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Abstract

A continuous selection and a coincidence theorem are proved in H-spaces which generalize
the corresponding results of Ben-El-Mechaiekh-Deguire-Granas, Browder, Ko-Tan, Lassonde,
Park, Simon and Takahashi to noncompact and/or nonconvex settings. By applying the two
theorems, some intersection theorems concerning sets with H-convex sections are obtained
which generalize the corresponding results of Fan, Lassonde and Shih-Tan to H-spaces. Some
applications to minimax principle are given.
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1. Introduction

In our recent papers [7, 9], we have obtained some new matching theorems,
fixed point theorems and minimax inequalities. By applying a minimax in-
equality in [7], some non-convex generalizations of well-known intersection
theorems concerning sets with convex sections were proved in [8], but we
would have to assume that the product space is a H-space.

In the present paper, we shall first show a continuous selection theorem, an
H—-KKM theorem and a coincidence theorem which improve and generalize
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12 Xie-Ping Ding 2}

the corresponding results of Ben-El-Mechaiekh-Deguire-Granas [4], Browder
[6], Ding-Tan [10], Ko-Tan [16], Lassonde [17], Park [19], Simon [20], and
Takahashi [23] to noncompact and nonconvex settings. Next by applying our
earlier results, some intersection theorems concerning sets with H-convex
sections are obtained without the assumption that the product space is a H-
space. These theorems generalize those of Fan {10, 12], Lassonde [17] and
Shih-Tan [22] to noncompact and nonconvex settings. Some applications are
given.

2. Preliminaries

Let X be a nonempty set; we shall denote by 2% the family of all subsets
of X and by ¥ (X) the family of all nonempty finite subsets of X . Also
A, is the standard n dimensional simplex with the vertices ¢, ¢, ..., €,.
If J is a nonempty subset of {0, ..., n}, A, will denote the convex hull
of the vertices {ej :je J}. Let X and Y be topological spaces and D
be a subset of X. D is said to be compactly closed (open) in X if DNC
is closed (open) in C for each nonempty compact subset C of X. A map
S: D — 2% is said to be upper semi-continuous (us.c.) if for each x € D
and for each open subset U of Y with S(x) c U, there exists an open
neighborhood V of x in X such that foreach ze DNV, S(z)cU. S
is said to be compactly valued if for each x € D, S(x) is compactin Y.

The following notions which were introduced by Bardaro-Ceppitelli in [2]
were motivated by an earlier work of Horvath [15].

A pair (X, {F,}) is called an H-space if X is a topological space (which
need not be Hausdorff) and {F,} is a family of nonempty contractible sub-
sets of X indexed by 4 € ¥ (X) such that F, C F,, whenever AC 4'. A
subset D of X is said to be (i) H-convex if F, c D for each 4 € #(D);
(ii) weakly H-convex if F, N D is contractible for each 4 € # (D) (this is
equivalent to saying that (D, {F, N D}) is an H-space); (iii) H-compact in
X if, for each 4 € ¥ (X), there exists a compact, weakly H-convex subset
D, of X suchthat DUACD,. Amap F: X — 2% iscalled H - KKM
if F, C U, F(x) foreach 4 € F(X).

3. Selection theorem, H — KK M theorem and coincidence theorem

The proof of the following useful result is contained in the proof of [15,
Theorem 1] (see also [9]).
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LEMMA 3.1. Let X be a topological space. For each nonempty subset J

of {0,...,n}, let F, be a nonempty contractible subset of X. If J C J
imply F, C F,, then there exists a continuous map f:A, — X such that
f(A,) C F, for each nonempty subset J of {0, ..., n}.

The following lemma is a slight improvement of [15, Corollary I.1] (also
see [8]).

LEmMMA 3.2, Let (Y, {F,}) bean H-space, X be a nonempty subset of Y
and G: X — 2 be such that
(a) G isan H—- KKM map,
(b) for each x € X, G(x) is closed and for some x, € X, S(x,) is
compact.

Then (N, ., G(x) # 2.

x€X

THEOREM 3.1. Let X be a compact topological space and (Y , {F}) be
an H-space. Suppose that S, T: X — 2Y are such that
(a) foreach x € X, S(x) # @ and F, C T(x) for each A € ¥ (S(x));
(b) foreach ye Y, S™'(y)={xe X:y e S(x)} isopenin X.
Then T has a continuous selection g: X — Y and there exists a finite set
A€ F(Y) such that g(X)CF,.

Proor. By (a), we must have X = UYGYS_I(y) . From (b) and the com-
pactness of X it follows that there exists a finite set

A={yy, ..., ¥,y €F(Y)
such that X = ULO S_l(y). For each nonempty subset J of {0, ..., n}, we
define F; = F .- Since (Y, {F,}) is an H-space, F, is a contractible
jrie

subset of ¥ and F, C F; whenever J C J'. By Lemma 3.1, there is
a continuous map f:A, — Y such that f(A;) C F, for each nonempty
subset J of {0,...,n}. Let {o;},_, be a continuous partition of unity

subordinate to the open covering {S—l(yi)};;O. Defineamap y: X — A,
by

w(x) =) a,(x)e,.
i=0

For each x € X, let J(x) = {i € {0, ..., n} : o;(x) # O}, then we have
w(x) € AJ(x) so that

fow(x)e f(AJ(x)) - FJ(x) CF,.
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Since x € S_l(yj) for each j € J(x), it follows that y; € S(x) for all
j € J(x). By (a), we obtain F; ) C T(x) so that fow(x) € T(x) for each
x € X. Hence g = f oy is a continuous selection of T and there exists a
finite set 4 € #(Y) such that g(X)C F,.

It would be of some interest to compare Theorem 3.1 with [15, Theorem
3l.
Now we shall prove the following H — KKM theorem.

THEOREM 3.2. Let X be a nonempty subset of an H-space (Y ,{F,}), Z
be a topological space and G: X — 2% be such that

(a) for each x € X, G(x) is compactly closed in Z ,

(b) there exists a compactly valued w.s.c. map S: Y — 2% such that the
map F: X —2Y defined by F(x)=S5""(G(x)) is H—-KKM;

(c) there exists an H-compact subset L of Y and a nonempty compact
subset of Z such that for each B € #(X) and for each z € S(Ly)\K, there
isan x € LyNX suchthat x ¢ G(x)NS(Lg). Then KN(N,cx G(x)) # &.

ProOF. For each x € X, let G,(x) = G(x) N K, then G, (x) is closed
in K by (a). We shall prove that the family {G,(x): x € X} has the finite
intersection property. Let B € # (X) be arbitrary fixed; then by (c), Ly is
a compact, weakly H-convex subset of ¥ with LU B C Ly such that for
each z € S(Ly)\K, thereisan x € Ly N X satisfying z ¢ G(x)NS(Lg).
Now we define the map G,: LN — 2k by

G,(x)=F(x)NLy=S""(G(x))NLyg.

Then we have the following properties.

(1) By the weak H-convexity of Ly, (Lg, {F,NLg}) is an H-space.

(2) For each 4 € #F(LyNX) C F(X), we have F, C U, F(x) by (b)
sothat F, NLy C Uy (F(x)NLg)=U,c,G,(x). Thus G, is also an
H — KKM map.

(3) Since S is compactly valued u.s.c. and L, is compactin Y , it follows
that S(Ly) is compactin Z so that for each x € X, G(x)NS(Ly) is closed
in Z by (a). By the upper semi-continuity of S, S_I(G(x) NS(Lg)) is a
closed subset of X . Hence, foreach x € L, N X,

1

G,(x) =S (G(x)NLy =S (Gx)NS(Ly))N Ly

is compact in L.

https://doi.org/10.1017/51446788700032833 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032833

[5] Continuous selection theorem 15

By Lemma 3.2, nxeL,nX G,(x) # @. Take any y € ﬂxeL,nx G,(x), then
we have

)N ( N (G(x)nswa))) %0

€L,NX

y (), we must have

S(y)n( N (G(x)nS(LB))) cS(y)n( N <G<x>nK>)

x€LNX x€LgNX
cS)n ﬂ (G(x) nK)) S(»)n (ﬂ G, ( ) c )G
x€B xX€EB

It follows that (), ., G,(x) # @. By the compactness of K, [} ., G (x) #
@, thatis, KN (N, cx G(x)) #2.

ReMARK 3.1. If § is a single-valued continuous map, Theorem 3.2 reduces
to [10, Theorem 1] and in turn generalizes [1, Theorem 1]. It is easy to see
that condition (c¢) of Theorem 3.2 is equivalent to the condition:

(c,) there exists an H-compact subset L of Y and a nonempty compact
subset K of Z such that for each B € ¥ (X),

[ (Gx)NS(Ly)) C

XELgNX

We also note that under hypothesis (a) of Theorem 3.2, condition (c,) is
implied by the condition: there exists an H-compact subset L of Y such
that (1, .,y G(x) is compact in Z . Since every convex space is an H-space
[17], Theorem 3.2 generalizes [17, Theorem I] (which is equivalent to {19,
Theorem 6] to an H-space with a weaker assumption.

In the following we shall prove a coincidence theorem.

THEOREM 3.3. Let X be a nonempty subset of an H-space (Y, {F,}), Z
be a topological space and A, B: X — 2% be such that

(a) for each z € Z, B'l(z) # @ and F,, C A_l(z) for each D €
F(B™\(2));

(b) for each x € X, B{(x) is compactly open in Z ;

(c) there exists an H-compact subset L of Y and a nonempty compact
subset K of Z such that for each B € & (X) and for each z € Z\K, there
isan x € LyNX such that z € B(x).

Then for any compactly valued u.s.c. map S:Y — 2%, there exists an
Xy € X such that S(x;) C A(X,).
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PrRoOF. Defineamap G: X — 2X by
G(x) = Z\B(x) foreach x € X .

Then we have the following properties.

(1) For each x € X, G(x) is compactly closed by (b).

(2) By (c), there exist an H-compact subset L of Y and a nonempty
compact subset K of Z such that for each B € # (X) and for each z €
Z\K ,thereisan x € LyNX suchthat z ¢ G(x) sothat z ¢ G(x)NS(Lp)
for any compactly valued u.s.c. map S: Y — 2%,

Now for any given compactly valued u.s.c. map S: Y — 2% , define a map
F:x-2Y by

F(x)=S""(G(x)) foreachxeX.
If F isan H — KKM map, it follows from Theorem 3.2 that
N G6x) = N(@Z\Bx) =2/ | Bx) # .

xeXx x€X xeX
But condition (a) implies Z = |J, ., B(x), we obtain a contradiction so
that F is not an H — KKM map. Therefore there exists D € ¥ (X) and
X, € Fp such that x, ¢ U, pF(x) = UycpS (G(x)). It follows that
S(x) N (Ugep G(x)) = S(xp) N (Uyep(Z\B(x)) = @. Thus, S(x,) C B(x)
forall x € D so that for any given z € S(x,), we have D € (B~ '(z)). By

(a), Fj, C A_l(z) . It follows that x, € A_'(z) and so z € A(x;). From the
arbitrariness of z € S(x,) it follows that S(x;) C A(x,).

REMARK 3.2. We note that condition (c) of Theorem 3.3 is equivalent to
the following condition:

(¢) there exists an H-compact subset L of Y and a compact subset K
of Z such that

z\ |J B(x)ck.
x€LgNX

Theorem 3.3 improves and generalizes [4, Theorem 1, 6, Theorem 1, 16,
Theorem 3.1, 17, Theorem 1.1, 19, Theorem 6, 20, Theorem 4.3 and 23,
Theorem 2 and 5].

4. Intersection theorems concerning sets with H-convex sections

In this section, we always assume thai every H-space (X, {F,}) has the
following property: for each 4 € #(X), F, is H-compact in X . Clearly,
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each convex space X is an H-space [17] with the property that F, = co(A4)
foreach 4 € ¥ (X).

The following notations are used throughout this section. Let (X;, {F, }),
i=1,...,n,be n (>2) H-spaces and X = []_, X;. For each i €
{1,...,n},let )?i = I'[#,X Also %; denotes an element of X For each

i=1,...,n, X;xX,=X and (x;, X;) denotes an element of X (with the
appropriate ordering).
We shall prove the following intersection theorems.

THEOREM 4.1, Let (X, {F,}), i=1,...,n,be n (>2) H-spaces and
X=I_,X,. If M|, ..., Mn,’Nl, ..., N, are 2n subsets of X such that

(a) for each i € {1,...,n} and for each x; € X;, the section M(x,) =
{y; e )?,. 1 (x;, P;) € M;} is compactly open in )?i;

(b) for each i € {1, ..., n} and for each y, € jf'i, the section M (p,) =
{x; € X;:(x;,9) € M} # @ and Fy C NO)={x;€X,:(x;,9) € N}
for each D; € & (M(9,));

(c) for at least (n — 1) indices i, there exists an H-compact subset L, of
X, such that X\Ux eL, M (x;) is compact in X Then ﬂ, N #2.

PrOOF. We may assume without loss of generality that condition (c) holds
for i=2,..., n. By (b), we have

(4.1) /?iz U M(x;) foreachi=1,...,n.
x,€X;

From (a), (c) and (4.1) it follows that for each i =2, ..., n, there exists a
finite set B, = {xi1 yeres xf"} € # (X;) such that

k; )
X\ U Mix) c UM(x).

x,€L, j=1
Thus, we have

(4.2) X c U M(x).

X, €LU{x] ... ,x:"'}
Since L; is H-compact in X, there exists a compact, weakly H-convex
subset C; of X, with L,UB; C C; and (4.2) imply

(4.3) X, c | Mx).
x,€C;
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Now we define the maps M,, N,: [[_,C, — 2% as follows: for each
N el G
M (p,) ={x, € X, :(x,, ) € M}
and
N =1{x, € X, :(x;,9,) €N,}.
By (b), for each p, € [[;_,C;, M,(9,) # @ and F, C N,(p,) for each
D, € F(M,(9,)). For each x, € X, , '

n n
M (x) = {le e[[Ci:(x,,9)) € M,} =l c.nM (x)
i=2

i=2
is open in 1'[;'=2 C; by (a). It follows from Theorem 3.1 that there is a
continuous map g: [[.,C;, — X, and 4, € F(X,) such that g(p,) €
N,(p,) foreach y, € [I}_, C; and g([1.,C,) C FAl . By the assumption that
F 4, is H-compact, there exists a compact weakly H-convex subset C, of
X, with F, C C,. Hence, we have g(Il;,C,) c C, and (g(¥,), §,) € N,
for each y, € [T._,C;.
Let C=]I.,C, and C;=]],,,C;. Foreach i € {2, ..., n}, we define
the maps M;, N;: C, — 26 by
M(x)={p,€C,:(x;,) €M}
and
Nix)={9;€C:(x;, ) €N}
for each x; € C;. Then, for each x; € C;, M,(x;) is open in 6‘1. by (a) and
foreach y,€ C,, M;'(9) = {x, € C,: (x,, 7,) € M}} = C,AM,(P,) # & and
F, c NJ'(9,) for each D, e (M, '(5,)) by (b) and (4.3). From Theorem
3. 3 with X =Y = C; and Z = 6 = K it follows that for any compactly
valued u.s.c. map S: C; —>2 " there is an x; € C; such that S(x;) C N,(x,).
Now, let p;: C—»C,1—2 nandq C—»C i=1, , n be

the projective maps, then p,, g, are continuous open maps. We consider the
following map

-1 -1 C .
qg; og8op;, :C;—27, i=2,...,n.
Since p. and ¢, are continuous open maps and g is continuous, it is easy
1 ]

to see that qi_1 ogo pi_l is compactly valued and u.s.c. on C;. Thus for
i=2,...,n, there exists x; € C; such that

(4.4) g ogop; '(x;)C Nix,).
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Let X, =(x,,...,x,) and g(X,) = x,, then

x=(x,...,X,) €EN,.
Since, for i=2,...,n,

X, =8(xX)egCyx-xC_ x{x}xC;x---xC)

n

and
qi_logopi_l=g(C2><-'-xCi_1 x{x;} xC;x---xC,)
xCyx-xC_ xC/ x---xC,,

n
we must have
. -1 -1 .
%, =[x €4, ogon; (x)CN(x)fori=2,...,n.
J#i
Hence x = (x,,...,x,) €N, forall i=1,...,n sothat [[,_| N, # 2.

REMARK 4.1. Theorem 4.1 generalizes [17, Theorem 1.9] to 2n sets and
H-spaces with weaker assumptions. We observe that condition (c) of Theo-
rem 4.1 is implied by the following condition:

(c,) at least (n—1) of the X;’s (say X,, ..., X,) are compact. Indeed,
in the case, (c) is satisfied by L, = X, for i =2, ..., n, because by (b) the
set X \U, cx M;(x;) = 2. Thus Theorem 4.1 also generalizes [11, Theorem
1] to H—sﬁacés. It would be of some interest to compare Theorem 4.1 with
(3, Theorem 2].

THEOREM 4.2. Let (X, {F,}), i=1,...,n, be (> 2) H-spaces and
X=TI_,X,. If M, ..., Mn,lNl, ..., N are 2n subsets of X such that

(a) for each i € {1, ..., n} and for each x; € X,, the section M,(x;) is
compactly open in X P

(b) for each i € {1, ..., n} and for each 3, € /\A’i, the section M(9,) # &
and F, C N(p,) for each D; € & (M(D,));

(c) fér at least (n — 1) indices i, there exists an H-compact subset L,
of X, and a compact subset I?i of )?,. such that L, M(,) # @ for each
y, € X\K, .

Then N,_ N, #@.

ProoF. We shall show that condition (c) is equivalent to condition (c) of

Theorem 4.1 and hence Theorem 4.2 follows from Theorem 4.1. Suppose

that condition (c) of Theorem 4.1 holds. Let /?i\ Uyer M(x) = I?i , then

K, is a compact subset of X; and for each p, € X \K;, »; € Ux,.eL,. M(x;).
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Thus, there exists x; € L; such that (x;, p,) € M,, thatis x; € L, N M(y,)
and hence L, N M (y,) # @. Therefore condition (c) of Theorem 4.2 holds.
If condition (c) of Theorem 4.2 holds, then for each y, € X Al Uxi eL, M(x,;),
V; ¢ M/(x,) forall x, € L, sothat x;, ¢ M,(p,) forall x; € L,. Thus
L,NnM(p,) =2. It follows that y, € K; and
X\ U Mx)ck

i

i i

By (a), X AUy er Mi(x;) is closed in I?i so that it is compact in )?i. This
proves that condition (c¢) of Theorem 4.1 holds.

THEOREM 4.3. Let (X;, {F,}), i=1,...,n,be n (>2) H-spaces and
X=MI_X;.If M, ..., Mn,‘Nl, ..., N, are 2n subsets of X such that

(a) for each i € {1, ..., n} and for each x; € X,, the section M(x;) is
compactly open in X;;

(b) for each i € {1, ..., n} and for each ¥, € /?i, the section M,(y,) # &
and F,, C N(9,) for each D, € & (M,(¥,));

(c) there exists a compact subset K of X such that foreach i=1,...,n,

the projection L; of K on X, is H-compact in X, and such that K N
(I, M,(»,)) # @ for each y € X\K .
Then N;_,N;#@.

ProoF. Foreach i=1,...,n,let L, and I?i be the projections of K
on X, and X i respectively, then L, is H-compact in X, by the assumption
and I?,. is a compact subset of X,. The condition (c) of Theorem 4.3 imply
that for each i = 1,...,n, L,N M(p,) # o for each p, € X,\K,. By
Theorem 4.2, (;_, N, # @.

REMARK 4.3. Theorem 4.3 generalizes [12, Theorem 11] in several ways.
We note that if condition (b) of Theorem 4.3 is replaced by the following
condition:

(b,) foreach i € {1, ..., n} and foreach y, € X,, the section M,(y,) # &
and for at least ¢ (> 2) indices i, FD‘_ C N,(9;) for each D, € #(M,(,))
and for each p; € f,. .

Then at least ¢ of the sets N,, ..., N, have a nonempty intersection by
applying Theorem 4.3 for the ¢ H-spaces satisfying condition (b,). Thus
Theorem 4.3 also generalizes [13, Theorem 15].
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5. Some applications to the von Neumann Minimax Theorem

For convenience, we state the special case n =2 of Theorem 4.1.

THEOREM 5.1. Let (X, {F,}) and (Y, {F,}) be two H-spaces and let
M, M,, N,, N, be subsets of X x Y. Suppose that

(a) for each x € X, the section M|(x) = {y € Y : (x,y) € M} is
compactly open in Y, the section My(x) ={y € Y : (x,y) e M,} # @ and
F, C N,(x) for each A € F(M,(x));

(b) for each y € Y, the section M,(y) = {x € X : (x,y) € M,} is
compactly open in X, the section M,(y) ={x € X : (x,y) € M|} # @ and
F,C N,(y) for each A€ (M(y));

(c) there exists an H-compact subset X, of X such that the intersection
ﬂxeXO(Y\Ml(x)) is compact in Y .

Then the intersection N, N N, is nonempty.

REMARK 5.1. If the coercive condition (c¢) is replaced by the following
condition:

(c,) there exists an H-compact subset Y, of Y such that the intersection
ﬂyeyo(X \M,(y)) is compact in X, then the inclusion of Theorem 5.1 still
holds. We also note that if at least one of X or Y is compact, then condi-
tion (c) of Theorem 5.1 holds. Theorem 5.1 improves and generalizes [22,
Theorem 2] and Ha’s result [14] in several ways.

THEOREM 5.2. Let (X,{F,}) and (Y,{F,}) be two H-spaces and
f,s,t,2: XxY >R and A € R be such that

(a) s<ton XxY;

(b) foreach x € X, y — f(x, y) is lower semi-continuous on each compact
subset of Y and for each y € Y, x — g(x,y) is upper semi-continuous on
each compact subset of X ;

(cforeach xe X, AcF({yeY:g(x,y)<A}) imply F,c{yeY:
t(x,y) <A} and foreach y € Y, Ae F({x € X : f(x,y) > A}) imply
F,c{xeX:s(x,y)>A};

(d) there exists an H-compact subset X, of X such that the intersection
ﬂxeXO(Y\{y €Y: f(x,y)>A}) iscompactin Y.

Then either there exists y € Y such that f(x,y) <A forall x € X or
there exists X € X such that g(Xx,y)>A forall yeY.
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ProOOF. Suppose that the conclusion does not hold. Let

M ={(x,y)eXxY: f(x,y) >4},
M,={x,y)e X xY:g(x,y) <4},
N, ={(x,y)e X xY:s(x,y) >4},
N,={(x,y)€e X xY:tx,y)<A}.

Then for each x € X,

M,(x)={yeY : gx,y)<Ai}# @

and foreach yeY,

M) ={xeX: f(x,y)>A}#2.

Moreover,

(i) foreach x € X, M (x)={y €Y : f(x,y) > A} is compactly open in
Y and foreach y € Y, M,(y) = {x € X : g(x, y) < A} is compactly open
in X by (a);

(ii) for each x € X, F, C N,(x) whenever 4 € ¥ (M,(x)) and for each
yeY, F,c N,(y) whenever 4 € #(M,(y)) by (c);

(iii) condition (c) of Theorem 5.1 holds by (d).

Thus all hypotheses of Theorem 5.1 are satisfied so that N, N N, # @ . Take
any (%X, p) € N NN,, then s(X, y) > 4 which contradicts (a). Therefore
the conclusion must hold.

Recall that a real-valued function ¢ defined on an H-space (X, {F,})
is said to be H-quasi-concave if for each real number ¢, the set {x € X :
o(x) >t} is H-convex; ¢ is said to be H-quasi-convex if —¢ is H-quasi-
concave.

COROLLARY 5.1. Let (X, {F,}) and (Y ,{F,}) be two H-spaces and
f,s,t,g: X xY — R be such that

(a) f<s<t<gon Xx7Y,;

(b) foreach x € X, y — f(x, y) is lower semi-continuous on each compact
subset of Y and for each y € Y, x — g(x, y) is upper semi-continuous on
each compact subset of X ;

(c) foreach x € X, t(x,y) isan H-quasi-convex functionof y on Y and
foreach y €Y, s(x,y) is an H-quasi-concave function of x on X;

(d) there exists an H-compact subset X, of X such that for each t € R,
the intersection ﬂxEXO(Y\{y €Y:f(x,y)>t}) iscompactin Y.

Then for each A € R, either there exists y € Y such that f(x,y) <4 for
all x € X or there exists X € X such that g(x,y)>A forall yeY.
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REMARK 5.2. Theorem 5.2 and Corollary 5.1 improve and generalize [5,
Theorem 5.4]. It would be of some interest to compare Theorem 5.2 and
Corollary 5.1 with [8, Theorem 4 and Corollary 4].

THEOREM 5.3. Let (X, {F,}) and (Y,{F,}) be two H-spaces and
f,5,t,8:YxY >R be such that

(a) s<ton XxY,;

(b) foreach x € X, y — f(x,y) islower semi-continuous on each compact
subset of Y and for each y € Y, x — g(x,y) is upper semi-continuous on
each compact subset of X ;

(c) for each y € R and for each x ¢ X, F, Cc {y € Y : t(x,y) < »}
whenever A € ¥ ({y € Y : g(x,y) <vy), and for each y € R and for each
yevY, F,c{xe€X:s(x,y) >y} whenever Ac F({xe X: f(x,y) >
13I8

(d) there exists an H-compact subset L of X and a compact subset K of
Y such that

inf su X, )< inf su xX,¥).
yey xegf( y) < yEY\K xGIL)f( Y)

Then the following minimax inequality holds,

a = inf sup f(x, y) <sup inf g(x,y) = B.
YEY xex XEX YEY

ProOF. Without loss of generality, we may assume that o« # —oo and
B # +oo. Assume to the contrary that o > f. Choose a real number A such
that a >A> f. Let

M ={(x,y)eXxY:f(x,y)>A},
M,={(x,y)e X xY:g(x,y) <4},
N ={(x,y) € X xY:s(x,y)>A4},
N,={(x,y) e X xY :t(x,y) <A}.

Then o > A implies that for each y € Y, M,(y) # @; and 4 > f im-
plies that for each x € X, M,(x) # @. The condition (d) implies that
Neer(Y\M,(x)) C K and each M,(x) is compactly open in Y by (b),
thus (N, ., (Y\M,(x)) is compact in Y. The other conditions of Theorem
5.1 are easily verified. By Theorem 5.1, N, N N, # & so that there exists
(X,9) € X xY such that s(x, ) > 4 and t(x, ) < 4 which contradicts
(a). This completes the proof.

CoROLLARY 5.2. Let (X, {F,}) an d(Y,{F,}) be two- H-spaces and

f,5,t,8:XxY — R besuch that
(a) f<s<t<gon XxY;
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(b) foreach x € X, y — f(x, y) is lower semi-continuous on each compact
subset of Y and for each y € Y, x — g(x, y) is upper semi-continuous on
each compact subset of X ;

(c) foreach x € X, t(x,y) is an H-quasi-convex functionof y on Y for
each y € Y, s(x,y) is an H-quasi-concave function of x on X,

(d) there exists an H-compact subset L of X and a compact subset K of
Y such that

inf sup f(x,y) < inf supf(x, y).
yeY xeg Jx, ) YEY\Y xe[L, Jix, )
Then the following minimax inequality holds,

a = inf sup f(x, y) <sup inf g(x,y) = fB.
yeY xex xex yeY

REMARK 5.3. Theorem 5.3 and Corollary 5.2 generalizes [22, Theorem
4(2), 3, Corollary 5.5] and Liu’s result [18] in several ways. When f =s5=
t = g, the conclusion of Corollary 5.2 (respectively Theorem 5.3) implies the
following minimax equality, which generalizes the minimax principle of the
von Neumann type due to Sion [21]:

inf sup f(x, y) =sup inf f(x, y).
yeyxegf( ) xegyeyf( )

It would be of some interest to compare the minimax equality with the cor-
responding result of Barbaro-Ceppitelli in [3].
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