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Model spaces invariant under composition
operators

P. Muthukumar and Jaydeb Sarkar

Abstract. Given a holomorphic self-map φ of D (the open unit disc in C), the composition operator
Cφ f = f ○ φ, f ∈ H2(D), defines a bounded linear operator on the Hardy space H2(D). The model
spaces are the backward shift-invariant closed subspaces of H2(D), which are canonically associated
with inner functions. In this paper, we study model spaces that are invariant under composition
operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear
fractional transformations.

1 Preliminaries

Let D denote the open unit disk of the complex plane C, and let H2(D) denote the
Hardy space over D. For φ a holomorphic self-map of D, define the composition
operator Cφ on H2(D) by

Cφ f = f ○ φ ( f ∈ H2(D)).

It follows from the Littlewood subordination principle that Cφ ∈ B(H2(D)) [22].
Here B(H2(D)) denotes the set of all bounded linear operators on H2(D).

The theory of composition operators is highly interdisciplinary with its natural
connections to complex analysis, linear dynamics, complex geometry, and functional
analysis. For instance, the question of the existence of nontrivial invariant subspaces
of bounded linear operators on Hilbert spaces can be formulated in terms of minimal
invariant subspaces of composition operators induced by hyperbolic automorphisms
of D [18–20].

The theme of this paper is also in line with the invariant subspaces of composition
operators, but restricted to model (or inner function based quotient) spaces of H2(D).
Recall that a function θ ∈ H∞(D) is said to be inner if ∣θ∣ = 1 a.e. on ∂D in the sense
of nontangential boundary values, where H∞(D) denotes the commutative Banach
algebra of all bounded holomorphic functions on D. Given an inner function θ, the
model space Qθ is the quotient space

Qθ = H2(D) ⊖ θH2(D) ≅ H2(D)/θH2(D).
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Model spaces invariant under composition operators 205

The aim of this paper is to describe some results and methods of the calculation of
model spaces that are invariant under composition operators. On the other hand, a
celebrated result of Beurling [1] states that a closed subspace Q ⊆ H2(D) is invariant
under M∗z if and only if Q is a model space. Here Mz f = z f , f ∈ H2(D), and M∗z is
the backward shift

M∗z f = f (z) − f (0)
z

( f ∈ H2(D)).

In other words, we are interested in joint invariant subspaces of the (noncom-
muting) pair (M∗z , Cφ) on H2(D). Yet another motivation comes from the recent
classification [2] of joint invariant subspaces of the noncommuting pair (Mz , Cφ) on
H2(D). In this context, we further remark that the concept of joint invariant subspaces
of (Mz , Cφ) was independently introduced by Chalendar and Partington [4] and
Mahvidi [16]. For recent results related to the subject we refer to [2, 14, 17] and the
references therein.

Often, results on composition operators are case-based. For instance, the theory of
Cφ corresponding to the holomorphic self-map of D as

φ(z) = az + b or az + b
cz + d

is extremely demanding and complete answers to many basic questions are not known
(cf. [7, 6], and also see [11, 15] for more recent accounts). Even norm computations and
invariant subspaces of Cφ for linear fractional transformations are known to be case-
based (cf. [3, 18]). In fact, the results of this paper are also no exception. For example,
Theorem 3.1 states: Let φ be a holomorphic self-map of D. Fix α ∈ D and n ∈ N, and
consider the inner function

θ(z) = ( z − α
1 − ᾱz

)
n

(z ∈ D).

Then Qθ is invariant under Cφ if and only if there exist scalars a, b, and c(≠ 0) such
that

φ(z) =
⎧⎪⎪⎨⎪⎪⎩

a + bz, if α = 0 and n > 1,
1−c

ᾱ + cz, if α ≠ 0,
(1.1)

where, ∣a∣ + ∣b∣ ≤ 1 and ∣ 1−c
ᾱ ∣ + ∣c∣ ≤ 1.

Note that the above model space Qθ is an n-dimensional Hilbert space. Even
though we all know the structure of finite-dimensional model spaces (they are essen-
tially parameterized by n-Blaschke products), but we do not know a general method
to classify holomorphic self-maps φ of D for which a given finite-dimensional model
space remains invariant under Cφ (see Question 3.3). In order to make this problem
more convincing, in Proposition 3.4, we consider the two-dimensional model space
Qθ corresponding to the (special) Blaschke product θ(z) = z z−α

1−ᾱz , z ∈ D, and prove
that CφQθ ⊆ Qθ if and only if φ is the special Möbius map

φ(z) = (c1 − 1) + (ᾱ + c2)z
ᾱ(c1 + c2z) (z ∈ D),
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206 P. Muthukumar and J. Sarkar

for some scalars c1 and c2 such that at least one of them is nonzero (see (3.2)). The
above answers do not seem to tell us much about a possible answer to our general
question.

We also put special emphasis on composition operators induced by linear frac-
tional symbols (cf. Theorem 4.5): Let θ be an inner function, and let φ(z) = az+b

cz+d be
a nonconstant holomorphic self-map of D, where ad − bc = 1. Suppose σ(z) = āz−c̄

−b̄z+d̄
and θ(0) = 0. If we denote ψ = ( θ

z ○ σ)( θ
z )−1, then the following are equivalent:

(1) Qθ is invariant under Cφ .
(2) ψ ∈ H2(D) or ψ ∈ H∞(D).
(3) θ

z H2(D) is invariant under Cσ .
A similar (but not same as above) consideration also holds for composition operators
induced by affine transformations (see Theorem 4.3).

In the application part, we consider direct interpretations of our results to simple
model spaces and reducing subspaces of composition operators. For instance, Theo-
rem 5.3 states that:
(1) Qθ is invariant under Cφ for all inner function θ if and only if φ is the identity

map.
(2) Qθ is invariant under Cφ for all holomorphic self-map φ if and only if θ(z) = αz

or θ ≡ α, where α is an unimodular constant.
We now discuss the issue of reducing subspaces of composition operators from

our perspective. Let T be a bounded linear operator on a Hilbert space H. A closed
subspace M ⊆ H is called reducing subspace for T (or M reduces T) if both M and
M� are invariant under T. It is known that Mz on H2(D) is irreducible, that is, Mz
has no nontrivial reducing subspaces. In the setting of composition operators, if α ∈ C
with Re(α) > 0, then Cφα is also irreducible [18, Theorem 1.3], where

φα(z) = (2 − α)z + α
−αz + (2 + α) (z ∈ D).

Another example is the composition operator corresponding to univalent loxodromic
type self-map with nonzero Denjoy–Wolff point [13, Theorem 1]. At the other extreme,
we discuss reducibility of compositor operators restricted to model spaces. In Theo-
rem 5.5, we prove the following: Let φ be a holomorphic self-map of D, α ∈ D, n ≥ 1,
and suppose θ(z) = ( z−α

1−ᾱz )n . Then Qθ reduces Cφ if and only if there exist a scalar c,
∣c∣ ≤ 1, and ψ ∈ H∞(D), ∥ψ∥∞ ≤ 1, such that

φ(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zψ, if α = 0 and n = 1,
cz, if α = 0 and n ≥ 2,
z, if α ≠ 0.

Finally, we make a general remark. Recall that a linear fractional transformation
φ(z) = az+b

cz+d is a self-map of D if and only if

∣bd̄ − ac̄∣ + ∣ad − bc∣ ≤ ∣d∣2 − ∣c∣2 .
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In particular, since φ is a holomorphic self-map, the inequalities following (1.1) are
automatically true. In this paper, whenever no confusion can arise, we will not
explicitly mention the above inequality for linear fractional transformations that
are self-maps of D. In particular, the above inequality is applicable to Theorem 3.1,
Example 3.4, and Theorem 4.3.

The rest of the paper is organized as follows. Section 2 recalls (rather a modified
version of) the classification of Beurling type invariant subspaces from [2]. Section 3
relates affine transformations and certain finite-dimensional model spaces. Section 4
deals with model subspaces invariant under composition operators corresponding
to fractional linear transformations. The final section, Section 5, deals with some of
the direct applications of our main results. We also discuss reducible composition
operators at the level of model spaces.

2 Beurling type invariant subspaces

The purpose of this short section is to recall the classification of Beurling type
invariant subspaces of composition operators from [2].

We begin with the formal definition of Hardy space H2(D). Recall that the Hardy
space is the function Hilbert space of all holomorphic functions on D whose power
series have square-summable coefficients. The following equivalent description of
H2(D) is also well known:

H2(D) = { f ∈ Hol(D) ∶ ∥ f ∥ ∶= [ sup
0≤r<1

1
2π ∫

2π

0
∣ f (re i t)∣2dt]

1
2 < ∞}.

Also, we denote the closed unit ball of H∞(D) (which is popularly known as Schur
class) by

S(D) = {ψ ∈ H∞(D) ∶ ∥ψ∥∞ ∶= sup
z∈D

∣ψ(z)∣ ≤ 1}.

We will follow the standard notation: Given a bounded linear operator T on some
Hilbert space H, the lattice of all closed T-invariant subspaces is denoted by LatT ,
that is

LatT = {S ⊆ H closed subspace ∶ TS ⊆ S}.

By Beurling’s Theorem, we know that

LatMz = {{0}, θH2(D) ∶ θ inner},

and

LatM∗z = {Qθ , H2(D) ∶ θ inner}.

A closed subspace S ⊆ H2(D) is said to be a Beurling type invariant subspace if S =
θH2(D) for some inner function θ, or equivalently (in view of Beurling),S is invariant
under Mz . The following theorem is a simple refinement of [2, Theorem 2.3]. We only
prove the new component of the result.
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Theorem 2.1 Let θ be an inner function and φ be a holomorphic self-map of D. The
following are equivalent:
(1) θH2(D) ∈ LatCφ .
(2) θ○φ

θ ∈ S(D).
(3) θ○φ

θ ∈ H∞(D).
(4) θ○φ

θ ∈ H2(D).

Proof The equivalence (1) ⇔ (2) follows from [2, Theorem 2.3]. Since

S(D) ⊊ H∞(D) ⊊ H2(D),

it follows that (2) ⇒ (3) ⇒ (4). Therefore, it suffices to verify that (4) ⇒ (2). Sup-
pose that θ○φ

θ ∈ H2(D). Since θ is inner, we have

∣ θ ○ φ
θ

(e i t)∣ = ∣(θ ○ φ)(e i t)∣ ≤ 1 for all t ∈ [0, 2π] a.e.

Therefore, θ○σ
θ ∈ H∞(D) with ∥ θ○φ

θ ∥
∞

≤ 1 [9, Theorem 2.11], that is, θ○φ
θ ∈ S(D),

which completes the proof of the theorem. ∎

This result will play a key role in what follows.

3 Finite-dimensional model spaces

Recall that the Hardy space H2(D) is a reproducing kernel Hilbert space correspond-
ing to the Szegö kernel k ∶ D ×D → C, where

k(z, w) = (1 − zw̄)−1 (z, w ∈ D).

Therefore, the linear span of {k(⋅, w) ∶ w ∈ D} is dense in H2(D), and f (w) =
⟨ f , k(⋅, w)⟩H2(D) for all f ∈ H2(D) and w ∈ D. For each α ∈ D, define the Blaschke
factor bα by

bα(z) = z − α
1 − ᾱz

(z ∈ D).

It is known that a model space Qθ is finite dimensional if and only if θ is a finite
Blaschke product (cf. [21, Theorem 3.8]). More specifically, if dimQθ = n < ∞, then
there exists α1 , . . . , αm ∈ D, and n1 , . . . , nm ∈ N such that ∑m

i=1 n i = n and

θ =
m

∏
i=1

bn i
α i

.

Moreover, {c(l i)
α i ∶ 0 ≤ l i ≤ n i − 1, 1 ≤ i ≤ m} is a basis for Qθ (see [12, Proposition

5.16]), where

c(t)
α ∶= z t

(1 − ᾱz)t+1 (t ∈ Z+).

In the following, we prove that a “simple” finite dimensional model space is invariant
under Cφ if and only if φ is a special affine map.
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Theorem 3.1 Let φ be a holomorphic self-map of D, α ∈ D, n ∈ N, and suppose θ(z) =
( z−α

1−ᾱz )n . Then Qθ ∈ LatCφ if and only if there exist scalars a, b, and c(≠ 0) such that

φ(z) =
⎧⎪⎪⎨⎪⎪⎩

a + bz, if α = 0 and n > 1,
1−c

ᾱ + cz, if α ≠ 0.

Proof In view of the preceding discussion, we have

Qθ = { p(z)
(1 − ᾱz)n ∶ p ∈ C[z], deg p ≤ n − 1}.

Suppose α = 0. Then θ(z) = zn and

Qθ = span{1, z, z2 , . . . , zn−1}.

Let φ = a + bz. Clearly, if f = ∑n−1
j=0 a jz j ∈ Qθ , then

f ○ φ =
n−1
∑
j=0

a jφ j =
n−1
∑
j=0

a j(a + bz) j ,

and hence Cφ f = f ○ φ ∈ Qθ . For the converse part, suppose CφQθ ⊆ Qθ . Since the
identity map f (z) = z, z ∈ D, is in Qθ , if follows that

f ○ φ = φ ∈ Qθ ,

which implies that φ is a polynomial. Also note that g ∈ Qθ , where g(z) = zn−1, z ∈ D.
Then

g ○ φ = φn−1 ∈ Qθ ,

which implies that

(n − 1)deg(φ) = deg(φn−1) ≤ n − 1.

Since n − 1 ≠ 0, it follows that deg(φ) ≤ 1, and hence φ is an affine map.
Now suppose that α ≠ 0, and let CφQθ ⊆ Qθ . Since k(⋅, α) ∈ Qθ , it follows that

k(⋅, α) ○ φ = 1
1 − ᾱφ

∈ Qθ ,

and hence, there exists a polynomial p of degree ≤ n − 1 such that

1
1 − ᾱφ

= p(z)
(1 − ᾱz)n .

In particular, φ is a nonconstant polynomial. Suppose deg(φ) = m > 0. Since

g = 1
(1 − ᾱz)n ∈ Qθ ,

we have

g ○ φ = 1
(1 − ᾱφ)n ∈ Qθ .
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Thus, there exists q ∈ C[z] such that

(1 − ᾱφ)n q(z) = (1 − ᾱz)n .

Comparing the degrees of both sides, we have mn ≤ n, which implies deg(φ) = 1.
Then deg(q) = 0, and hence q is a nonzero constant. Therefore, there exists a nonzero
scalar c such that 1 − ᾱφ = c(1 − ᾱz), that is

φ(z) = 1 − c
ᾱ

+ cz.

We now turn to the converse direction. Let c ≠ 0 and φ(z) = 1−c
ᾱ + cz. Then 1 − ᾱφ =

c(1 − ᾱz), and hence

( 1
1 − ᾱφ

)
l

∈ span { 1
(1 − ᾱz) j ∶ j = 1, . . . , n} = Qθ

for all l = 1, 2, . . . , n. It follows that f ○ φ ∈ Qθ for all f ∈ Qθ . This completes the proof
of the theorem. ∎

We would like to point out that even affine transformations (as symbols) play a
prominent role in the complexity of composition operators (cf. Deddens [7]).

Remark 3.2 In the context of Theorem 3.1, we note that if α = 0 and n = 1, then
Qz = (zH2(D))�, which is the one dimensional subspace of all constant functions in
H2(D). Clearly, Qz is invariant under every composition operator.

We do not know the answer to the following compelling question.

Question 3.3 Consider the finite Blaschke product ∏m
i=1 bα i corresponding to

α1 , . . . , αn ∈ D. Characterize holomorphic self-maps φ of D such that

CφQ∏m
i=1 bαi

⊆ Q∏m
i=1 bαi

.

We also put forward the following simpler (two-dimensional) version: Suppose
α ≠ β in D, and suppose θ = bα bβ . Classify holomorphic self-maps φ of D such that
CφQθ ⊆ Qθ .

We do not know the complete answer to this question but the following special
case (α ≠ 0 and β = 0):

Proposition 3.4 Let α ∈ D be a nonzero scalar, and suppose θ = zbα . Let φ be a
holomorphic self-map of D. Then CφQθ ⊆ Qθ if and only if φ is the special Möbius map

φ(z) = (c1 − 1) + (ᾱ + c2)z
ᾱ(c1 + c2z) (z ∈ D),(3.2)

for some scalars c1 and c2 such that at least one of them is nonzero.

Proof Here the two-dimensional model spaceQθ is given byQθ = span{1, k(⋅, α)}.
As the space of all constant functions is invariant under every composition operators
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(see Remark 3.2), Qθ is invariant under Cφ if and only if

k(⋅, α) ○ φ = 1
1 − ᾱφ

∈ Qθ .

This is equivalent to the fact that
1

1 − ᾱφ
= c1 + c2z

1 − ᾱz
(z ∈ D),

for some scalars c1 and c2 such that at least one of them is nonzero, which is equivalent
to (3.2). This completes the proof of the proposition. ∎

Putting together the representations of linear fractional transformations from (3.2)
and Theorem 3.1, it is perhaps evident that the answer to Question 3.3 will be also case-
based.

4 Linear fractional symbols

Our aim in this section is to describe the structure of model invariant subspaces of
composition operators whose symbols are linear fractional transformations mapping
D into itself. We are also motivated by the intricate analysis presented in Cowen [6]
and Deddens [7].

Before we begin with a general observation, we introduce the following (stan-
dard) notation: For each φ ∈ H∞(D), we denote by Mφ the multiplication operator
Mφ f = φ f , f ∈ H2(D). It is well known that Mφ ∈ B(H2(D)) with ∥Mφ∥ = ∥φ∥∞ for
all φ ∈ H∞(D), and {Mz}′ = {Mφ ∶ φ ∈ H∞(D)}, where {Mz}′ denotes the commu-
tator of Mz .

Let φ be a holomorphic self-map of D and let θ be an inner function. Clearly,
CφQθ ⊆ Qθ if and only if C∗φ(θH2(D)) ⊆ θH2(D), which is, by the Douglas range
inclusion theorem [8, Theorem 1] (as ran(C∗φ Mθ) ⊆ ranMθ ), equivalent to the exis-
tence of some X ∈ B(H2(D)) such that

C∗φ Mθ = Mθ X .

Now if the above equality holds, then θX( f ) = C∗φ(θ f ) for all f ∈ H2(D), and hence
zeros of θ are also zeros of C∗φ(θ f ) and

multiplicityw θ ≤ multiplicityw C∗φ(θ f ),

for all w ∈ Z(θ) (the zero set of θ). This implies that 1
θ C∗φ(θ f ) is a well defined

holomorphic function on D. Therefore, we have proved the following general (but
perhaps less practical) characterization.

Lemma 4.1 Qθ is invariant under Cφ if and only if f ∈ H2(D) ↦ 1
θ C∗φ Mθ f defines

a bounded linear operator on H2(D).

Now we turn to linear fractional transformations. The following adjoint formula is
due to Cowen [6, Theorem 2]. There is a wide range of applications of Cowen’s adjoint
formula (cf. [5, 10, 11]).
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Theorem 4.2 Let φ(z) = az+b
cz+d be a nonconstant holomorphic self-map of D, where

ad − bc = 1. Then σ(z) = āz−c̄
−b̄z+d̄ is a holomorphic self-map of D, g(z) = 1

−b̄z+d̄ and
h(z) = cz + d are in H∞(D), and C∗φ = Mg Cσ M∗h .

Note that if φ is a constant map, then Qθ is invariant for Cφ if and only if θ(0) = 0.
Indeed, the constant function 1 ∈ Qθ if and only if θ(0) = ⟨1, θ⟩H2(D) = 0. Now we turn
to nonconstant affine self-maps.

In what follows, we denote by H(D) either H2(D) or H∞(D).

Theorem 4.3 Let θ be an inner function, and let φ(z) = az + b, a ≠ 0. Suppose σ(z) =
āz

1−b̄z , z ∈ D. The following are equivalent.
(1) Qθ ∈ LatCφ .
(2) θ○σ

θ ∈ H(D).
(3) θH2(D) ∈ LatCσ .

Proof If we apply Theorem 4.2 to the case when c = 0 and d = 1, we get

C∗φ = MψCσ ,

where ψ(z) = 1
1−b̄z . Now suppose that Qθ is invariant under Cφ . By Lemma 4.1, we

know that the map

X f = 1
θ

C∗φ Mθ f ( f ∈ H2(D)),

defines a bounded linear operator X on H2(D), and hence, using C∗φ = MψCσ , we
have

X f = 1
θ

C∗φ Mθ f = 1
θ

ψ(θ ○ σ)( f ○ σ) ∈ H2(D),

for all f ∈ H2(D). Applying this with f = 1 yields

ψ θ ○ σ
θ

∈ H2(D).

But since 1
ψ = 1 − b̄z ∈ H∞(D), it follows that θ○σ

θ ∈ H2(D). Theorem 2.1 then implies
that θH2(D) is invariant under Cσ . This proves (1) ⇒ (2) ⇒ (3).

Now we assume that Cσ (θH2(D)) ⊆ θH2(D). Again, Theorem 2.1 implies that
θ○σ

θ ∈ S(D), and therefore ψ θ○σ
θ ∈ H∞(D). Then 1

θ C∗φ Mθ defines a bounded linear
operator on H2(D), and hence, Qθ is invariant under Cφ . This proves that (3) ⇒
(2) ⇒ (1) and completes the proof of the theorem. ∎

Now we consider model spaces that are invariant under composition operators
induced by linear fractional transformations. However, we will be restricted to inner
functions that vanish at the origin. In fact, our main tool is the following adjoint
formula [23, Equation (3.6)], which concerns functions vanishing at the origin:
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Lemma 4.4 Let φ(z) = az+b
cz+d be a nonconstant holomorphic self-map of D, where

ad − bc = 1. If σ(z) = āz−c̄
−b̄z+d̄ , then

C∗φ f (z) = zσ ′(z) f (σ(z))
σ(z) ( f ∈ H2(D), f (0) = 0).

As pointed our earlier, if θ is an inner function, then the constant function 1 ∈ Qθ if
and only if θ(0) = 0. In the following, under the assumption that the inner functions
vanish at the origin, we present a classification of model spaces that are invariant
under composition operators induced by linear fractional transformations. Recall that
H(D) is either H2(D) or H∞(D).

Theorem 4.5 Let θ be an inner function, θ(0) = 0, and let φ(z) = az+b
cz+d be a noncon-

stant holomorphic self-map of D, where ad − bc = 1. Suppose σ(z) = āz−c̄
−b̄z+d̄ and

ψ =
θ
z ○ σ

θ
z

.

The following are equivalent:
(1) Qθ ∈ LatCφ .
(2) ψ ∈ H(D).
(3) θ

z H2(D) ∈ LatCσ .

Proof Since θ(0) = 0, we see that θ
z is an inner function. Suppose that Qθ is

invariant under Cφ . Lemma 4.1 implies that

X f = 1
θ

C∗φ(θ f ) ( f ∈ H2(D)),

defines a bounded linear operator X on H2(D) and C∗φ Mθ = Mθ X. In view of Lemma
4.4, it then follows that

X f = σ ′ z(θ ○ σ)
θσ

( f ○ σ) = σ ′ψ( f ○ σ),

where σ ′ is the derivative of σ . In particular

X1 = σ ′ψ ∈ H2(D),

from which, using the fact that 1
σ ′ ∈ H∞(D), it follows that ψ ∈ H2(D). And finally,

by Theorem 2.1, θ
z

H2(D) is invariant under Cσ , which proves (1) ⇒ (2) ⇒ (3).
Now if (3) is true, then Theorem 2.1 implies that (2) is true, that is, ψ ∈ H∞(D). In

particular, since σ ′ ∈ H∞(D), X (defined as above) defines a bounded linear operator
on H2(D) and satisfy the equality C∗φ Mθ = Mθ X. By Lemma 4.1,Qθ is invariant under
Cφ , which complete the proof of (2) ⇒ (1). ∎

We do not know, in general, how to classify an inner function θ for which Qθ is
invariant under a composition operator induced by a linear fractional transformation.
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5 Applications

The main goal of this section is to discuss some direct applications of our main results
to some elementary invariant subspaces of composition operators.

First, we prove that the identity map is the only self-map of D, which leaves all
model spaces invariant.

Theorem 5.1 Let φ be a holomorphic self-map of D. Then θH2(D) is invariant under
Cφ for all inner function θ if and only if φ is the identity map.

Proof If φ(z) = z, z ∈ D, then Cφ = IH2(D) (the identity operator). In particular,
θH2(D) is invariant under Cφ . Conversely, suppose θH2(D) ∈ LatCφ for all inner
function θ. Fix α ∈ D. Then α is the only zero of the Blaschke factor (which is
also an inner function) bα(z) = α−z

1−ᾱz , z ∈ D. Since bα H2(D) ∈ LatCφ , by assumption,
Theorem 2.1 implies that

bα ○ φ
bα

∈ S(D).

This forces bα(φ(α)) = 0, and hence φ(α) = α. Since α ∈ D is arbitrary, we have that
φ(z) = z, z ∈ D, which completes the proof. ∎

Before examining the other extreme property of the invariant subspaces of com-
position operators, we need to recall the following fact which concerns fixed points of
holomorphic self-maps [2, Corollary 3.4]: Let φ be a holomorphic self-map of D and
let w ∈ D be the fixed point of φ. If θ is an inner function and θ(w) ≠ 0, then θH2(D)
is invariant under Cφ if and only if θ ○ φ = θ.

Recall that a point w ∈ D is said to be a fixed point of a holomorphic self-map φ of
D if φ(w) = w .

Theorem 5.2 Let θ be an inner function. Then θH2(D) ∈ LatCφ for all self-maps φ of
D if and only if θ is an unimodular constant.

Proof If θ is an unimodular constant, then θ○φ
θ is also unimodular constant.

Theorem 2.1 then implies that θH2(D) ∈ LatCφ .
Conversely, assume that θH2(D) ∈ LatCφ for all holomorphic self-map φ of D.

First, we claim that θ has no zeros inD. Suppose toward a contradiction that θ(α) = 0
for some α ∈ D. Since θ is an inner function, there exists β ∈ D such that θ(β) ≠ 0. Set

φ = bβ ○ bα .

Note that φ is an inner function and φ(α) = β. Therefore, θ○φ
θ ∉ H∞(D), and hence,

by Theorem 2.1, θH2(D) is not invariant under Cφ . This contradiction completes
the proof of the claim that θ(z) ≠ 0 for all z ∈ D. If we consider a constant function
φ ≡ c, then in view of the discussion preceding the statement of this theorem,
Cφ(θH2(D)) ⊆ θH2(D) implies that

θ = θ ○ φ ≡ θ(c).
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Since θ is an inner function, θ(c) must be unimodular, and hence θ is an unimodular
constant. This completes the proof of the theorem. ∎

Now we turn to special model invariant subspaces of composition operators. In
the following, we will let θ and φ denote inner function and holomorphic self-map of
D, respectively.

Theorem 5.3 The following holds true:
(1) Qθ ∈ LatCφ for all inner function θ if and only if φ is the identity map.
(2) Qθ ∈ LatCφ for all self-map φ if and only if θ(z) = αz or θ ≡ α, where α is an

unimodular constant.

Proof If Qθ ∈ LatCφ for all inner function θ, then, in particular, Qbα ,Qbβ ∈ LatCφ ,
where α ≠ β are in D ∖ {0}. By Theorem 3.1, there exist nonzero scalars a and b such
that

φ(z) = 1 − a
ᾱ

+ az = 1 − b
β̄

+ bz (z ∈ D).

Thus, comparing both sides of the above and noting the fact that α ≠ β, we have a =
b = 1, which implies that φ(z) = z, z ∈ D. The converse part of (1) is trivial.

Now we turn to prove (2). If θ(z) = αz for some unimodular α, thenQθ = k(⋅, 0)C
is the space of all constant functions, which is clearly invariant under all composition
operators (cf. Remark 3.2). In the case of θ ≡ α, we have Qθ = {0}, which is also
invariant under all composition operators.

For the converse part, we first note that if Qθ = {0}, then θH2(D) = H2(D), and
hence θ is an unimodular constant. So suppose, Qθ ≠ {0}. Then there exist α ∈ D and
f ∈ Qθ such that f (α) ≠ 0. By taking φ ≡ α, we see that 1 ∈ Qθ , which implies

θ(0) = ⟨θ , 1⟩ = 0.

Then ω = θ
z is an inner function. By Theorem 4.5, ωH2(D) invariant under Cσ for

every linear fractional self-map σ of D.
Now we claim that ω has no zeros in D. Suppose toward a contradiction that

ω(α) = 0 for some α ∈ D. Since ω is an inner function, ω(β) ≠ 0 for some β ∈ D. Set
σ = bβ ○ bα so that σ(α) = β. Then

ω ○ σ
ω

∉ H∞(D),

and hence ωH2(D) is not invariant under Cσ . This is a contradiction, and hence
ω(z) ≠ 0, z ∈ D.

Finally, consider a nonautomorphic and holomorphic self-map σ of D with a fixed
point in D (for instance, consider σ(z) = 1

2 z). As ωH2(D) invariant under Cσ , by [2,
Corollary 3.5], it follows that ω is an unimodular constant. This implies that θ(z) = αz
for some unimodular constant α. ∎
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We conclude this section by proving a reducing property of composition operators.
Here we will be restricted to finite-dimensional model spaces, as in Theorem 3.1.
Before we begin this discussion, we recall the following result [2, Corollary 2.4]:

Theorem 5.4 Let B be a Blaschke product and let φ be a holomorphic self-map of D.
Then BH2(D) ∈ LatCφ if and only if multiplicity w B ≤ multiplicity w B ○ φ for all w ∈ D
such that B(w) = 0.

We are now ready for the reducing subspace property of elementary composition
operators.

Theorem 5.5 Let φ be a holomorphic self-map of D, α ∈ D, n ≥ 1, and suppose θ(z) =
( z−α

1−ᾱz )n . Then Qθ reduces Cφ if and only if there exist a scalar c, ∣c∣ ≤ 1, and ψ ∈ S(D)
such that

φ(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zψ, if α = 0 and n = 1
cz, if α = 0 and n ≥ 2
z, if α ≠ 0.

Proof Suppose α = 0. If n = 1, then the one-dimensional subspace (zH2(D))� =
Qz is invariant under every composition operator (see Remark 3.2), where zH2(D) is
invariant under Cφ if and only if φ = zψ for some ψ ∈ S(D) (see Theorem 5.4). If n ≥ 2,
then, by Theorem 3.1, Qθ is invariant under Cφ if and only if φ is an affine map. By
Theorem 5.4, θH2(D) is invariant under Cφ if and only if φ = zψ for some ψ ∈ S(D).
In particular, φ(0) = 0, and hence θH2(D) reduces Cφ if and only if φ(z) = cz for
some ∣c∣ ≤ 1.

Finally, assume that α ≠ 0. If φ is the identity map, then Cφ = IH2(D), and hence Qθ
reduces Cφ . Next, we assume that Qθ reduces Cφ . By Theorem 3.1, there exists a scalar
c(≠ 0) such that φ(z) = 1−c

ᾱ + cz. Again, by Theorem 5.4, (θ ○ φ)(α) = 0, and hence
φ(α) = α. Now

1 − c
ᾱ

+ cα = α

is equivalent to

(1 − c)(1 − ∣α∣2) = 0.

As ∣α∣ < 1, we must have c = 1, that is, φ(z) = z, z ∈ D, which completes the proof. ∎

Finally, we would like to point out that the present theory of model spaces and
composition operators complement the recent paper [2]. The classification of Beurling
type invariant subspaces of composition operators ([2, Theorem 2.3] or Theorem 2.1)
also plays an important role in our consideration, and evidently, some of our results
are in duality (cf. Theorem 4.3 and 4.5). On the other hand, model spaces are fairly
complex objects in operator theory and function theory, which also represent a large
class of bounded linear operators. The present analysis clearly shows a challenging
role of model spaces to the theory of composition operators (and vice versa).
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