that is,
semigroups with the additional operation of inversion).

In [2] Clifford investigated the structure of Fx by considering it as a quotient
semigroup Fx/p of the free unary semigroup F x on X. He gave a simple description of
Green's relations ££, 9£ and 2> on Fx/p and showed that Fx is a free semilattice of its
3> -classes. The description of 2) was in terms of content of elements while the if-class of
an element was described modulo a description of the p-class of an element of lesser
content. Clifford enabled the p-classes of elements of content at most 2 to be explicitly
described, by providing a model for F% when \Z\ = 2.

J. A. Gerhard showed in [4] that an $?-class of Fx/p is a free group. The free
generators were described modulo solution of the word problem in Fx/p for words of
lesser content. With a given $?-class from each 2)-class and with Petrich's description [6]
of an arbitrary completely regular semigroup, Gerhard constructed a model for Fx.

In this paper we inductively select a unique representative wO e Fx for each p-class
wp s Fxlp. In particular w8 is uniquely expressed as a product of elements from X and
from {segments of a6; aeFx has smaller content than w}. It is then shown that the set
{wO; w e F£} with the multiplication uB • v6 = (u6(v6))6 is isomorphic to Fx- Since they do
not appear to shorten the proofs of this paper, the results of [3, 4] are not utilized here.

In section 1 some preliminary information, especially from [2], is listed. Some
properties of Fx/p are derived in section 2. In section 3, 6 is denned and
relevant properties are derived. A model for Fx is obtained in the final section.

1. Definitions and preliminaries. Let F x and Fx denote respectively the free
semigroup and free completely regular semigroup on a non-empty set X. Let F x denote
the free unary semigroup on X; that is, the free object on X in the category of semigroups
with a unary operation. Let X = XU{(, )"*} where (, )~1iX. By [3], F x is the smallest
subsemigroup of the free semigroup Fx such that Xc.Fx and (vv^eFx for all weFx.
There is an alternative description of F x in [2]. Let F x and F^1 denote respectively the
semigroups F x and F x with identity 1 adjoined.

Define v eFx to be a segment of weFx if w = avb for some a, beFx. The segment v
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of w is said to be maximal with respect to a property P if and only if v satisfies P and for
any final segment c of a and initial segment d of b then cv, vd and cvd do not satisfy P.

If u = b(a or u = a)~1b where aeFx1 we say that the occurrence of ( or ) - 1

respectively is unmatched. Let v e F J denote the word obtained from veFx by succes-
sively deleting unmatched occurrences of ( and )~\

The content of w e Fx is the set

C(w) = {letters of X appearing in w}.

The left indicator L(w) of w e F J is given by L(w) = a where a is the shortest initial
segment of w such that C(a) = C(w). Dually the right indicator is R(w) = b where b is the
shortest final segment of w such that C(w) = C(b). Define c to be an indicator of w if
there is a segment c of w such that C(c) = C(w) and L(c) = i?(c) = c.

For w e Fx let {c,; 1 < / < r} denote the set of successive segments of w such that c, is
an indicator and c, is not derivable from a proper subsegment of q. Let a) denote the final
segment of w beginning with c,, and let e, denote the segment beginning and ending with
c,- and cJ+1 respectively. Define Jf(w) = ci, Wj(w) = d, and Mj(w) = ej to be respectively the
jth indicator, jth remainder and jth link of w.

EXAMPLE 1.1. Let w = x1(x2({x4x1)~
1x3)~

l(x2)~
1xlx4x3)~

1. Then

L(w) = x1x2(x4x1)~
1X3, R(w) = x2x1x4x3, I1(w) = x2(x4x1)~

1x3,

I2(w) = x4x1x3x2, Z3(w) = x3(x2)-1x1x4, I4(w) = x2x1x4x3,

Mi(w) = x2((x4x1)~1x3)"1x2, M2(w) = x4x1x3(x2)"
1XiX4, M3(w) = x3{x2)

Wi(w) = X2((x4x1)~1x3)~1(x2)"1x1x4x3,..., W4(w) = x2x,x4x3.

Note that Ii(w) = L(Wi(w)) = L(Mi(w)) = RiMj^iw)) (if the links exist) and /j(w) =
R(L(w)).

We next provide a simple characterization of indicators and links. Suppose u e F£ and
C(v) = Y. For any ueFx1 and x, y e Y\C(u) define u to be

(i) a left [right] Y-indicator if v = uy [u = xu],
(ii) a Y-indicafor if u = xuy, x^ y (or if v = x when \Y\ = 1), or

(iii) a Y-/infc if u = xux.

LEMMA 1.2. Let veFx and C(v) = Y. Then v is a left or right Y-indicator, Y-indicator
or Y-link if and only if v is a left or right indicator, indicator or link respectively of some
weFx.

Proof. Let v = xux be a Y-link as in the definition. Since C(u)j= Y and xe Y\C(u)
then L(u) and R(v) are successive indicators of v, so v is a link of itself. Conversely let M
be the jth link of w where C(w) = Y. So M has exactly two indicators, namely Ij(w) = xa
and Ij+i(w) = by for some a, beFx1, xe Y\C{a) and ye Y\C(b). So M = xcy for some
ceFx\ If C(c) = C(w) then R(L(c)) and L(R(c)) are indicators of w. Hence since ij(w)
and Ij+i(w) are successive indicators then C(c)j=C{w) while C(xc) = C(w) = C(cy). But
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then, since x € C(cy), if xj= y we get x e C(c) and C(c) = C(w), a contradiction. Thus x = y
and M is a Y-link. The other cases follow directly from the definitions.

Let p be the least congruence on F x containing (w(w)~1w, w), (w(w)"1, (HO^W) and
(((w)"1)"1, w) for all weFx.

THEOREM 1.3. (Clifford [2]). Let u, veFx. Then
(0 F^=Fxjp,

(ii) up3)vp if and only if C(u) = C(v), and
(iii) up Si up i/ and oniy if L(u) = ax and L(v) = bx for some xeX and a,be F x

] such
that apb or a = b = 1.

COROLLARY 1.4. Suppose u,veFx and p is an initial segment of u. If upv then v has
an initial segment q such that L(p) pL(q).

Proof. Assume 1 ^|C(u)| ^|C(p)|: otherwise the result follows directly from the
theorem. Let u, v, a, b be as in Theorem 1.3(iii). So apb and by [2, Lemma 5.1], ap p ^
for some ax&F^. Since |C(a)|<|C(u)| the result follows by induction on |C(u)|.

NOTATION. For weFx define w" to be the product of n copies of w. Define
vv^^vv)"1, w~" to be the product of n copies of w"1 and w° = ww~2w.

Throughout the paper assume that X is a well ordered set. We will always denote by
Y the subset Y = {x1, . . . , x^ of X where Xj <x, in X if and only if i<j. Define

/ = x 1 . . . x B a n d / = /° . (1)

The symbol c denotes proper inclusion of sets.

2. Some p-relationships. In this section we determine some relationships in Fx/p
and review Clifford's models for |X|<2.

LEMMA 2.1. Let weFx and u, veFx
l such that C(uu)sC(w). Let a =

L(w)u(vR(w)wL(w)u)~lvR(w). Then w'1 pa.

Proof. Clearly (aw)p is an idempotent. By Theorem 1.3(iii) and its dual
ap dK wp Hi (aw)p. So awapa and wawpw. By Theorem 1.3(i), w~xp is the unique
^-related inverse of wp so apw~^.

LEMMA 2.2. Let weFx have an initial segment u. Then uu~lwpw.

Proof. By [2, Lemma 5.1], wpuv for some u e F x \

The next lemma is the major step towards a decomposition of elements of F x in
terms of their left and right indicators, indicators and links.

LEMMA 2.3. Suppose weFx has no segment u~l such that ueFx and C(u) = C(w).
Let Ij = Ij(w) and Mh = Mh(w), 1 < / < r , 1 < h < r, be respectively the indicators and links of
w. Then
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Proof. Let W, = Wj(w) be the /th remainder of w. By the definitions of section 1,
L(Wj) = Ij and since L(R(w)) = Ir then Wr = R(w). Furthermore since W; = W, then there
is a z,-eX and WjeF^1 such that W^ZjWj. Then I1+1 = R(L(w,)) and M^ZjUw,) (if
they exist).

If w = L(w)a for some a then since ^ = R(L(w)) we get Wj = Ixa and, by the dual of
Lemma 2.2, wp (L(w)IilI1)a = L(w)r[lW1. Alternatively w = cd~1e for some c,d,ee

Fx1 where C(d)i:C{w) and L(w) = cg for some inital segment g of d~\ Since I^ =
R(L(w)) and C(w) f C(d) 2 C(g) then ^ = fig and Wa = hd"^ for some h. So by Lemma
2.2 and its dual

w p c(gg-M-1e) = L(w)g-M1e p

Hence we have wpL(w)IilWl. If r > l then by applying the argument to wl and using
the initial comments of the proof, w pL^I^MJ^1^. Since Wr = .R(w) we get the
result by repeating the argument for vv2,..., wr-i-

Recall the definition of Y and / in section 1.

COROLLARY 2.4. Let w be as in Lemma 2.3 with C(w) = Y. Then

Proof. Since I1 = R(L(w)) then by Theorem 1.3(iii) the idempotent (f(fhf)~*fli)p is
5?-related to (L(w))p. Hence since I1 = L(M1) then by Lemma 2.2

Likewise It = R(MHl) = L(Mj) if \+ r so

and.since Ir = i?(JVfr_1) = L(R(w)) then

M^I^Riw) PMr_J(flrf)-
1fR(w).

The result is now a consequence of Lemma 2.3.

Notice that if weFx and C(w)= Y then by Lemma 2.1

w-1 pL(w)f(fR(W)WL(w)f)-1fR(w). (2)

Hence by Corollary 2.4 any w e Fx where C(w) = Y can be expressed modulo p as a
product of left and right Y-indicators, Y-indicators, Y-links and /.

LEMMA 2.5. Suppose u,v,we F£ \ C(w) = Y and 1< i < n, 1 < / < n.
(i) If w = uxx... x, and R(w) = u x t . . . x, then w p uf(fvf)~*fR(w).

(ii) 1/ w = Xj... XnUXj... x, then w p Xj... xnuf{fuf)~^fuxl... x,-.

Proo/. (i) By Theorem 1.3 the idempotent (x,+1 . . . xn/~
1(/u/)~l/^(w))p is if-related
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to wp. So

w p wxj+1 . . . xJ-'(fvf)-'fR(w) p uf(fvfrlfR(w).

(ii) Let R(w) = uxi ...X;. Since R(fux1... x,) = R(w) then by (i)
j . . . x,,u/(/u/)~1/^(w) and /ux! . . . Xjpfufifvfy^fRiw). The result follows.

DEFINITION 2.6. (i) A segment u of weFJ i s v-excluded, for u eF x , if and only if v is
not a subsegment of u.

(ii) An /-excluded segment u of weFx is f-bounded if and only if either w = u,
w = afu, w = ufb or w = afufb for some a, beFx*.

(iii) Denote by GY the free group freely generated by

{fuf, /; u € Fx, C(u) £ Y and M is /-excluded}

where (fuf)~l and / - 1 denote respectively the inverses of fuf and /, and / is the identity. If
Y = {x} then / = x, so there exists no /-excluded ueFx such that C(u) £ Y. Hence G w is
the free group on {x}. Let Gf denote the subgroup of GY generated by /. We will regard
v e Fx as an alternative expression for u e GY if and only if a common expression can be
obtained by replacing segments of u and v that are words of Gf by their reduced forms. For
example {jaf)~lfbf-x denotes {faff)'xfbff-x = f~1(faf)-1fbff-1 in GY.

EXAMPLE 2.7. (i) Let X = {x}. By [2] Fcx = Gx. Let w0 be the reduced form in Gx of
w eFx- By [2], for any u, v eFx. upv if and only if u8 = vd. So Gx = {wd, w eFx} with
multiplication given by ud • v6 = (u6(vO))6.

(ii) Let X=Y = {x, y}, so / = xy. Let A ={x\ y'; ; is a non-zero integer} and HY be
the subgroup of GY freely generated by {fuf, f;ueA}. Let Dx = GM, Dy = G{y} and

Oxy ={pfhfq; P € A U{y°, 1}, qe A U{x°, 1}, h E H Y } .

Let 5 = 0 ^ 0 ^ 0 ^ . Note that x°fpfpfy° and for integers i, / that x{y' px^fffy1'1

and by Lemma 2.5(ii) y'x' py'ffx'. With these relations we can uniquely choose w6eS
such that wp wO for all weF£. It follows easily from [2, section 6] that for u, u e F x , upu
if and only if ud = v6 and Fx = S = {u0; ueF^ with multiplication u0 • vd = (u0(u0))0.
The 2) -classes of S are Dx, Dy and Dxy and HY is the 2if-class of /.

3. 0-forms. An element w0 e Fx will be constructed from any w e Fx. It will be
shown that wQpw, wdd = w9 and for u,veFx that (uu)0 = (u0(u0))0. These properties
will be used in the next section to show that S = {w0; weFx}, under the multiplication
uO • v6 = (u6(vd))6, is a semigroup isomorphic to Fx, and that w0 is a unique representa-
tive of the p-class wp.

The construction of w0 will depend on the following assumption. Recall the definition
of Y and / from section 1.

ASSUMPTION 3.1. In the remainder of the paper assume for each weFx where
C(w) <= Y that a unique representative wd of the p-class wp has been constructed. In
particular if |C(w)|<2 let vv0 be as in Examples 2.7.
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The following definition is needed for our selection of representatives of the p-classes
fw, wf and fwf, where C(w) c y.

DEFINITION 3.2. Define xo = xn+1 = 1. For weFx where C(w)c y let i(w) and j(w)
be respectively the least and greatest integer such that whenever 0 s i<j(w) or i(w) s i ^
n + 1 then Xj6C(w)U{l}. Define wLeFx to be the shortest initial segment of
(w(x0 . . . x)(w))°)0 such that wx0 ... xj(w) p wLx0 . . . x,(w). Define wR e FfJ dually to be the
shortest final segment of ((xi(w)... xn+1)°w)0 such that x i ( w ) . . . xn+1 wpxi(w)... xn+1 wR.
Define

Wi = [(Xj(w)... xn+1)°w]L, wr = [w(x0 . . . x,(w))
0]R and wM = wlr.

The next lemma indicates the need for Definition 3.2. To facilitate its proof we make
another assumption.

ASSUMPTION 3.3. Suppose v e F£, « = (*, . . . xn+1)°v for some i and Y ^ C(u) => C(u).
Assume that vR is a final segment of u0. Dually assume that if u = v{x0 ... Xj)° for some ;
then vL is an initial segment of ud.

The assumption can be seen to be valid, by Examples 2.7, if |C(w)|<2. We will
define d such that the assumption will be valid when C(u) = Y (see comment after Lemma
3.11).

LEMMA 3.4. Suppose v,we F£* and C(Xj.. . Xn+1 wx0 . . . x,) <= y for some i, j . Then
(i) wf p wj, fw p fwR and fwf p fwMf\

(ii) if wx0 . . . Xj p vx0 . . . x, then wL = vL;
(iii) if X ; . . . x^+iWXo . . . x, p x ; . . . x,,+1ux0 . . . x, then wM = vM;
(iv) Wu_ = wL, WLM = WRM = WMM = wM.

Proof, (i) Since (x0 . . . x, ( w ))
0 /p/ and w(x0 . . . x,(w))° p wL(x0 . . . xj(w))° then wf p wj

and dually fwpfwR. Hence (with duals) fwlfpf(xHw)...xn+1)°wfpfwf, so /wM/ =

(ii) Since C(x j . . . xn+1wx0 . . . x,-)<= Y then O s y < i < n + 1, j ^ l and \f n. Suppose
vx0 ... Xjpwx0 . . . x,. Assume /(vv)sy(u). Also assume / > / ( w ) ; otherwise multiply both
sides of the relation by suitable elements of y. Since xj(w)+1 ^ C(w) then wx0 ... x,(w)+1 =
L(wx0 ... x,(w)+1). If j>j(w) then by Corollary 1.4 there is a segment a of ux0 . . . x,- such
that L(a) = apwx o . . .x l ( v , ) + 1 . Since xj(v)+l£C(v) it follows by Theorem 1.3(iii) that
a = u x 0 . . . Xj(w)+1- and wx0 ... x,(w) pux0 . . . x,(w). So assume j = j(w). The result is then
immediate if j(w) = j(v), so assume j(w)>j(v). Then C(u)c C(w) and by Assumption 3.3,
vL is an initial segment of (w(x0 . . . x,)°)0. But vLx0 . . . x, p ux0 . . . x, p wx0 . . . x,-, so wL is an
initial segment of vL. Since C(u)2C(u L ) then y(wL)</(uL) — /(«)• Since
vx0 ... Xjp w L x 0 . . . x, then as above vL and hence wL are initial segments of w ^ . By the
definition of wLL this is possible only if wL = wLL. So vL = wL.

(iii) Let U = {u; Xf... x,,+1ux0 . . . x, pXf... Xn+jWXo . . . x,}. Select a, beV such that
i(a)^i(u) and j(b)^j(u) for all u e U . We first prove the existence of d e U such that
i(d) = i(a), j(d) = j(b). Suppose j(a)>j(b); otherwise put d = a. So xj(b)+1 eC(a) and a
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has a shortest initial segment p that includes x,(b)+1. So p = cxl(b)+1 = L(p) for some
ceFx

l- By Corollary 1.4 and Theorem 1.3(iii) applied to Xi... xn+1ax0 . . . x,- and
x,. . . xn+1bx0 . . . x, we get Xj... Xn+^c pXj.. . Xn+1fex0 . . . x)(b). It follows that with d =
c(x0 . . . XJO,))"1 then deU. We have i(c)>i(a)>i>j>j(b)>j(c) by the choice of i(a)
and j(b), hence since d e U then i(d) = i(a) and j(d) = j(b).

It sufficies to prove wM = dM; by the same proof uM = dM. As in the proof of (ii) we
assume j = j(w) and likewise i = i(w). Since (Xj... xn+1)°wx0 . . . x, p (^ . . . xn+1)°dx0 . . . x,-
then by (ii), w, = ((* . . . x,,+1)

od)L. So j(d) = j((xi... xn+1)°d)s/(vv1). Since w, eU then by
the choice of d, j(d) = j(wt). By these observations

xj...xn+1w,(xo...xJ.(d))
0

= x, . . . xn+1((xi... xn+1)°d)L(x0 . . . Xj(d))° pXj... xn+1(xi... x,,+1)
od(x0 . . . xi(d))°

pXj . . . Xn + jCXjfd) . . . Xn + i) d(X0 . . . X,(d)) pXj . . . Xn + idtiXg . . . X,(d)) .

Since wM = (W|(x0 . . . xj(d))
0)R and similarly for dM, then by the dual of (ii), vvM = dM.

(iv) We have wLx0 . . . x,(w) p wx0 . . . x,(w) and for z = vvL, wR or wM then
xi ( w ) . . . xn+1zx0 . . . x,(w) pXj(w)... xn+1wx0 . . . xl(w). The result follows by (ii) and (iii).

We now extend Definition 3.2 to include some cases where C(w) = Y.

DEFINITION 3.5. Let u be a segment of weFx where C(u) = C(w) = Y. Let v e Fx
x and

x, ye Y\C(u). Define

uL = v6y if u = vy is a left Y-indicator,

uR = x(v6) if u = xu is a right Y-indicator, and

if u = xvy is a Y-indicator or Y-link,

if u = vy is a left (not right) Y-indicator,

if u = xu is a right (not left) Y-indicator.

By Lemma 3.4 and Assumption 3.1 we easily get the following.

LEMMA 3.6. // they exist uLL = uL, URR = uR and uMMM = u,™ for any
C ( M ) S Y .

Suppose w e Fx and C(w) = Y. The following operations will be used in the selection
of w6. Recall the definitions of section 1 and Definitions 2.6, 3.2 and 3.5.

(61) Construct w0, from w by replacing each segment that is maximal with respect to
being a word in GM, for any xeX, by its reduced form in GM. Clearly wdx pw.

(62) Construct w62 from w0j by replacing each segment u"1, where C(u)= Y and
f'j=ui=faf for any i and a, by L(U)/( /R(U)UL(M)/)" 1 /R(«)- Likewise replace segments
iT1 of u where C(v)=Y, and so on. If u = f or faf and u"1 is not preceded and
succeeded by / in the spelling of w then replace u~1 by fu~1f.

By (2), w62 p w. Note that if u"1 is a segment of w62 and C(u) = Y then u~l e GY and
fu~{f is also a segment of w62.

(63) Construct w63 from w62 by replacing each /-bounded segment u, where
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C(u) = Y and u has r Y-indicators, by

L(u)f(JI1(u)fr1fM1(u)f....(fIr_1(u)fr1fMr_1(u)f{fIr(u)fVfR(u).

By Corollary 2.4, w63 p w. Note that w03 is a product in Fx of / and /-bounded
segments. We see by Definitions 3.2 and 3.5 that uM exists for any /-bounded segment u
of wO3, where u is not an initial or final segment; otherwise uL or uR respectively exist.
This property is invariant under the operations on w03 that follow.

(04) Construct w04 from w63 by replacing each /-bounded segment u = x^a, where
C(u) = Y, a has initial segment p such that p p Xj+ 1. . . Xn+i and L(u) = X;b^ M for some i,
by Li^fifp'^bfy^fp^a. Since upXj.. . x^p^a then by the dual of Lemma 2.5(i),
wd4 p w.

(05) Construct wO5 from w04 by replacing each /-bounded segment u = ax,-, where
C(u) =Y, a has final segment q such that q p x0 . . . *,_, and K(u) = fax,- ̂  u for some /, by
aq-1/(/bq"7)"1/R(«)- Then w95pw.

(06) Construct wd6 from w0s by replacing each /-bounded segment u = Xjax,-, where
a has initial and final segments p and q respectively such that ppxi+1 . . . x,t+, and
q p x 0 . . . x,-! for some i and /, by xiaq~1f(fp~1aq~1f)fp~laxj. By Lemma 2.5(ii), wO6 p w.

(01) Construct wO7 from wO6 by replacing each /-bounded segment u by uL, uR or
UMM according as u is an initial, final or other type of segment. By Lemma 3.4(i) and
Definition 3.5, wO7pw.

(<f>) For w G Fx where C(w) = Y, construct w<j) from w by replacing the segment of w
that is maximal with respect to being a word of GY by its reduced form in GY.

(0) Define wO = wO7<j)- Then w0 p w.
Notice that each /-bounded segment of wO of content Y is a left Y-, right Y- or

Y-indicator or Y-link. Furthermore wO is a product in F£ of / and /-bounded segments.
By (03), vv0 has a segment that is a word in GY. We have wO = phq where h e GY, p = 1 or
p = uf and q = 1 or q = fv where u and t; are respectively the /-bounded initial and final
segments (if they exist) of wO.

The next result follows easily from the definitions.

LEMMA 3.7. Let w = phkq where h,keGY, p,qeFx^ and C(w)=Y. Then wO =
((ph)e(kq)0)<t>.

LEMMA 3.8. If weFx then wOO = wO.

Proof. The result is immediate by Assumption 3.1 if C(w)c Y and it is easy to check
that hO = h for any h e G{ (see Definition 2.6(iii)) and that u~'0 = (uO)~x for any u e GY.
Clearly wd62 = wO. Assume C(w)= Y and v is an /-bounded segment of wO. By (67),
v = uu uR or UMM for some ueFx and by Lemma 3.6 vL = v, vR = v or vM = v
respectively. Assume wO = vf or fvf: by duality and Lemma 3.7 we need only prove the
result in these cases. If C(v) <= Y then we easily see wOO = wd. So assume C(v) = Y. Since
(04), (05) and (06) are used in the construction of v it can be easily checked that if
v = Xjpa for some i, where p p Xf+1... x,,+1 then L(v) = v. Hence if v is a segment of w003

then v is not modified by (04); similarly v is invariant under (05) and (06). If wO = vf then
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i) = L(v), so w663 = vf(fR(v)f)~*fR(v)f and since v is invariant under (64), (65), (66) and
(61) then w66 = w6. Now suppose w = fvf. If v is a left Y-, right Y-, or Y-indicator then
we likewise get w66 = w6. Alternatively if v is a Y-link then w663 =

1 7 / and as above we get the result.

Reasoning in a similar way we get the following.

COROLLARY 3.9. If weFx and C(w) = Y then w6fi = w6 for 1 < i < 7.

The last three results will be used several times without comment in the following
lemmas. The next result is like Corollary 2.4 but without restrictions on inverses.

LEMMA 3.10. Let weFx where C(w)=Y and w = w62. Then w6 =
( L M / ^ C w ) / ) - 1 / ^ * ' ) ^ and (fw)6 = (fL(w)f(fIi(w)f)-lfW1(w))6. Furthermore if
Wi(w) = wj=R(w) and f is not an initial segment of w then (fW}(w))6 =
(/M,(nO/(/I2(w)/r7W2(w))0.

Proof. Let b be the /-bounded initial segment of w; if no such segment exists then,
by (02), w has initial segment / and the results follow. If L(b) = L(w) then the expressions
for w6 and (fw)6 are consequences of (03). Suppose L(b)j=L(w). So w = bfc for some
b,ceFx such that C(b)<=Y. Then L(w) = bqXj for some j<n, q = x0... *,•_•, and
R(L(w)) = I-i(w) = dqxi for some d. By (05) and (</>), (L(w)f)6 =
{bcn-xf{fdqcCxfTxfdqxf)e. Since (bqq~l)L = bL and (dqq~x)M = dM by Lemma 3.4(ii), (iii)
then by (07) (L(w)f)6 = (bf(fdf)-Xfh(w)f)6. We have (fW^wW = (fdfc)6 = (fdffc)6. So
by (<£), (L(w)/(/71(w)/)~1/W1(w))0 = (bffc)6 = w0. To get the second equality pre-multiply
by / throughout the proof.

With the additional restrictions b and I2(w) exist. To prove the result for (/W1(w))0
proceed as above, using (03) if I2(w) is an indicator of b or (05) applied to Mx(w)
otherwise.

We now deduce a result for 0 like Lemma 2.5(i).

LEMMA 3.11. Let w = ^a e Fx where C(w) = Y, L(w) = xtb and a has initial segment p
such that Xjp^f and p pXj+ 1. . . Xn+1 for some i. Then

(i) w6 = (L(w)f(fV-lbfylfp-la)6and (fw)6 = (/L(w)/(/p-1b/r7p-1a)0 and
(ii) if r = Xj . . . Xn+l and w = rs then (fr~*w)6 = (fs)6.

Proof, (i) We may assume w = w62, since w020 = vv0, L(w62) = L(w) and
(/p"1(a02))0 = (/p-1a)0. By Lemma 3.10(i) w6 = (L(w)f(fI1(w)f)-'fW1(w))6. If
Wt(w)£w then L(w)^I^(w) so C(b)=Y and L(p~1a) = p~1b. Hence by Lemma 3.10(i)
(fp~Aa)6 = (fp~xbf(fI1(w)f)~lfWl(w))6 and the result follows, using (<£). Suppose
W^w) = w, so L(w) = I^w). If w = R(w) then w is /-excluded so by (03) and (04) (acting
in particular on R(w)) w64 = L(w)f(fI^(w)f)-'ifL(w)f(fp~lbf)~1fp'1a and the result fol-
lows. If wj=R(w) then by Lemma 3.10

w0 = ( L ( ) / ( / 1 ( ) / 7 1 ) / ( / 2 / / 2

Let Ml(w) = xic. Then by (04), (fMl(w)f)6 = (fIl(w)f(fp-lbf)-1fp-icf)6. Since
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L(p-1a) = p~1c then by Lemma 3.10(i) (ftrla)6 = (frr1cf{fI2(w)f)~1fW2(w))6. Combining
these expressions we get the result.

(ii) Let L(w) = rt. We first prove that (fr~lrtf)6 = {ftf)d. Since L(r~*rt) = r~xrt then by
(03), (<}>) and (07), we need to show (r~*rt)MM = tMM. We have t = dx for some d and
xeY\C{d) so (r~1rdx)M = (r~lrd)Rx = dRx by Definition 3.5 and the dual of Lemma
3.4(ii). If C(dx)cY then by Lemma 3.4(iii) (dx)M = (dRx)M. If C(dx) = Y and R(dx) + dx
then by Definition 3.5 (dx)M = dRx. Suppose C(dx)=Y and R(dx) = dx. We have
xj ( d ) . . . xn+1dR pXj(d)... Xn+1d. If C(dR)<= C(d) then by comparing right indicators we get
x k . . . xndR p d for some k < n. But then Xj(d)... X^ I^R p Xj(d)... xk^(xk . . . x^)2^. This is
not possible since there exists a homomorphism from Fxlp onto the free cyclic group GM

taking generators to x. Hence C(dR) = C(d) and R(dR)pR(d) = d so by its definition
dR= R(dR). Thus dRx and dx are p-related Y-indicators and by Theorem 1.3(iii) and
Definition 3.5 (dRx)M = (dx)M. Thus in all cases (r~1rt)MM = (MM.

We have (fr~1w)0 = (fs)d when j = l or n, by (<£) and (01). Assume the result for
i>j>l. Let i=j and proceed by induction. Since r = xip then by comparing expressions
for w6 from (i) and Lemma 3.10(i) we get ((/I1(w)/)-1/W1(w))0 = ((/p-1ft/r7p-1a)e =
((ftf)~~1fs)d, by Lemma 3.7 and induction. So by Lemma 3.10(i) and the first part of the
proof

(fr1w)e = (fr'rtfifhMf^fw^wVe = iftfiftfVfs)e = (fs)o.

Recall Assumption 3.3. We can now see that it is valid when C(u) = Y. Say
u = (x;... xn+1)°u where C(u)=>C(u). By Lemmas 3.10 and 3.11 ue = (L(u)f(ftf)-1fv)9
where L{u) = (x;... xn+1)°f. Since C(v) c y then (fv)6 = fvR, so u0 has final segment vR.

LEMMA 3.12. Suppose a, beFx, x, ys Y\C(a) and apb. If xay is a Y-indicator or
Y-link then (fxayf)O = (fxbyf)O. If ay is a left Y-indicator then (ayf)d = (byf)O.

Proof. If (04), (05) and (06) do not vary the segments xay and xby then the result is
easy to check, using Definition 3.5. A similar statement applies for left Y-indicators. Let
xay be a Y-indicator. Since (04) and (05) do not vary Y-indicators assume x = Xj, y = x,
and a = pcq where p pX;+1... x,,+1 and q px0 . . . Xj_x for some i and j . Since xay is a
Y-indicator then i>j and xay is /-excluded so by (06), (07) and (<£), (fxayf)0 =
f(xaq~1)Mf(f('prlaq~1)Mf)~lf(p~1ay)Mf. But by Corollary 1.4 b = rds for some r, d, s such
that r p p and s p q (with r = \ or s = l if and only if p = 1 or q = 1 respectively). By
Lemma 3.4(iii) then (xaq~l)M = (xbs~l)M, (p^aq""1)*, = (r~1bs~1)M and (p~'ay)M =
( r 1 ^ so (fxayf)e = (fxbyf)O.

Now let xay be a Y-link with x = y = X; for some i, where p is an initial segment of a,
p pxt+l... x^ i and L(xay) = xd. By Lemma 3.11(i) (fxayf)6 = (/xd/(/p-1d/)-1/p-1ay/)0.
This equation still holds if xp=/, by Lemma 3.11(ii) and (</>). We have xby = xqe and
L(xby) = xg where p p q. Since xd and xg are p-related Y-indicators (so d p g) and
C(p-1d) c Y we need only show that (fp~xayf)6 = (}q~lbyf)0. This follows since (p~lay)M =
(P~la)Rv = (q~1b)Ry = (Q1^y)M by the dual of Lemma 3.4(ii). By an analysis similar to the
first paragraph we get the left Y-indicator result.
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LEMMA 3.13. Let weF* and xeY. Then
(i) (xw)d = (x(w0))6 and (ii) (fw)6 = (f(w8))d.

Proof, (i) We may assume w = w>02. Suppose C(xw) = Y: otherwise the result follows
by Assumption 3.1. By Theorem 1.3(iii) and Lemma 3.12 (JL(xw)f(JIl(xw)f)~1)0 =
(fLixiwOWifl^xiwdW-^O. So by Lemma 3.10 we need to show (fW1{xw))0 =
(/W,(x(w0)))0. If Wl(xw)j=xw then Z^xw) = !,(*>). Using Theorem 1.3(iii) it is easy to
check, since w0pw that J,(x(w0)) = I,(w0). Then Wi(xw)=W1(w) and W1(x(w0)) =
Wx(w0). Equating the expressions for w0 and w00 from Lemma 3.10(i) we get
(/W,(w))0 = (fW^wO^O and hence the result. If Wt(xw) = xw = R(xw) we get the result
by the dual of Lemma 3.12.

Suppose W,(.xiv) = xw^ i?(xw). If / is not an initial segment of xw then by Lemma
3.10(ii), (fWl(xw))6 = (fMi(xw)f(fI2(xw)fylfW2(xw))8. This equation also holds if xw =
fa. To see this let Mx(xw) = fb. If W2(xw) = Xj... x^a and I2(xw) = Xj... xnb for some i < n
then (fW2(xw))0 = (fI2(xw)f(fbf)-'Lfa)0 by Lemma 3.11. Alternatively if W2(xw) is a
segment of a, by Lemma 3.10(i) (fa)8 = (fbf(fI2(xw)f)~lfW2(xw))0, and since
(/Wi(xw))0 = (//a)0 we get the equation. Observe that since Wi(xw) = xw then I2(xw) =
J,(w) so by Lemma 3.10(i), wd = (L(w)f(fIx(w)f)-lfW2(xw))6. Likewise w00 =
L(wd)f{fIl(we)f)-1fW2{x(w6)))d. Since wO = wO0 then by Lemma 3.12 (fW2(xw))d =
(fW2(x(w0)))0. Hence since M^xw) = xL(vv) pxL(w0) = M1(x(w0)), then by Lemma 3.12,

(ii) It follows by straightforward induction, based on (i), that (fw)6 = (x1... xnw)0 =
(x, . . . xn(w0))6 = (f(wd))0. It is easily seen that (f~l)6 = f~\ So by Lemma 3.7

(f(w8))6 = (f-xf(w0))6 = (f-l(f(w6))d)<t> = (f-ifaW* = (T7w)0 = (/w)0.

The next result is the key lemma of the paper. It will be used to show that
{w0; t v s F 3 with multiplication u6 • vO = (u6(v6))0 is a semigroup.

LEMMA 3.14. Let u,veF% where C(uu)£ Y. Then (uv)0 = (u0(u0))0.

Proof. The result is immediate if C{uv)<^ Y (by Assumption 3.1), or if \C(u)\ = 1 (by
Lemma 3.13(0) since then u0 = u by Assumption 3.1. Assume the result for C(u)cU,
some U c Y, and proceed by induction. Suppose C(u) = U and C(uv)= Y.

Suppose C(u)cz Y. Then L(uv) = uu, and L(u0(i>0)) = u0v2 where vx pv2 by Corol-
lary 1.4. Either I^wu) = RL(uu) = u ^ and Ix(u0(u0)) = u2u2 where ux p u2 by Corollary
1.4 or /1(uu) = /1(u)p/1(u0) = J1(u0(u0)) (see Theorem I.3(iii)). By Lemmas 3.10(0 and
3.12 we need to show (JW^uv^O = (/W1(u0(u0)))0. If I1(uv) = u1v1 then Wl(uv) = ulv
and Wi(u0(u0)) = u2(u0); also u^xa^, u2 = xa2 for some xe Y\C(aj) and ax0 = a20 by
Assumption 3.1 and Theorem 1.3(iii). By Lemmas 3.13, 3.8 and the induction assumption
(/W,(uu))0 = (fxa,v)0 = (f(xa1v)6)e = {f(x{alv)e)e)0 = (f(x(a16(v0))e)e)e =
(f(x(a20(v0))0)0)0 = (f(x(a2(v0))0)0)0 = (f(xa2(v0))0)0 = (fxa2(v0))0 =
Alternatively I^uv) = J,(u), so W1(uv) = W,(u). Since L(v)pL(v0) and
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then equating the expressions from Lemma 3.10(i) for vd and U00, using Lemma 3.12, we
g ( / , ( ) ) ( / 1 ( ( ) ) )

Now suppose C(u)= Y and u83 = afw where w is an /-excluded segment or w = 1.
Clearly (uv)8 = (u03(u03))0, so by Lemmas 3.7 and 3.9 we need only prove (fwv)d =
((fw)d(vd))d, or equivalent^ (fwv)0 = ((fw)0(vO))6. If C(w)aY then, with p =
xi ( w ) . . . x^x, we get (/wu)0 = (/p-1pwt)0 = (/(p"1pwu)0)0 = (/((p"1pw)0(u0))0)0 =
(/((P"1PWR)0(U0))0)0 = (/(P-1PWR(U0))0)0 = ( / P - 1 P W R M ) ) 0 = (fwR(v8))8 = ((fw)6(v8))6
by Lemmas 3.11(ii), 3.13(ii), 3.8, the induction assumption, Definition 3.2 and (67). Now
suppose C(w)=Y, so w = R(w) = xb for some xeY\C(b). If (04), (05) and (06) do
not vary w then (fwv)6 = (f(xbv)d)6 = (f(x((bd)(vd))e)8)6 = (f(x(b6)(v8))6)0 = (fx(bd)
(vd))8 = ((fw)8(v6))d by Lemma 3.13, the induction assumption, Definition 3.5 and (07).
Finally suppose w=xfi, L(w) = XiC, and p is an initial segment of b such that
ppXj+1. • • Xn+1 for some i. By Lemma 3.11 (fwv)d = (fxicf(fp~lcf)~1fp~ibv)d. Since
C(p- ' i i)cY then by the above (fp-'bv)d = ((fp-1b)8(v8))8. But by Lemma 3.11(i),
(fw)8 = (fxicf(Jp-1cf)-1fp-lb)8 so (fwv)8 = ((fW)d(vd))d.

REMARK. We have not yet shown, for C(w) = Y, that w6 is a unique representative of
the class wp. This will follow from Theorem 4.1.

4. A model for F%.

THEOREM 4.1. Let S = {w0; wsF£} with a binary operation defined by u8 • vd =
(u0(u0))0. Then SsF%.

Proof. For any u, v, weFx we have by Lemma 3.14 that ud-vd = (uv)8 so
(u8 • vd) • w8 = (uv)8 • w8 = (uvw)8 = u& • (vw)8 = u8 • (vd • w8). Hence S is a semigroup.

We will now check that S is completely regular. For any u, v e F£, since udpu then
by Theorem 1.3(iii) u85£vQ only if L(u)pL(v). Conversely suppose L(n)pL(u).
Since L(u6) pL(u), assume u = ud and v = v8. By Lemma 3.10(i) u8 =
(LMftfl^uW^fW^uM by Lemma 3.12 (L(u)f)6 = (L(v)f)8 and by (02)
and Lemma 3.9 (fW1(u)(fW,(u)f)-1)d = (fWl(u)f(fWl(u)fylf)6 = f. So with a =
(/W1(u)/)~1/71(u)/(/Z1(u)/)-1/W1(u) we get by (<j>) and Lemma 3.10(i) that u8a& =
(ua)8 = v8. Hence u8Z£v8 if and only if L(u)pL(v). There is a dual result for S$. But
then u8$C (L(u)f(fR(u)L(u)f)-lfR(u))8, which is an idempotent. So S is a union of
groups. We have u~l 0 = (u0)-1 in S by Theorem 1.3(iii) and (02).

By Lemma 3.14 S is generated by {xd; xeX}. So by the free property of Fxlp = Fcx
there is a surjective homomorphism a: Fxlp —> S given by (xp)a = xd for all x e X. By the
definition of multiplication in S and Lemma 3.14 then (wp)a = w0 for all weFJ . Since
w8 pw then a is injective, so a is an isomorphism.

Notice that since a in this proof is an isomorphism then, for each w e Fx, wd is a
unique representative of wp. This is in accordance with Assumption 3.1.

Some properties of the model S for F% can be easily deduced. Recall the definitions
of section 1 and Definitions 2.6, 3.2 and 3.5. We first characterize the /-bounded
segments of an element of S of content Y.
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Define o e FJ to be Y-basic if and only if a satisfies the following properties.
(i) C(a)^ Y, a = aMM and a is /-excluded.

(ii) Suppose p, q e F x where (p, xt... xn) e p and (q, xa . . . x,) e p for some i > 1 and
j s n. If C(a) = Y and a = pb or a = bq for some b then a is a left or right Y-indicator
respectively. If C{a)= Y then a^pdq for any d.

Define a e F x ' to be left (right) Y-basic if and only if a satisfies (ii) and
(i') C(a)cY, a = aL (respectively aR), and a is /-excluded.
Define HY to be the subgroup of GY freely generated by {faf, /; a is Y-basic}.
Define DY = {ufhfv; u and v are respectively left Y- and right Y-basic and h e Hv}.

COROLLARY 4.2. Let w € F x and C(w) = Y. Then there is a unique left Y-basic u, a
unique right Y-basic v and a unique h e HY such that wd = ufhfv. In S the 3)-class of wd is
{rd;C(r) = C(w)} = DY, the &-class of wd is {rd;L(r6) = L(w6)}, the ££-class of w6 is
{r0;R(r0) = R(w0)}, and the 26-class of wd is the free group ufHYfv.

Proof. The expression for wd follows from its definition; u is the /-bounded initial
segment of wd if it exists, otherwise u = 1 (there is a dual statement for v). By Theorem
1.3(ii), {rO;C(r) = C{w)} is the Si-class of w6. It can be directly checked that the free
generators of HY are in S (by a proof along the lines of that for Lemma 3.8), as are uf and
fv for any left Y-basic u and right Y-basic v. So by Lemma 3.7, DY <= S and by Theorem
1.3(ii), DY is the 2>-class of w6. The Z£ and 9?-class characterizations are by Lemmas
3.10(i) and 3.12. The $f-class characterization then follows by the definition of DY.

Notice that by Theorem 4.1, the construction of w6 from weFx may be simplified by
replacing w by an alternative p-related element.

We observe that the representative wd of the p-class of weFx is uniquely defined
modulo the choice of ud for all ueFx where C(u) c C(w). To see this first note that the
operations (01), . . . , (06) and (<£) just manipulate the spelling of w. By Definitions 3.2
and 3.5 the application of (61) requires knowledge of the spelling of ud for some u e Fx,
C(u) cC(w).

As mentioned in the introduction our characterization of Fx is different from that of
Gerhard [4]. He determines a set of free generators of (HY)p that are unique up to
solution of the word problem in Fxlp for words of content less than Y. By this approach,
he gets many expressions of the form (faf)p, fafeFx, for a generator. It is difficult to
determine, using the solution to the word problem for words of content less than Y,
whether two of these expressions denote the same generator. Gerhard's model for Fx,
based on Petrich's structure theorem for completely regular semigroups [6, Theorem 3], is
a union of Rees matrix semigroups. The Rees matrix semigroup corresponding to the
% -class of elements of content Y has structure group (HY)p.
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