Glasgow Math. J. 48 (2006) 575-582. © 2006 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089506003302. Printed in the United Kingdom

SOME HOPF ALGEBRAS OF WORDS

M. D. CROSSLEY

Department of Mathematics, University of Wales Swansea, Swansea SA2 8PP, Wales
e-mail: M.D.Crossley@Swansea.ac.uk

(Received 16 May, 2006; accepted 10 June, 2006)

Abstract. A number of integral Hopf algebras have been studied that have, as
their underlying modules, the free Z-module generated by finite words in a certain
alphabet. For example, the tensor algebra, the rings of quasisymmetric functions and
of noncommutative symmetric functions, the Solomon descent algebra, the Malvenuto-
Reutenauer algebra and the homology and cohomology of QX CP> are all of this type.
Some of these are known to be isomorphic or dual to each other, some are known only
to be rationally isomorphic, some have been stated in the literature to be isomorphic
when they are only rationally isomorphic.

This paper is, in part, an attempt to find order in this chaos of word Hopf algebras.
We consider three multiplications on such modules, and their dual comultiplications,
and clarify which of these operations can be combined to obtain Hopf structures. We
discuss when the results are isomorphic, integrally or rationally, and study the resulting
structures. We are not attempting a classification of Hopf algebras of words, merely an
organization of some of the Hopf algebras of this type that have been studied in the
literature.

2000 Mathematics Subject Classification. 16W30, 57T05, 05E05, 55S10.

1. The basic set-up. Given a set S, thought of as a collection of letters, we can
form the free monoid WS consisting of finite words in S, the monoidal operation being
composition. Here it is assumed that a word has positive length; we let WS denote the
unital monoid obtained by adjoining to WS a unique ‘empty word’ of length 0 (which
will give the unit and counit in the algebras and coalgebras we consider). Then we can
take the free abelian groups ZW .S and ZW S generated by these monoids, the elements
of these groups being Z-linear combinations of words. Of course ZWS = ZWS & Z.

We shall restrict ourselves to the graded setting, and so we assume that S is
given a grading in which every element has positive degree and only finitely many
elements have the same degree. The degree of a word is defined to be the sum of
the degrees of the letters that form it and so ZW.S becomes graded and of finite
type; i.e., the degree n part, ZWS,, of ZWS, has finite rank. We can then form the
graded dual (ZWS)* = P, (ZWS,)*, and when we speak of duality we shall always
mean this graded duality. Each ZWS, has an obvious basis consisting of the words
of degree n, and we give (ZWS,)* the dual basis, collating all of these to provide a
basis for (ZWS)*. Of course, the elements of this dual basis are indexed by words,
giving a Z-linear isomorphism between Z WS and (ZW S)*. A Hopf algebra structure
consists of a multiplication on ZW .S, and a compatible comultiplication on Z WS, the
antipode being given automatically since Z WS is graded and connected. Moreover, a
comultiplication can be considered as the dual of a multiplication on (Z S)* which, by
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the above isomorphism between Z 'S and (Z W S)*, we can think of as a multiplication
on ZW S. Hence a Hopf structure is given by specifying two multiplications, and stating
which of them is to be dualised to give the comultiplication.

2. Dramatis Personae — the operations. The first multiplication we consider is
‘concatenation’, which we denote by . The concatenation product is determined by

Sy Sk @ By -- 1) = 81+ Sty -+ 1y,

where s, ..., S, 11, ..., t; are elements of S. With this multiplication Z WS is the free
associative algebra on S; i.e., the tensor algebra on the free abelian group ZS generated
by S.

We note that pc¢ is clearly not commutative (unless |S| = 1), for example
ne(st ® 52) = 5152 # pe(sr ® s1) = 281 for sp # 52 € S.
The dual of this is the ‘chop’ comultiplication, given by

k
Wt 50 = 351 s ® s s
i=0

The next multiplication that is of interest is the ‘shuffle product’, which we denote
by wus. This is given by

MS(Sl-"Sk®ll"'fl)=ZU(Sl“'Skll"'ll),

o

summed over all permutations o of k + / symbols that satisfy
c()<o(@)<---<otk), ok+1D)<otk+2)<---<o()),

the permutation o shuffling the letters in the word in the obvious way. (There will be
(kzl) such permutations.) This is commutative; but over Z it is not free commutative
(i.e., ZW S with this product is not a polynomial algebra); we shall say more about this
in Section 4.

The dual comultiplication 1 seems to have no established name, and so we call it

the ‘excision’ coproduct, since it is given by
(st - sk) = Zsil 8, @ C(sjy - -+ 53,

summed over all subwords s, - - -s;, of 51 - - - 5¢ (including the empty subword), where
C(sj, - - - 5;;) denotes the complementary subword; i.e., the word obtained by excising
the subword s;, - - - 5.

For the third multiplication we assume that S is the set of positive integers
(although it could be defined for any non-unital monoid), where the degree of n € S'is
n (more generally it could be any additive function of n; topologists might prefer to put
the letter n in degree 2r). The multiplication, w o, is the ‘overlapping shuffle product’
defined by

Mo(Sl”-Sk@tl-'-t/):Zf(sr“sk,ll'-'t/),
!
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where f inserts a number of Os into s7 - - - 5 (as many as /), and inserts a number of Os
into ¢ - - - t; (as many as k), and then adds the first letters together, then the second, etc.
The sum is over all such f for which the result contains no 0s. For example, we have

1o(12 ® 34) = 1234 4 1324 + 3124 + 1342 4 3142 + 3412
+154 + 136 + 46 + 424 + 442 4 316 + 352
= us(12 ® 34) + 154 4 136 + 46 + 424 + 442 + 316 4 352.

In general, the product of a length & word and a length / word will have

min(k,/)

Z ( k+1—j )
k_jvl_j?j

J=0

terms; in this formula j counts the number of places where letters are added, and the
multinomial coefficient counts which digits of the output word (of length k + / — j) are
to be from the first word, which from the second, and which from both (where the letters
are added). If s; - - - 54 is identified with the quasi-symmetric function ) xj! - - - xi*, then
1o gives the product of two such functions considered as power series in the variables
Xi.

This product is commutative and, indeed, is free commutative; i.e., ZWS with
this multiplication is a polynomial algebra. This is the ‘Ditters conjecture’, which was
stated as a proposition in a 1972 paper of Ditters [2], with an explicit set of generators —
the ‘ESL’ words. Ditters himself discovered that the proof was incomplete and several
attempts to patch this have been given and, in most cases, found wanting. In [1] we
proved that the algebra was polynomial over Z/p (for any prime p) and, although the
integral statement can be deduced from this, the details were not given in that paper.
Around the same time Hazewinkel introduced the distinction between the ‘Ditters
conjecture’ (that the algebra was polynomial) and the ‘strong Ditters conjecture’ (that
it was the polynomial algebra on the ESL words) and gave a complete proof of the
Ditters conjecture [5]. I am grateful to the referee for informing me that the strong
Ditters conjecture is now known to be false (despite the numerous preprints circulating
on the web that claim to prove it). The dual comultiplication is the ‘Leibniz’ coproduct,
given by

wo(sy -« sg) = Z Z Z i i @1 Js

i1+j1=51 h+h=s5 bk +Jk=5k

where, in each summation, i, and j, are taken to be elements of S U {0}. In a word, 0 is
read as a blank letter. For example if i, = 0, then {73 is understood as the word i3,
etc., and if each i, is 0, then ij - - - i is the empty word.

3. Combining these operations. With these three multiplications and three
comultiplications there are, potentially, nine Hopf algebra structures. (Of course,
many more structures can be obtained by composing one of the operations with
an appropriate automorphism; this is not intended to be an exhaustive list.) However,
not all the multiplications and comultiplications are compatible. It is straightforward
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to verify that only four of these combinations give Hopf algebras, indicated by letters
in the following table, the letters being used henceforth to denote these Hopf algebras.

multiplication
‘Mc Hs Ko
pwel —4 B
comultiplication u%| A* — —
ol B — -

As we noted earlier, the antipode is determined by the bialgebra structure. In the
Hopf algebras 4 and 4*, the antipode is given by

s1ose e (=D s -8y

In B, the antipode is given by

s G

the summation being over all words ¢, - - - f, that admit sy - - - 51 as a refinement. For
example, 231 — —132 + 42 + 15 — 6. This formula is due to Ehrenborg [3]. Dually, in
B*, the antipode is given by

sieesk ) (<D0,

where now the summation is over all refinements #; - - - ¢, of si - - - 57.
It is straightforward to see that there is no repetition in the table.

THEOREM 1. These four Hopf structures are, integrally, distinct — no two are
isomorphic as Hopf algebras.

Proof. Since p¢ is not commutative, a Hopf algebra with this product cannot
be isomorphic to a Hopf algebra with us or wp as product. Similarly, ug is not
polynomial (see Section 4 below), so a s Hopf algebra cannot be isomorphic to a o
one. Similarly with the coproduct — u% is not copolynomial and so a Hopf algebra with
this comultiplication could not be isomorphic to one with uj, as comultiplication. [

Duality is, of course, given by reflection in the main diagonal in the table, so that
in fact we have only two Hopf algebras up to duality: 4 and B. The algebra A4 is
what Hazewinkel [5] refers to as N, the shuffle algebra, whose dual A4* is the Lie-
Hopf algebra; i.e., the free associative algebra (or ‘tensor algebra’) on S with the Hopf
algebra structure, where each element of S is primitive. The rationalization 4* ® Q is
referred to as the ‘concatenation Hopf algebra’ Q(T') in [6]. The algebra B, denoted M
by Hazewinkel, is more familiar as the ring of quasi-symmetric functions with the outer
coproduct, as defined by [6]. It is known to topologists as the cohomology of QX CP*,
and the dual algebra B*, referred to by Hazewinkel as the ‘Leibniz-Hopf algebra’ is
isomorphic to the Solomon Descent algebra [6, 9], and is the ring of ‘noncommutative
symmetric functions’ of [4], and the integral lift of the algebra F of [1].

Rationally, any (graded, connected) Hopf algebra with commutative multiplication
will be a polynomial algebra, by the Hopf-Borel theorem, 7.11 of [8]. Hence the
obstruction to an integral isomorphism between A and B used in the proof of Theorem 1
vanishes rationally and, indeed, 4 and B are rationally isomorphic as Hopf algebras.
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THEOREM 2. The Hopf algebras A ® Q and B ® Q are isomorphic. The Hopf algebras
A ® Q and A* ® Q are not isomorphic.

Proof. The first statement is Theorem 2.1 of [6]. For the second statement we can
use the same argument as for Theorem 1 — pg is commutative but ¢ is not. OJ

The rational isomorphism between 4 and B can be generalized as follows.

THEOREM 3. Let Hy be a Hopf algebra whose underlying module is QW S; i.e.,
QR ZWS, where S is countable. Concretely, assume S is the set N of positive integers
(or some finite subset {1, ..., n}) and, without loss of generality, that degree is a non-
decreasing function; i.e., deg(m) < deg(n) implies m < n. Note that it need not be strictly
increasing — there may be several letters in a given degree.

If H, has product ¢ and any cocommutative coproduct, then Hy = H,, where H,
is the Hopf algebra with underlying module QW'S, product pc and coproduct |1%.

In other words, any two countable cocommutative concatenation Hopf algebras
over Q that are isomorphic as modules will be isomorphic as Hopf algebras.

Proof. We construct an algebra homomorphism f : H, — H; by specifying f(n)
for each n € N. Since H, is, as an algebra, the free associative algebra on N, this
determines f* completely. We shall ensure that f is a Hopf algebra homomorphism by
arranging that f(n) is primitive for each n, and we ensure that / is an isomorphism by

arranging that f(n) is congruent to n modulo 1, ..., n — 1.
To do this, foreach n > 1, let D,, C H, be the subalgebra generated by the elements
1,...,nof S. Clearly the dimensions of D, and D,_; are identical in degrees lower than

the degree of n, and in that degree they differ by exactly 1. By degree considerations,
D, and D,_, are sub Hopf algebras whose duals will be commutative. By the Hopf-
Borel theorem D, and D}_, must then be polynomial algebras and, by the dimension
argument above, we see that dim OD} = 14 dim 0D} _, in the degree of n, where O
denotes the module of indecomposables. Dually, the dimension of the primitives in this
degree in D, must exceed that in D,_; by one. Hence there is a primitive in D,, (and so
in H)) in the degree of n, which involves the generator #; i.e., cannot be expressed in

terms of 1, ..., n — 1. Multiplying this primitive by a scalar, if necessary, we obtain a
primitive which is equal to » modulo words in 1, ...,n — 1. We define f(n) to be this
primitive. O

In this theorem one hypothesis is that the Hopf algebras are isomorphic as algebras
and another implies, by the Hopf-Borel theorem, that they will be isomorphic as
coalgebras. Hence the import of the theorem is the Hopf algebra isomorphism. What
is striking is that in this proof it is the Hopf-Borel theorem which is persuaded to yield
this Hopf algebra isomorphism.

4. The shuffle algebra. Thanks to the Ditters conjecture the commutative algebra
B is fairly well understood. It is natural to then ask about the algebra structure of 4.
This is commutative, but not free. For example, any word, when multiplied by itself
p times, becomes 0 modulo p. Hence the mod p reduction 4 ® Z/p has zero divisors,
and if this is not free, then A itself cannot be. As this trick shows, the mod p reductions
of A turn out to be rather more amenable than A itself.

The Hopf-Borel theorem says that, over a field of characteristic p, every
commutative Hopf algebra is a product of monogenic Hopf algebras and that the

https://doi.org/10.1017/50017089506003302 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089506003302

580 M. D. CROSSLEY

truncation in each factor must occur at height a power of p. Since, in 4 ® Z/p, every
word has p-th power zero, it follows that the p-th power map is trivial (since the words
form a basis), and so all factors are truncated at height p. Consequently we have the
following result.

THEOREM 4. A ® Z/p is a tensor product of truncated polynomial algebras of the
form Z./p|x]/(xX"). In particular, A ® Z./2 is an exterior algebra.

The degrees of the generators can be worked out, since we know the Poincaré
series of 4 ® Z/p (it being equal to that of A4). Alternatively, noting that for any field
k the algebras

Kx]  and  Qkll/ ().

n>0

have the same Poincaré series if |y,| = p"|x|, we see that the Poincaré series of the
indecomposables of 4 ® Z/p, PO, (), can be derived from that of a polynomial
algebra C that has the same Poincaré series as 4. Concretely:

PO (1) = POC() + PO(") + PO ) + PO + - -,

where PQc(¢) denotes the Poincaré series of the indecomposables in the polynomial
algebra C.

To be more specific, let us henceforth assume that S is the set N of non-negative
integers, with the element n € S having degree n. Then for C we could take the Hopf
algebra B and, using the first few terms of PQp(¢) given in [1], we see that, when p = 2,
the number of generators (i.e. the dimension of the module of indecomposables) in
each degree in 4 ® Z/2 is given by the following table.

Degree: 1 2 345 6 7 8 9 10 11 12 13 14 15
No.gens.:1 2 2 5 6 11 18 35 56 105 186 346 630 1179 2182

At the time of writing, Neil Sloane’s online handbook of integer sequences had no
information on this sequence.

Thus, thanks to the Hopf-Borel theorem, we are able to clarify the algebra structure
of A ® Z/p quite satisfactorily (and, of course, 4 ® Q is isomorphic to the polynomial
algebra B ® Q). However, the integral structure is much more intricate. Of course,
an integral generating set must contain, in each degree, at least as many elements as
a generating set for 4 ® Z/p, whatever p is, and so this gives a lower bound on the

number of generators for 4. In low degrees, these bounds are as follows.

Degree :

6 7 8 9 10 11 12 13 14 15
No. gens. > 1

5

7 11 19 35 59 105 187 346 631 1179 2188
Direct calculations show that these lower bounds are not accurate in general; the exact
number of generators in degrees 1 to 7 is as follows.

Degree: 12345 6 7
No.gens.:1 2 3 58 13 21
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However, the tempting conclusion that the number of generators is given by the
Fibonacci sequence is false: the preceding table shows that there are at least 35
generators in degree 8.

5. The dual Steenrod algebra revisited. As noted in [1], for each prime p, the
algebra B* ® Z/p has a particularly important quotient .A,, the mod p Steenrod algebra
(to be precise, for p odd, this is the Bockstein-free part of the Steenrod algebra, but
we will use the term Steenrod algebra in both cases). Consequently, the dual Steenrod
algebra is a sub Hopf algebra of B ® Z/p, which leads to one quick proof of the fact
that the dual Steenrod algebra is polynomial, a result originally due to Milnor [7]. We
can describe the inclusion A7 < B ® Z/p quite explicitly as follows, where we assume
that we have fixed a prime p.

The inclusion Aj < B® Z/p is determined by the images of the generators &,
n—2

of the dual Steenrod algebra, and &, is mapped to the element &, = p"'p --plin

B® Z/p. Note that

gp" _ omt+n—1 _m+n—2 m+1_m.
& =p P PP

hence, applying the coproduct to &,, we get
n . n »
Wel) = wep" ' p" 2 py =)y p e prep T 1= ) B e,
i=0 i=0

So far it has not been possible to establish whether or not these elements &, are
indecomposable in B® Z/p.

The completely explicit description of both product and coproduct in B now
offers yet another approach to Steenrod algebra calculations. In this context the Adem
relations form a statement of when a given word, or linear combination of words,
belongs to the dual Steenrod algebra. For example, using the formulas above for
conjugation, we see that, for p = 5,

x(&2) = x(31) =6+ 15.

The Adem relations then tell us, for example, that 6 on its own is not an element of the
dual Steenrod algebra and nor (consequently) is 15. Thus, in order to express x (&;) as a
polynomial in the &,s, we need to find some elements which multiply to produce 6 + 15.
The obvious example is 1.5, which multiplies to 6 4+ 15 + 51. Hence &; .515 = x(&) + &

Le., x(&) = —& + &l
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