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Abstract
The paper addresses the six-degree-of-freedom coupled control problem for spacecraft formation flying subject
to actuator saturation and input quantisation whilst considering limited communication resources. Firstly, a novel
event-triggered distributed observer without continuous communications is presented to recover the information
of the virtual leader. Remarkably, by embedding a hyperbolic tangent function-based nonlinear term into the
triggering condition, the event-based observer realises a more reasonable trigger threshold. Subsequently, an adding-
a-power-integrator-based fixed-time control algorithm is proposed for the follower spacecraft. Further, the control
scheme ingeniously compensates for the actuator saturation and the input quantisation problems without embed-
ding auxiliary systems. Finally, numerical simulations are carried out to highlight the advantages of the theoretical
results.

Nomenclature
xi ith follower spacecraft’s position states vector
vi ith follower spacecraft’s velocity states vector
ui ith follower spacecraft’s control inputs vector
δ, umin quantiser parameters
χ s decomposition matrix of the actuator saturation
χ q decomposition matrix of the input quantisation
χmin lower bound for elements in the decomposition matrix χs

x0 the virtual leader’s position states vector
v0 the virtual leader’s velocity states vector
v̂i,0 the ith follower spacecraft’s estimation of v0

ṽi,0 estimation error for the ith follower spacecraft, ṽi,0 = v̂i,0 − v0

H the communication topology matrix of the formation
ζ i the auxiliary variable related to the observational errors
α, β fixed-time parameters
o1, o2, o3, o4 observer gains
ko1, ko2, ko3, ι parameters of the event-trigger mechanism
B3 the upper bound of ‖ẍ0‖
�i,0 the ith follower spacecraft’s expected deviation formation vector
exi tracking errors for ith follower spacecraft, exi = xi − �i,0 − x0

evi ith follower spacecraft’s tracking errors derivative, evi = vi − �̇i,0 − v0

σ i, γ i, γ di, κ i the auxiliary variable related to the tracking errors
k1, k2, k3, k4, k5 controller gains
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Abbreviations
SFF spacecraft formation flying
ETM event-trigger mechanism
ASKAE attitude station keeping absolute error
PSKAE position station keeping absolute error

1.0 Introduction
The spacecraft formation flying (SFF) system has drawn extensive attention owing to its costs, robustness
and flexibility [1] in recent years, which can overcome the limitations of using a single spacecraft for
mission goal accomplishment. Numerous space missions by deploying SFF system such as monitoring
[2], remote sensing [3], and on-orbit services [4] have been successfully launched.

For the SFF tracking control problem, the convergence rate is an important performance indicator
reflecting the proposed algorithm’s effectiveness. Most of the existing studies [5, 6] achieve asymptotic
stability results only, of which convergence time tends to infinity. In contrast to the asymptotic control
algorithm, the finite-time control algorithm can provide faster convergence rate, higher precision, and
better robustness, with the adding a power integrator technique [7] the terminal sliding mode theorem
[8], and the homogeneity theorem [9] as the primary design methods. However, the prior estimation of
the finite-time control algorithm’s convergence time is decided by the initial states. As an extension of
finite-time method, the fixed-time control algorithm was introduced in [10], where the settling time is
uniformly bounded with regard to the initial states. One of the basic synchronisation algorithms for the
formation keeping and reconstruction problem is leader-follower formation, where the leader runs in a
predetermined trajectory while the followers need coordinate. Following the above frameworks, Ren first
proposed an SFF control algorithm [11] considering the two cases of whether all follower spacecraft can
access the reference trajectory. In light of this, Gao proposed a fixed-time coordinated algorithm for the
SFF system [12]. However, most scholars concentrated their research on the attitude coordinated control
or modeled the translational and rotational motions separately, ignoring the mutual coupling between
the orbit and attitude.

In practice, continuous interactive communication of formation spacecraft is challenging due to the
limitation of onboard resources, especially communication channel bandwidth. To this end, the seminal
work [13, 14] reported an event-triggered method premised on asynchronous, aperiodic communication.
Thereafter, the event-based control has drawn considerable attentions [15–20] (just to name a few). In
particular, Nowzari provides a comprehensive account of the motivation behind applying event-triggered
strategies in multi-agent systems [15]. Further, continuous communication can be avoided both in the
fixed-time controller algorithm update and in the triggering condition monitoring in [17]. Despite this,
it is worth noting that the lower limit of the trigger threshold for most existing works has a stable value,
whether in the transient or steady state of the system. In other words, the lower limit of the trigger
threshold does not increase when the error is large; on the contrary, the lower limit does not decrease
when the error is small, which results in a waste of communication resources. Bearing this in mind, by
utilising the characteristics of the hyperbolic tangent function, the change of the lower limit of the trigger
threshold with the error is discussed in [20]. Nevertheless, it is noticed that the event-trigger mechanism
(ETM) in [20] depends on continuous communications. As such, how to design an ETM for multiple
spacecraft systems, which has a more flexible trigger threshold lower limit and eliminates continuous
communication, still remains open and awaits a breakthrough.

Another practical problem for spacecraft is that the onboard actuators are susceptible to suffering
from quantisation errors and magnitude constraints. Data transmission between the attitude control mod-
ule and actuator module would introduce input quantisation errors, which may lead to the degradation
of the control performance. To alleviate this concern, control algorithms that take account of input quan-
tisation were investigated for spacecraft systems. In [21] and [22], the functional relationship between
the control input and the quantised input is established by the non-linear decomposition of the quantised
signal. Suffering from the piece-wise quantised input, most relevant literatures have used the above
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or similar methods to overcome the technique difficulty. Additionally, actuators have saturation con-
straints due to physical structure and energy limitations, which will severely limit the performance of the
closed-loop system if the actuator is always saturated. Various methods have been designed for the input
saturation problem, such as adding a neural network-based compensator [23], introducing an auxiliary
system [12], constructing a command prefilter [24], and so on. However, the above methods of dealing
with actuator saturation dramatically increased the complexity of the control algorithm. Although schol-
ars have extensively studied the input quantisation and actuator saturation problem, nearly no research
has addressed the fixed-time anti-saturation and anti-quantisation control problem for 6-DOF SFF.

Statistically, most SFF missions are carried out by small spacecraft operating in low Earth orbit
(LEO) with a mass of less than 500kg [25]. The light mass of the spacecraft means limited onboard
resources, such as communication bandwidth, actuator capability, and energy. Given these onboard
resource constraints, it is worth investigating the design of a distributed controller to meet the demands
of increasingly complicated SFF missions for the spacecraft’s rapid and precise manoeuver capabilities.
In this paper, we consider the onboard resource constraints for the problem of limited communication
resources, actuator saturation, and input quantisation. Here, limited communication resources implies
that only a portion of the spacecraft can access the virtual leader. Besides, for SFF operating in LEO,
simultaneous attitude and constellation control are essential for timely identification and counteracting
time-critical orbit spacing violations. In other words, designing a six-degree-of-freedom controller for
the SFF mission that considers the attitude-orbit coupling is necessary. Bearing the discussion above in
mind, we address the attitude and position coupled tracking fixed-time control problem for SFF systems
considering limited communication resources, actuator saturation and input quantisation. A distributed
event-triggered observer is first proposed to recover the virtual leader’s velocity states. More impor-
tantly, the event-based observer realises a more reasonable trigger threshold and less communication
resource usage by embedding a hyperbolic tangent function-based nonlinear term into the triggering
condition. Subsequently, a fixed-time distributed control algorithm is developed for the SFF system,
handling the actuator saturation and the input quantisation problems ingeniously without embedding
auxiliary systems. The main contributions of this paper are summarised as follows.

(1) A novel distributed event-based fixed-time observer is developed to estimate the states of the
virtual leader for SFF system. Compared with the traditional observer presented in [12], the
observer proposed in this paper alleviate the chattering caused by symbolic functions. Besides,
an additional nonlinear term is adopted by the observer to guarantee the asymptotic stability of
the whole closed-loop system.

(2) Compared with the existing ETM in [17], the ETM of the observer proposed in this paper realises
a more reasonable trigger threshold and a lower bound of trigger threshold with characteristics
of the exponential function and the hyperbolic tangent function in the transient and steady state.

(3) A distributed fixed-time attitude control scheme is established in the presence of the actuator
saturation and the input quantisation problems by utilising the adding a power integrator tech-
nique. In contrast to the existing methods in [26], the proposed control scheme compensates the
actuator saturation and the input quantisation problems ingeniously without embedding auxiliary
systems.

The remainder of this paper is as follows. Section II introduces some preliminaries. The observer-based
distributed control scheme is provided in Section III. Section IV offers numerical simulations. Finally,
Section V gives a conclusion.

2.0 Preliminaries
2.1 Notations and lemmas
Define ‖·‖ as the induced norm of a matrix or the Euclidean norm of a vector. In denotes
the n × n identity matrix. ⊗ is defined as the Kronecker product. λmin(·) and λmax(·) represent
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the minimum and maximum eigenvalues of a symmetric matrix. The basic operations of the
dual number, quaternion and dual quaternion are defined in the appendix. Given a vector x =
[x1, x2, . . . , xn]T ∈R

n and α > 0, we denote sigα(x) = [
sign(x1) |x1|α, sign(x2) |x2|α, . . . , sign(xn) |xn|α

]T

and |x| = [|x1| , |x2| , . . . , |xn|]T, where sign( · ) is the signum function. diag(x1, x2, . . . , xn) denotes a
block-diagonal matrix. max(x1, x2, . . . , xn) and min(x1, x2, . . . , xn) denote the maximum and minimum
value in (x1, x2, . . . , xn), respectively.

In order to get the main results of this paper, the following lemmas are introduced.

Lemma 1. [27] If the time derivative of a Lyapunov function V satisfies V̇ ≤ −κ1Vρ1 − κ2Vρ2 where
κ1 > 0, κ2 > 0, 0 < ρ1 < 1, and ρ2 > 1 are some constants, the value of V converges to zero in fixed-time.
The settling time satisfies T ≤ 1/ [κ1(1 − ρ1)] + 1/ [κ2(ρ2 − 1)].

Lemma 2. [28] For any x ∈R, y ∈R, the inequality |sigα(x) − sigα(y)| ≤ 21−α|x − y|α is tenable if α ∈
(0, 1] holds.

Lemma 3. [28] For any x ∈R, y ∈R, the following inequality is tenable when α � 1. |x − y|α ≤
2α−1 |sigα(x) − sigα(y)|
Lemma 4. [29] For any positive constant a1, a2, · · · , an, the following inequality is tenable if p ∈ (0, 2)

holds.
(
a2

1 + a2
2 + · · · + a2

n

)p ≤ (
ap

1 + ap
2 + · · · + ap

n

)2

Lemma 5. [30] For any x ∈R, y ∈R, c > 0, d > 0, γ > 0, the inequality |x|c|y|d ≤ cγ |x|c+d

c+d
+ d|y|c+d

γ c/d (c+d)
is

tenable.

Lemma 6. [12] For any xi ∈R, i = 1, 2, . . . , n, the following inequality is tenable if v ∈ (0, 1].(∑n
i=1 |xi|

)v ≤∑n
i=1 |xi|v ≤ n1−v

(∑n
i=1 |xi|

)v.

Lemma 7. [9] For any xi ∈R, i = 1, 2, . . . , n, the following inequality is tenable if v > 1.
∑n

i=1 |xi|v ≤(∑n
i=1 |xi|

)v ≤ nv−1
∑n

i=1 |xi|v.

Lemma 8. [31] For matrices X, Y with equal dimensions and positive constant η, the following
inequality satisfies: 2XTY ≤ 1

η
XTX + ηYTY.

2.2 Mathematical model
The coordinate system used in this paper is shown in Fig. 1, which defines the Earth-centred inertial
frame OEXIYIZI and the jth spacecraft body frame OBjXBjYBjZBj. OE is the centre of the Earth and OBj is
the centre of mass of the jth deputy.

Based on dual quaternion, the states of ith spacecraft can be described as q̂i and ω̂i, where q̂i =
qi + ε 1

2
qi ◦ ri, ω̂i = ωi + ε(ṙi + ωi × ri), ε is the dual unit that satisfies ε2 = 0, ε 	= 0. qi is the quaternion

describing the rotation of the ith spacecraft body frame relative to the inertial frame. ri =
[
0, (
ri)

T]T ∈
R

4, 
ri ∈R
3 denotes the position of the ith spacecraft expressed in the spacecraft body frame. ωi =[

0, (
ωi)
T]T ∈R

4, 
ωi ∈R
3 is the angular velocity of the ith spacecraft body frame relative to the inertial

frame expressed in the body frame. The dynamic equations of six-DOF motion are [32]

˙̂qi =
1

2
q̂i ◦ ω̂i (1)

˙̂ωi = M−1
i ∗

{
F̂ig + sat

[
Q
(
F̂ic

)]
+ F̂ip − ω̂i ×

(
M i ∗ ω̂i

)}
(2)

where F̂ig = f ig + ετ ig = −μmiri/‖ri‖3 + ε3μri ×
(
J iri

)
/‖ri‖5 denotes the gravity dual force, F̂ic =

f ic + ετ ic denotes the control dual force that is yet to be designed, sat
[
Q
(
F̂ic

)]
denotes the control

dual force with actuator saturation and input quantisation, F̂ip = f ip + ετ ip denotes the disturbing dual
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Figure 1. Coordinate system.

force. μ is the gravitational parameter of Earth. Define that mi and J i ∈R
3×3 are the mass and inertia

matrix of the ith deputy, respectively. The matrix M i is

M i =
[

04×4 mi

J i 04×4

]
∈R

8×8 (3)

where

J̄ i =
[

1 01×3

03×1 J i

]
∈R

4×4, mi =
[

1 01×3

03×1 miI3×3

]
∈R

4×4

Remark 1. As an extension of quaternion, the dual quaternion is one of the most commonly used
methods for modeling the six-degrees-of-freedom coupled spacecraft. In contrast with other six-degree-
of-freedom modeling methods, such as the Vectrix approach [33] and the Cayley description [34], the
dual quaternion approach is more explicit in physical meaning and compact in its mathematical descrip-
tion. In particular, the introduction of dual numbers allows us to describe the six-degrees-of-freedom
coupled dynamics with a unified equation, implying that we do not have to design separate controllers
and Lyapunov functions for the rotational and translational parts of spacecraft.

Equation (1) and Equation (2) can be rewritten as{
ẋi = vi

v̇i = f i(xi, vi) + gi(xi) sat
[
Q(ui)

]+ di

(4)

where xi = q̂i =
[
q̂T

ir q̂T
id

]T
, vi = ˙̂qi =

[
˙̂qir

T ˙̂qid

T
]T

, f i(xi, vi) = 
̇(xi) 
−1(xi) vi − 
(xi) M−1
i Z(xi, vi)


(xi) M−1
i G, gi(xi) = 
(xi) M−1

i , ui =
[
f ic

T
τ ic

T
]T, di = gi(xi)

[
f ip

T
τ ip

T
]T, Z(xi, vi) =



[

−1(xi) vi

]
M i


−1(xi) vi − 

{[

M i
−1(xi) vi

]∗} [

−1(xi) vi

]∗, G = [
f ig

T
τ ig

T
]T, the transformation

matrix 
(xi) is defined in Equation (63). gi(xi) is invertible because 
(xi) and M i are invertible.
The quantiser in Equation (4) is given as Q(ui) = [Q(ui1) , Q(ui2) , . . . , Q(ui8)]

T. In our work, Q(u)

denotes the hysteretic quantiser, as shown in Equation (5). The subscript i and j are omitted for brevity.
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Q(u(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

upsign(u),
up

1 + δ
< |u| ≤ up, u̇ < 0, or

ui < |u| ≤ up

1 − δ
, u̇ > 0

up(1 + δ)sign(u), ui < |u| ≤ up

1 − δ
, u̇ < 0, or

ui

1 − δ
< |u| ≤ ui(1 + δ)

(1 − δ)
, u̇ > 0

0, 0 ≤ |u| < umin

1 + δ
, u̇ < 0, or

umin

1 + δ
≤ |u| ≤ umin, u̇ > 0,

Q(u (t−)) u̇ = 0

(5)

where up = ρ1−pumin(p = 1, 2, . . . ), δ = (1 − ρ)/(1 + ρ), umin > 0, 0 < ρ < 1, and Q(u(t)) ∈{
0, ±up, ±up(1 + δ), p = 1, 2, . . .

}
. Besides, umin > 0 denotes the range of the dead-zone for Q(u(t)),

and ρ > 0 represents a measure of quantisation density. We decompose the quantiser Equation (5) into
Q
(
uij

)= χqij

(
uij

)
uij + dqij, j = 1, 2, · · · , 8, where

χqij

(
uij

)=

⎧⎪⎨⎪⎩
Q
(
uij

)
uij

, Q
(
uij

) 	= 0,

1, Q
(
uij

)= 0,

dqij

(
uij

)=
{

0, q
(
uij

) 	= 0,

−uij, Q
(
uij

)= 0.

It can be easily proven that the control coefficient χqij and the disturbance-like term dqij satisfy 1 − δ ≤
χqij ≤ 1 + δ,

∣∣dqij

∣∣≤ umin. Thus, we can rewritten the quantiser as

Q(ui) = χ q(ui) ui + dq (6)

where χ q(ui) = diag
[
χqi1(ui1), χqi2(ui2), · · · , χqi8(ui8)

]T, dq(ui) = diag
[
dqi1(ui1), dqi2(ui2) , · · · , dqi8

(ui8)
]T.

Define [M, M] as the magnitude constraint of the actuator. The saturation nonlinearity in Equation (4)
is given as

sat(x) = χ s(x) x = [sat(x1), sat(x2), · · · , sat(xk)]
T (7)

where χ s(x) = diag[χs1(x1), χs2(x2), · · · , χsk(xk)]
T with

χsk(x) =

⎧⎪⎪⎨⎪⎪⎩
M/x, if x ≥ Mu

1, if Mu ≤ x ≤ Mu

Mu/x, if x ≤ Mu

such that 0 < χsk < 1. We can rewritten the term sat
[
Q(ui)

]
in Equation (4) as

sat
[
Q(ui)

]= χ(ui) ui + dsq (8)

where χ(ui) = χ s(ui) χ q(ui) , dsq = χ sdq.

2.3 Graph theory
We use an undirected graph G = {υ, ς , A} to describe the communication topology of a formation
with n spacecrafts, where the node set υ = {υ1, υ2, · · · , υn}, the edge set ς ⊆ υ × υ, and the adjacency
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matrix A = [
aij

] ∈R
n×n(i = 1, 2, · · · , n; j = 1, 2, · · · , n). If node υi can directly obtain the information

of node υj, there is an edge in the graph from υj points to υi, denoted as (υi, υj) ∈ ς , and υj is the
child node of υi. For an undirected graph, if an edge connects υi and υj, then the two are parent-child
nodes, that is, if (υi, υj) ∈ ς , then (υj, υi) ∈ ς . In the adjacency matrix A, aij > 0 if (υi, υj) ∈ ς ; oth-
erwise, aij = 0. Generally, it is assumed that aii = 0. The Laplace matrix L of graph G is defined as

L = diag

{
n∑

j=1

a1j, · · · ,
n∑

j=1

anj

}
− A. For undirected graphs, the Laplace matrix L is symmetric.

Additionally, denote the virtual leader as spacecraft 0, of which states are given by x0 and v0. A leader-
following graph G contains the virtual leader and the original graph G of n follower spacecraft. bi = 1
if the ith follower spacecraft can access the virtual leader spacecraft directly, and bi = 0, otherwise. The
graph G is connected if there exists a path in G from the leader node υ0 to every node υi. If G is connected,
the matrix L + B associated with G is symmetric and positive definite [35], where B = diag(b1, · · · , b2).

2.4 Problem statement
This paper committed to developing a distributed control scheme such that all follower spacecraft
can track the virtual leader with the desired formation shape considering limited communication, i.e.,
lim
t→T

∥∥xi − �i,0 − x0

∥∥≤ o1, lim
t→T

∥∥vi − �̇i,0 − v0

∥∥≤ o2, where �i,0 is the ith follower spacecraft’s expected
deviation formation vector relative to the virtual leader, and o1, o2 are compact sets around zero.

Remark 2. We consider the desired position deviation formation vector �i,0 to be an internal parameter
of the ith follower spacecraft, which can be obtained without external communication.

In order to get the main results of this paper, the following assumptions are adopted.

Assumption 1. The desired states x0 and its first two derivatives are uniformly bounded such that ‖x0‖ ≤
B1, ‖ẋ0‖ ≤ B2, ‖ẍ0‖ ≤ B3, where B1, B2, B3 are positive constants.

Assumption 2. The disturbance di is bounded and satisfies ‖di‖ ≤ dmax, where dmax is a positive
constant.

Assumption 3. [36] For a constant χmin, we consider the control input restricted in a region such that
χmin ≤ χsk < 1.

Assumption 4. [37, 38] For the practical SFF system described by Equation (4) with input saturation,
gi(xi) should be bounded and satisfies ‖ gi(xi) ‖≤ gmax.

3.0 Distributed control scheme design
The procedure for designing the distributed control scheme is presented in this section. Firstly, a dis-
tributed event-triggered observer is designed with continuous communications, based on which we
proposed an event-based distributed observer without continuous communications. Further, a distributed
fixed-time controller is proposed for the follower spacecraft in the presence of the actuator saturation
and the input quantisation problems. The block diagram of the distributed control algorithm is given in
Fig. 2.

Remark 3. For the following reasons, we only add ETM in the observer, even though both the observer
and the controller occupy communication resources. Firstly, the communication resources saved by ETM
come at the cost of system performance; secondly, since the observer converges much faster than the
controller, embedding the event-triggered mechanism in the observer has minimal impact on the system
performance. If ETM is also embedded in the controller, it will save communication resources, but the
system performance will be significantly reduced.

https://doi.org/10.1017/aer.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.23


The Aeronautical Journal 1975

Figure 2. Schematic of the distributed control algorithm.

3.1 Event-triggered fixed-time observer design
This subsection develops the event-triggered fixed-time observer with continuous and without continu-
ous communications to reconstruct the virtual leader spacecraft’s information.

Define a auxiliary variable as ζ i =
∑n

j=1 aij

(
v̂i,0 − v̂j,0

)+ bi

(
v̂i,0 − v0

)
where v̂i,0 denotes the estimation

of v0 of the ith follower spacecraft, ṽi = v̂i,0 − v0 is the estimation error, ṽ = [̃
vT

1 , ṽT
2 , . . . , ṽT

n

]T, ζ = Hṽ =[
ζ 1

T, ζ 2
T, . . . , ζ n

T
]T.

3.1.1 Event-triggered fixed-time observer with continuous communications
The event-triggered fixed-time observer with continuous communications for the ith follower spacecraft
is described as:

˙̂vi,0 = ˙̂vi,0(tk) = −o1sig
1
α

[
ζ i(tk)

]− o2sigβ
[
ζ i(tk)

]
−o3sigα

[
ζ i(tk)

]− o4obsat
[
ζ i(tk)

]
(9)

tk+1 = inf
{
t > tk : hij > 0, ∀j, j = 1, · · · , 8

}
(10)

where

hij(t) =∣∣Eij(t)
∣∣− ι

∣∣vuij

∣∣− ko1

√
e1+ko2 tanh(ko3|ζij(t)|) (11)

With 0 < α < 1, β > 1, ι ∈ (0, 1), o1, o2, o3, o4, ko1, ko2, ko3 are positive observer parameters, which
will be chosen later. Ei(t) = [

Ei1, · · · , Eij, · · ·
]T = o1sig

1
α

[
ζ i(tk)

]+ o2sigβ
[
ζ i(tk)

]+ o3sigα
[
ζ i(tk)

]+
o4obsat

[
ζ i(tk)

]− o1sig
1
α

[
ζ i(t)

]− o2sigβ
[
ζ i(t)

]− o3sigα
[
ζ i(t)

]− o4obsat
[
ζ i(t)

]= −˙̂vi,0(tk) − vui(t) wh-
ere vui(t) = o1sig

1
α

[
ζ i(t)

]+ o2sigβ
[
ζ i(t)

]+ o3sigα
[
ζ i(t)

]+ o4obsat
[
ζ i(t)

]
. obsat(x) = [obsat(x1), · · · ,

obsat(xn)]T where obsat(x) is designed as:

obsat(x) =
{

x/δo, |x| ≤ δo

sign(x), |x| > δo

(12)

Theorem 1. Consider the system Equation (4) with the designed observer Equation (9) and the event-
triggered updated rule Equation (10). Suppose Assumption 1 holds. v̂i will estimate v0 in fixed time T1

if the parameters satisfy (1 − ι)o4 > B3 + ko1

√
e1+ko2 . Meanwhile, there always exists a non-zero bound

time for any two triggers, which means tk+1 − tk > τ > 0, and τ is a positive constant.
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Proof. Consider the following Lyapunov function candidate:

Vζ = 1

2
ṽTHṽ (13)

where H = (L + B) ⊗ I8 describes the communication topology of the formation. The time derivative
of Equation (13) along with Equation (9) is given by

V̇ζ = ζ T ˙̃v(t) = ζ T
[ ˙̂v(t) − v̇n0

]
= −ζ T

[
E + o1sig

1
α (ζ ) + o2sigβ(ζ ) + o3sigα(ζ ) + o4obsatζ ) + v̇n0

]
≤ |ζ |T|E| − o1ζ

Tsig
1
α (ζ ) − o2ζ

Tsigβ(ζ )

−o3ζ
Tsigα(ζ ) − o4ζ

Tobsat(ζ ) − ζ Tv̇n0 (14)

where E = [E1, E2, · · · , En]T, vn0 = [v0, v0, · · · , v0]T ∈R
8n×1.

Considering the event-triggered update rule Equation (11) and Assumption 1, we can imply the
following relationship from Equation (14):

V̇ζ ≤ ζ |T|E| − o1ζ
Tsig

1
α (ζ ) − o2ζ

Tsigβ(ζ )

−o3ζ
Tsigα(ζ ) − o4ζ

Tobsat(ζ ) + B3

n∑
i=1

8∑
j=1

∣∣ζ ij

∣∣
≤ −o1(1 − ι)ζ Tsig

1
α (ζ ) − o2(1 − ι)ζ Tsigβ(ζ ) − o3(1 − ι)ζ Tsigα(ζ )

−o4(1 − ι)
n∑

i=1

8∑
j=1

ζijobsat
(
ζij

)+
(

B3 + ko1

√
e1+ko2

) n∑
i=1

8∑
j=1

∣∣ζij

∣∣
≤ −o1(1 − ι)(8n)

α−1
2α ‖ ζ‖1+ 1

α − o2(1 − ι)(8n)
1−β

2 ‖ ζ‖1+β − o3(1 − ι) ‖ ζ‖1+α

−o4(1 − ι)
n∑

i=1

8∑
j=1

ζijobsat
(
ζij

)+
(

B3 + ko1

√
e1+ko2

) n∑
i=1

8∑
j=1

∣∣ζij

∣∣ (15)

where −ζ Tsigα(ζ ) = −∑n
i=1

∑8
j=1

(
ζ 2

ij

) 1+α
2 ≤ − ‖ ζ‖1+α and −ζ Tsigβ(ζ ) = −∑n

i=1

∑8
j=1

(
ζ 2

ij

) 1+β
2 ≤

−(8n)
1−β

2 ‖ ζ‖1+β are derived by Lemma 6 and Lemma 7.
Noting that

∑n
i=1

∑8
j=1 ζijobsat

(
ζij

)= 1
δo

∑(
ζ̄ 2

ij

)+∑∣∣̄̄ζ ij

∣∣ where ζ̄ij =
{
ζij:

∣∣ζij

∣∣≤ δo

}
,¯̄ζij ={

ζij:
∣∣ζij

∣∣> δo

}
, k ∈ [0, 8n].

For Equation (15), one has

−o4(1 − ι)
n∑

i=1

8∑
j=1

ζijobsat
(
ζij

)+
(

B3 + ko1

√
e1+k02

) n∑
i=1

8∑
j=1

∣∣ζij

∣∣
≤ −o4(1 − ι)

[∑∣∣ζij

∣∣+ 1

δok

(∑∣∣ζij

∣∣)2
]

+
(

B3 + ko1

√
e1+k02

)∑∣∣ζij

∣∣+ (
B3 + ko1

√
e1+ko2

)∑∣∣ζij

∣∣
≤ −o4(1 − ι)

1

δok

(∑∣∣ζij

∣∣)2 +
(

B3 + ko1

√
e1+ko2

)∑∣∣ζij

∣∣
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= −o4(1 − ι)
∑∣∣ζij

∣∣+ (
B3 + ko1

√
e1+k02

)∑∣∣ζij

∣∣
−o4(1 − ι)

1

δok

(∑∣∣ζij

∣∣)2 + o4(1 − ι)
∑∣∣ζij

∣∣
≤ o4(1 − ι)δok

4
(16)

when k 	= 0, where the inequalities k
∑(

ζ̄ 2
ij

)
�

(∑ ∣∣ζ̄ij

∣∣)2 which are derived by Lemma 6 has been used.
It should be noticed that −o4(1 − ι)

∑n
i=1

∑8
j=1 ζijobsat

(
ζij

)+
(

B3 + ko1

√
e1+k02

)∑n
i=1

∑8
j=1

∣∣ζij

∣∣≤ 0

when k = 0. It seems that the discussion of whether k = 0 in Equation (16) is redundant from the
results, but the application of Lemma 6 introduces a singular term 1

k
. Therefore, the discussion above

is necessary. We can rewrite Equation (15) as

V̇ζ ≤ −o1(1 − ι)(8n)
α−1
2α ‖ ζ‖1+ 1

α − o2(1 − ι)(8n)
1−β

2 ‖ ζ‖1+β

−o3(1 − ι) ‖ ζ‖1+α + o4(1 − ι)δok

4
(17)

Noting that Vζ = 1
2
ṽTHṽ = 1

2
ζ TH−1ζ ≤ 1

2λmin(H)
‖ ζ‖2, Equation (17) becomes

V̇ζ ≤ −o2(1 − ι)(8n)
1−β

2 [2λmin(H)]
1+β

2 V
1+β

2
ζ

−o3(1 − ι)[2λmin(H)]
1+α

2 V
1+α

2
ζ + o4(1 − ι)δok

4
(18)

which implies that Vζ converges to a small neighbourhood of zero in fixed time T1 ≤ 1/
[
κ1

(
1 − 1+α

2

)]+
1/

[
κ2

(
1+β

2
− 1

)]
where κ1 = o3(1 − ι)[2λmin(H)]

1+α
2 , κ2 = o2(1 − ι)(8n)

1−β
2 [2λmin(H)]

1+β
2 . Thus, we con-

clude that the estimation error ṽi = v̂i − v0 converges to a small neighbourhood of zero in fixed
time.

For Ei(t) = o1sig
1
α

[
ζ i(tk)

]+ o2sigβ
[
ζ i(tk)

]+ o3sigα
[
ζ i(tk)

]+ o4sign
[
ζ i(tk)

]− o1sig
1
α

[
ζ i(t)

]−
o2sigβ

[
ζ i(t)

]− o3sigα
[
ζ i(t)

]− o4sign
[
ζ i(t)

]
, we have∣∣Ėij(t)

∣∣= ∣∣∣[o1sig
1
α

(
ζij

)+ o2sigβ
(
ζij

)+ o3sigα
(
ζij

)+ o4obsat
(
ζij

)] ′
∣∣∣

≤
∣∣∣∣o1

1

α
sig

1−α
α

(
ζij

)+ o2βsigβ−1
(
ζij

)+ o3αsigα−1
(
ζij

)+ 1

δo

∣∣∣∣ ∣∣ζ̇ij

∣∣ (19)

From Equation (18) we know that ζij is bounded, then we define the upper bound of∣∣∣o1
1
α
sig

1−α
α

(
ζij

)+ o2βsigβ−1
(
ζij

)+ o3αsigα−1
(
ζij

)+ 1
δo

∣∣∣ as η1. Equation (19) can be transformed into:∣∣Ėij(t)
∣∣≤ η1

∣∣ζ̇ij

∣∣≤ η1hmax

[ ˙̂vij(t) − v̇0ij(tk)
]

≤ η1hmax

∣∣η2ij(tk) + B3

∣∣ (20)

where hmax is the largest element in matrix H, η2ij(tk) = o1sig
1
α

[
ζij(tk)

]+ o2sigβ
[
ζij(tk)

]+
o3sigα

[
ζij(tk)

]+ o4sign
[
ζij(tk)

]
. Since Ėij(tk) = 0, it follows when t > tk:∣∣Eij(t)

∣∣≤ ∫ t

tk

η1hmax

∣∣η2ij(tk) + B3

∣∣ ds (21)

According to the triggering condition Equation (11), one has that the next event of state j of agent
i will not be triggered before hij(t) = 0 or equivalently

∣∣Eij(t)
∣∣= ιo2sigβ

(∣∣ζij(t)
∣∣)+ ιo3sigα

(∣∣ζij(t)
∣∣)+

ko1

√
e1+ko2 tanh(|ζij(t)|). From Equation (21), one has:
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∣∣Eij(tk+1)
∣∣= ιo2sigβ

(∣∣ζij(tk+1)
∣∣)+ ιo3sigα

(∣∣ζij(tk+1)
∣∣)

+ ko1

√
e1+ko2 tanh((ξij(tk+1)|)

≤
∫ tk+1

tk

η1hmax

∣∣η2ij(tk) + B3

∣∣ ds

≤
∫ tk+1

tk

η1hmax

∣∣η2ij max + B3

∣∣ ds (22)

where η2ij max is the upper bound of η2ij(tk). Equation (22) yields that tk+1 − tk � ko1

√
e/(

η1hmax

∣∣η2ij max + B3

∣∣), which is shown that Zeno-free is guaranteed.

3.1.2 Event-triggered fixed-time observer without continuous communications
This subsection proposes the event-triggered fixed-time observer without continuous communications
based on subsection 3.1.1.

For the ith follower spacecraft, ˙̂vi is the same as Equation (9). The triggering condition is
described as:

tk+1 = inf
{
t > tk : gij > 0, ∀j, j = 1, · · · , 8

}
(23)

where

gij(t) =
∫ t

tk

η1hmax

∣∣η2ij(tk) + B3

∣∣ ds

− ι

1 + ι

∣∣∣∣−˙̂vij(tk) + ko1

ι

√
e1+ko2 tanh(ko3|ξij(tk)|)

∣∣∣∣ (24)

Theorem 2. Consider the system Equation (4) with the designed observer Equation (9) and the event-
triggered updated rule Equation (24). Suppose Assumption 1 holds. v̂i will estimate v0 in fixed time T1

if the parameters satisfy (1 − ι)o4 > B3 + ko1

√
e1+ko2 .. Meanwhile, there always exists a non-zero bound

time for any two triggers, which means tk+1 − tk > τ > 0, and τ is a positive constant.

Proof. According to Equation (21), we can obtain
∣∣Eij(t)

∣∣≤ ∫ t

tk
η1hmax

∣∣η2ij(tk) + B3

∣∣ ds, t ∈ [tk, tk+1).
Further, the triggering function Equation (24) enforces∣∣Eij(t)

∣∣≤ ι

1 + ι

∣∣∣∣−˙̂vij(tk) + ko1

ι

√
e1+ko2 tanh(|ζij(tk)|)

∣∣∣∣ (25)

Noting that Eij = −˙̂vij(tk) − vuij, Equation (25) can be transformed into∣∣Eij(t)
∣∣+ ι

∣∣∣ ˙̂vij(tk) + vui

∣∣∣≤ ι

∣∣∣ ˙̂vij(tk)

∣∣∣+ ko1

√
e1+ko2 tanh(|ζij(tk)|) (26)

which is is a sufficient condition for∣∣Eij(t)
∣∣≤ ι

∣∣vuij

∣∣+ ko1

√
e1+ko2 tanh(|ζij(t)|) (27)

Equation (27) is the same as the event-triggered updated rule Equation (11). Hence, similar to the
proof of Theorem 1, the estimation error ṽi = v̂i − v0 converges to a small neighbourhood of zero in
fixed time T1 ≤ 1/

[
κ1

(
1 − 1+α

2

)]+ 1/
[
κ2

(
1+β

2
− 1

)]
, and Zeno-free is guaranteed.

Remark 4. Compared with the distributed fixed-time observer in [12], an additional term sig
1
α

[
ζ i(tk)

]
is adopted in Equation (9) to handle certain nonlinear term generated by the fixed-time controller. As
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shown in Equation (43), we guarantee the fixed time stability of the entire closed-loop system with-
out recourse to the separation principle. Besides, the observer introduces an ETM without continuous
communications, reducing energy consumption significantly.

Remark 5. The sign function results in adverse chattering. Differing from the work of [12], the satu-
ration function is used in place of the sign function for the alleviation of chattering. The constant term
o4(1−ι)δk

4
is thus introduced in Equation (18), implying that Vζ converges to a region. Nonetheless, the

region can be as small as desired by selecting parameter δ. The region is correspondingly scaled down
to a smaller neighbourhood of the origin and the error caused by the approximation is negligible.

Remark 6. The ETM without continuous communications in Equation (24) is inspired by [17], where
the event-triggered mechanism is used in a consensus control scheme. Differently, Equation (24) embeds
a bounded nonlinear term ko1

ι

√
e1+ko2 tanh(ko3|ξij(tk)|), which realises a more reasonable trigger threshold with

characteristics of the exponential function and the hyperbolic tangent function in the transient and steady
state.

Remark 7. In view of Equation (24), the key rules in selecting the parameters are: The trigger interval
can be increased by increasing the parameter ko1. Subsequently, tuning the parameter ko2 can adjust the
exponential convergence rate of the triggering condition during the adjustment period. Meanwhile, the
selection of ko3 should ensure that ko3

∣∣ξij(tk)
∣∣ can cover the unsaturated area of the hyperbolic tangent

function.

3.2 Fixed-time controller design
In this subsection, a fixed-time distributed control scheme is designed for each follower spacecraft,
handling the actuator saturation and the input quantisation problems ingeniously without embedding
auxiliary systems. Define a auxiliary vector for ith follower spacecraft as

σ i =
n∑

j=1

aij

[
(xi − �i,0) − (xj − �j,str)

]+ bi

(
xi − �i,0 − x0

)

=
n∑

j=1

lijexj + biexi (28)

where exi = xi − �i,0 − x0. Denote σ = [
σ T

1 , σ T
2 , . . . , σ T

n

]T, ex = [
eT

x1, eT
x2, . . . , eT

xn

]T, then we have σ =
Hex. Based on the backstepping technique, the controller is designed as follows:

Step 1. Design of a virtual control scheme for γ i = vi − v̂i,0 − �̇i,0 + k1sigβ(σ i), where k1 is a positive
parameter.

Consider γ i as a virtual control input for the system σ̇ = Hėx = Hev = H
(
vi − v̂i,0 − �̇i,0 + ṽi

)
, A

virtual control scheme for γ i is designed as γ di = −k2sigα(σ i), where k1 is a positive parameter, ev =[
eT

v1, eT
v2, . . . , eT

vn

]T, evi = vi − �̇i,0 − v0.
Consider the following Lyapunov function candidate

V1 = 1

2
σ TH−1σ (29)

and the time derivative of V1 is given by

V̇1 = σ Tev = σ T
(
v − v̂ − �̇str + ṽ

)= σ T(γ + ṽ)

= σ T
(
γ − γ d

)+ σ Tṽ − k1σ
Tsigβ(σ ) − k2σ

Tsigα(σ ) (30)

where γ = [
γ 1

T, γ 2
T, . . . , γ n

T
]T, γ d = [

γ d1
T, γ d2

T, . . . , γ dn
T
]T.
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According to Lemma 2 and Lemma 5, we can imply the following unequal relationship:

σ T
(
γ − γ d

)≤
n∑

i=1

8∑
j=1

∣∣σij

∣∣ ∣∣γij − γdij

∣∣≤ n∑
i=1

8∑
j=1

21−α
∣∣σij ‖ κij

∣∣α
≤ 21−α

1 + α
σ Tsigα(σ ) + 21−αα

1 + α
κTsigα(κ) (31)

σ Tṽ ≤
n∑

i=1

8∑
j=1

∣∣σij

∣∣(∣∣ṽij

∣∣ 1
α

)α

≤ 1

1 + α
σ Tsigα(σ ) + α

1 + α
ṽTsig

1
α (ṽ) (32)

where κij = sig
1
α

(
γij

)− sig
1
α

(
γdij

)
.

Substitution of Equation (31) and Equation (32) into Equation (30) yields that

V̇1 ≤ −k1σ
Tsigβ(σ ) −

(
k2 − 1 + 21−α

1 + α

)
σ Tsigα(σ )

+ 21−αα

1 + α
κTsigα(κ) + α

1 + α
ṽTsig

1
α (ṽ)

≤ −k1 ‖ σ‖1+β −
(

k2 − 1 + 21−α

1 + α

)
‖ σ‖1+α

+ 21−αα

1 + α
‖ κ‖1+α + α

1 + α
ṽ‖1+ 1

α (33)

Step 2. Design of the control scheme for ui.
The distributed fixed-time control scheme is described as:

ui = g−1(xi)

[
−‖Fi‖2sig2−α(κ i)

2ιf

− k3sig2α−1(κ i)

]
+ g−1(xi)

[−k4sigβ−1+α(κ i) − k5sig2−α(κ i)
]

(34)

where Fi = f i(xi, vi) − ˙̂vi,0 − �̈i,0 + k1βsigβ−1(σ i) σ̇ i, k3, k4, k5 and ιf are positive parameters.

Theorem 3. Suppose Assumption 2, 3 hold. With the implementation of the fixed-time observer
Equation (9) and the control scheme Equation (34). The control parameters satisfy 2k5χmin(1 − δ) >

ιd, k1 > c1k1β

1+β
, k2 > 1+21−α

1+α
+ c3α

1+α
, k4χmin(1 − δ)(8n)

1+β
2 > c1k1

1+β
, k3χmin(1 − δ) > c1c2 + c1+c3

1+α
+ 21−αα

1+α
, o1(1 −

ι)(8n)
α−1
2α > (c1+1)α

(1+α)λmin(H)1+ 1
α

. Then the tracking errors exi, evi for each follower spacecraft can converge to a
region in fixed time T2.

Proof. Consider the following Lyapunov function candidate [30]:

V2 =
n∑

i=1

8∑
j=1

γij∫
γdij

sig2−α

(
sig

1
α (s) − sig

1
α

(
γdij

))
ds (35)

then the time derivative of V2 is given by

V̇2 = γ̇ Tsig2−α(κ) +
n∑

i=1

8∑
j=1

γij∫
γdij

d

dt
sig2−α

(
sig

1
α (s) − sig

1
α

(
γdij

))
ds (36)
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For the second term in the Equation (36), we could rewrite it as

n∑
i=1

8∑
j=1

γij∫
γdij

d

dt
sig2−α

(
sig

1
α (s) − sig

1
α

(
γdij

))
ds =

n∑
i=1

8∑
j=1

(2 − α) k2

1
α σ̇ijϒij (37)

where

ϒij =
γij∫

γij

sig1−α

(
sig

1
α (s) − sig

1
α

(
γdij

))
ds ≤ 21−α

∣∣κij

∣∣ (38)

which is obtained by Lemma 2 and Lemma 5.
Substituting Equation (37) and Equation (38) into Equation (36), it can yield

V̇2 ≤ γ̇ Tsig2−α(κ) + (2 − α)k
1
α

2 21−ασ̇ T|κ|
≤ γ̇ Tsig2−α(κ)

+ (2 − α)k
1
α

2 λmax(H) ‖ κ ‖ ∥∥γ − γ d + ṽ − k1sigβ(σ ) − k2sigα(σ )
∥∥ (39)

Noting that
∥∥γ − γ d

∥∥≤
n∑

i=1

8∑
j=1

21−α
∣∣κ ij

∣∣α ≤ 21−α(8n)
1−α

2 ‖κ‖α,
∥∥k1sigβ(σ )

∥∥≤ k1‖σ‖β , ‖k2sigα(σ )‖ ≤
k2(8n)

1−α
2 ‖σ‖α where Lemma 2, Lemma 5 and Lemma 6 are used, we have

V̇2 ≤ γ̇ Tsig2−α(κ) + c1c2 ‖ κ‖1+α + c1 ‖ κ ‖‖ ṽ ‖ +c1k1 ‖ κ ‖‖ σ‖β + c3 ‖ κ ‖‖ σ‖α

≤ γ̇ Tsig2−α(κ) + c1c2 ‖ κ‖1+α + c1

(
1

1 + α
‖ κ‖1+α + α

1 + α
‖ ṽ‖1+ 1

α

)

+ c1k1

(
1

1 + β
‖ κ‖1+β + β

1 + β
‖ σ‖1+β

)
+ c3

(
1

1 + α
κ‖1+α + α

1 + α
‖ σ‖1+α

)

= γ̇ Tsig2−α(κ) +
(

c1c2 + c1 + c3

1 + α

)
‖ κ‖1+α + c1k1

1 + β
‖ κ‖1+β

+ c3α

1 + α
‖ σ‖1+α + c1k1β

1 + β
‖ σ‖1+β + c1α

1 + α
‖ ṽ‖1+ 1

α (40)

where c1 =(2 − α) k2

1
α λmax(H), c2 = 21−α(8n)

1−α
2 , c3 = c1k2(8n)

1−α
2 .

Noting that γ i = vi − v̂i − �̇i,0 + k1sigβ(σ i), we substitute γ i, Equation (4) and control scheme
Equation (34) into the first term in the left hand of Equation (40) and we can get

γ̇ T
i sig2−α(κ i)

= −[
k3χ(ui) sig2α−1(κ i) + k4χ(ui) sigβ−1+α(κ i)

]T
sig2−α(κ i)

+ [
k5χ(ui) sig2−α(κ i)

]T
sig2−α(κ i)

+
[
Fi + di + g(xi)dsqi − χ(ui)

‖Fi‖2sig2−α(κ i)

2ι2
f

]T

sig2−α(κ i)

≤ −k3χmin(1 − δ)κT
i sigα(κ i) − k4χmin(1 − δ)κT

i sigβ(κ i) − k5χmin(1 − δ)‖κ i‖4−2α

− χmin(1 − δ)
‖Fi‖2‖κ i‖4−2α

2ιf

+ |Fi|T
∣∣sig2−α(κ i)

∣∣+(
di + g(xi)dsqi

)T[
sig2−α(κ i)

]
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Figure 3. Communication topology.

≤ −k3χmin(1 − δ) κ i
Tsigα(κ i) − k4χmin(1 − δ) κ i

Tsigβ(κ i)

+ ιf

2χmin(1 − δ)
+ d2

max + 8(gmaxumin)2

2ιd

(41)

where the inequality |Fi|T
∣∣sig2−α(κ i)

∣∣≤ χmin(1 − δ) ‖Fi‖2‖κ i‖4−2α

2ιf
+ ιf

2χmin(1−δ)
and Assumption 2 have been

used.
Noting that γ̇ Tsig2−α(κ) =

n∑
i=1

γ̇ T
i sig2−α(κi), we can rewrite Equation (40) as

V̇2 ≤ −
[

k3χmin(1 − δ) − c1c2 − c1 + c3

1 + α

]
‖ κ‖1+α

−
[

k4χmin(1 − δ)(8n)
1+β

2 − c1k1

1 + β

]
‖ κ‖1+β

+ c3α

1 + α
‖ σ‖1+α + c1k1β

1 + β
‖ σ‖1+β + c1α

1 + α
‖ ṽ‖1+ 1

α

+ nιf

2χmin(1 − δ)
+ nd2

max + 8n(gmaxumin)
2

2ιd

(42)

Consider the overall Lyapunov function V = Vζ1 + V1 + V2 and the time derivative of V is given by
the sum of Equation (17), Equation (33) and Equation (42).

V̇ ≤ −pσβ ‖ σ‖1+β − pσα ‖ σ‖1+α − pκβ ‖ κ‖1+β − pκα ‖ κ‖1+α

− pζβ ‖ ζ‖1+β − pζα ‖ ζ‖1+α − pζ ‖ ζ‖1+ 1
α + pb

≤ −lα
(‖ ζ‖2+ ‖ σ‖2+ ‖ κ‖2

) 1+α
2 − lβ

(‖ ζ‖2+ ‖ σ‖2+ ‖ κ‖2
) 1+β

2 + pb (43)

where pσβ = k1 − c1k1β

1+β
, pσα = k2 − 1+21−α

1+α
− c3α

1+α
, pκβ = k4χmin(1 − δ)(8n)

1+β
2 − c1k1

1+β
, pκα = k3χmin(1 −

δ) − c1c2 − c1+c3
1+α

− 21−αα

1+α
, pζβ = o2(1 − ι)(8n)

1−β
2 , pζα = o3(1 − ι), pζ = o1(1 − ι)(8n)

α−1
2α − (c1+1)α

(1+α)λmin(H)1+ 1
α

,

pb = nιf

2χmin(1−δ)
+ nd2

max+8n(gmaxumin)2

2ιd
+ o4(1−ι)δk

4
, lα = max

(
pσα, pκα, pζα

)
, lβ = max

(
pσβ , pκβ , pζβ

)
are positive

constants.
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Table 1. Initial orbital elements of the virtual leader

Orbit elements Value
Semi major axis/km 6878.137
Eccentricity 0
Inclination/deg 42
Right ascension of the ascending node/deg 50
Argument of latitude/deg 20
Initial value of True anomaly during simulation/deg 0

Table 2. Desired states of each follower spacecraft

Desired states Spacecraft 1 Spacecraft 2 Spacecraft 3 Spacecraft 4
Desired position 
ri-
r0

[
200 0 0

]T [
400 0 0

]T [
600 0 0

]T [
800 0 0

]T


̇ri-
̇r0

[
0 0 0

]T [
0 0 0

]T [
0 0 0

]T [
0 0 0

]T

Desired attitude qi

[
1 0 0 0

]T [
1 0 0 0

]T [
1 0 0 0

]T [
1 0 0 0

]T


ωi

[
0 0 0

]T [
0 0 0

]T [
0 0 0

]T [
0 0 0

]T

Similar to the method used in Equation (38), we can derive that V2 ≤ 21−α ‖ κ‖2. Then, V = V∗∗ζ1 +
V1 + V2 can be rewritten as

V ≤ 1

2λmin(H)
‖ ζ‖2 + 1

2λmax(H)
‖ σ‖2 + 21−α ‖ κ‖2

≤ l
(‖ ζ‖2+ ‖ σ‖2+ ‖ κ‖2

)
(44)

where l = max
(

1
2λmin(H)

, 21−α
)
. Substituting Equation (44) into Equation (43), it can yield

V̇ ≤ − lα

l
1+α

2

V
1+α

2 − lβ

l
1+β

2

V
1+β

2 + pb (45)

By using Lemma 1, we can conclude that σ and κ converge to a region within fixed time T2 ≤
1/

[
lα

l
1+α

2

(
1 − 1+α

2

)]+ 1/
[

lβ

l
1+α

2

(
1+β

2
− 1

)]
, which in turn implies that γ and γ d converge to zero within

fixed time as well. Since σ = Hex and ev = γ − γ d + ṽ − k1sigβ(σ ) − k2sigα(σ ), we can obtain that the
tracking errors ex and ev converge to the origin within fixed time.

Remark 8. It should be mentioned that Equation (8) is inspired by [39], which only achieved an asymp-
totic convergence result. In contrast, we deal with the actuator saturation and input quantisation problems
under the framework of the “adding a power integrator” technique in an ingenious way, by embedding
−‖Fi‖2sig2−α(κ i)

2ιf
in Equation (34).

Remark 9. Recalling the time derivative of V1 in Equation (33), it is noted that α

1+α
‖ ṽ‖1+ 1

α would
be compensated by −o1(1 − ι)(8n)

α−1
2α ‖ ζ‖1+ 1

α in Equation (17), which is generated by the nonlinear
term −o1sig

1
α

[
ζ i(tk)

]
in Equation (9). By doing so, we guarantee the fixed time stability of the entire

closed-loop system without recourse to the separation principle.

4.0 Numerical simulations and results
The performance of the proposed observer Equation (9), Equation (24) and the control
scheme Equation (34) are tested in Numerical simulations. Four spacecrafts together with
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Table 3. Initial states of each follower spacecraft

Initial states Spacecraft 1 Spacecraft 2 Spacecraft 3 Spacecraft 4
Initial position 
ri(0)-
r0(0)

[−7.5 5 −9
]T [−10 6 7.5

]T [
8 9 −6.5

]T [
10 −5 6

]T


̇ri(0)-
̇r0(0)
[

0 0 0
]T [

0 0 0
]T [

0 0 0
]T [

0 0 0
]T

Initial attitude qi(0)

⎡⎢⎢⎢⎢⎣
0.8361

0.3188

0.3296

−0.3011

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.9296

−0.3267

−0.1702

0.01137

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.7636

−0.459

−0.217

0.377

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.9681

−0.009799

0.08571

0.2142

⎤⎥⎥⎥⎥⎦
θ i(0)

[−26 48 30
]T [

8 −18 −40
]T [

54 2 −61
]T [

24 12 −9
]T


ωi(0)
[

0 0 0
]T [

0 0 0
]T [

0 0 0
]T [

0 0 0
]T

Initial estimation r̂i(0)-
r0(0)
[

200 − 7.5 5 −9
]T [

400 − 10 6 7.5
]T [

600 + 8 9 −6.5
]T [

800 + 10 −5 6
]T

˙̂ri(0)-
̇r0(0)
[

0 0 0
]T [

0 0 0
]T [

0 0 0
]T [

0 0 0
]T

θ̂ i,0(0)
[−26 48 30

]T [
8 −18 −40

]T [
54 2 −61

]T [
24 12 −9

]T

ω̂i,0(0)
[

0 0 0
]T [

0 0 0
]T [

0 0 0
]T [

0 0 0
]T
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Figure 4. Errors of observation.
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Figure 5. Errors of attitude and position.

one virtual leader are considered, as shown in Fig. 3. The adjacency matrix A is set as
[0, 0.1, 0, 0; 0.1, 0, 0.1, 0; 0, 0.1, 0, 0.1; 0, 0, 0.1, 0].

Statistics show that approximately 73% of SFF missions operate in low Earth orbit (LEO), and
the vast majority of SFF missions are executed by small spacecraft with a mass of less than 500 kg
[25]. The simulation environment is therefore set up, so that spacecraft with a mass of about 100 kg
follow the virtual leader in LEO. For follower spacecrafts, the mass are chosen as m1 = 102kg,
m2 = 104kg, m3 = 103kg, m4 = 99kg and the inertia matrices are chosen as J1 = [15.2, −0.04, 0.05;
− 0.04, 17.3, 0.02;0.05, 0.02, 19.5], J2 = [14.7, 0.01, −0.06;0.01, 17.3, 0.03; − 0.06, 0.03, 19.5], J3 =
[15.4, −0.043, 0;0.03, 17.1, 0.01;0, 0.01, 20.7], J4 = [14.9, −0.04, 0; − 0.04, 16.9, 0.02;0, 0.02, 19.8].
The external disturbances are selected as f ip = 0.01[0.9sin(0.075t + 0.8i − 0.3), 1sin(0.09t + 0.8i +
0.8), 1.1sin(0.06t + 0.8i + 0.2)]TN and τ ip = 0.001[0.9sin(0.11t + 0.8i + 0.2), 1sin(0.125t + 0.8i +
1.2), 1.1sin(0.1125t + 0.8i + 2.2)]TN · m. Table 1 gives the virtual leader’s initial orbital elements.
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Figure 6. Control of the orbit.

The controller and observer parameters of the ith follower spacecraft are chosen as α = 0.9, β = 2,
o1 = 0.5, o2 = 0.5, o3 = 0.005, o4 = 100, ko1 = 0.0012, ko2 = 7.8240, ko3 = 3, ι = 0.1, δo = 0.001, k1 = 1,
k2 = 0.05, k3 = 0.1, k4 = 0.5, k5 = 0.5. The dead zone of the control force and the control torque are
0.005N and 0.0004N · m, quantified density δ = 0.2. As shown in Table 2, we expect each spacecraft
to be 200m from the others and to have the same attitude. 
r0 represents the virtual leader’s position
vector. 
ri − 
r0 denotes the position deviation for ith follower spacecraft from the virtual leader. Besides,
Table 3 shows the initial states of each spacecraft. In order to describe the attitude more intuitively, we
have used Euler angles θ i(0) and θ i(t) in the initial settings and the subsequent simulation figures. It is
worth pointing out that we still use the dual quaternion in the control algorithm, where the Euler angles
are used only to express the attitude change intuitively. The observer’s estimated initial value for the ith
follower spacecraft is taken as its initial state value.

4.1 Evaluation of control performance and convergence
To display the observation errors intuitively, we depict q̃i, r̃i in Fig. 4 instead of ṽi, where q̃i and r̃i are
observation errors of the virtual leader’s vector quaternion and position. It can be observed that all
follower spacecrafts can estimate the virtual leader’s velocity in a fixed time.

The time responses of the attitude quaternion and position tracking errors θ e, re of each follower
spacecraft are given in Fig. 5. The trajectory of the spacecraft’s position in the uncontrolled and the
controlled case during an orbital period of 5,578 seconds is shown in Fig. 6. It is important to note that
Fig. 6 uses an inhomogeneous coordinate system for more visual comparison. In addition, the mini-
mum value, maximum value, and standard deviation of the controller convergence errors from 250 to
300 seconds are explicitly described in Table 4, which is needed while implementing the engineering
solution of the mathematical treatment.

Figure 7 illustrate the control force and the control torque bounded by 0.52N and 0.02N · m. As
shown in these figures, the control output in the initial stage is saturated. Obviously, even in the pres-
ence of actuator saturation and input quantisation, the SFF system can estimate the states of the virtual
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Table 4. Desired states of each follower spacecraft

Minimum value Maximum value Standard deviation
#1 θ ex, rex −0.2883o, −0.0231m 0.2957o, 0.0118m 0.2066o, 0.0106m

θ ey, rey −0.1753o, −0.0104m 0.1732o, 0.0111m 0.1224o, 0.0069m
θ ez, rez −0.1976o, −0.0129m 0.1952o, 0.0231m 0.1315o, 0.0102m

#2 θ ex, rex −0.2235o, −0.0123m 0.2209o, 0.0116m 0.1486o, 0.0080m
θ ey, rey −0.1733o, −0.0107m 0.1701o, 0.0108m 0.1216o, 0.0074m
θ ez, rez −0.2684o, −0.0130m 0.2659o, 0.0140m 0.1910o, 0.0097m

#3 θ ex, rex −0.2149o, −0.0126m 0.2130o, 0.0116m 0.1484o, 0.0081m
θ ey, rey −0.1795o, −0.0147m 0.1754o, 0.0109m 0.1249o, 0.0088m
θ ez, rez −0.2617o, −0.0108m 0.2618o, 0.0327m 0.1918o, 0.0081m

#4 θ ex, rex −0.2247o, −0.0116m 0.2245o, 0.0126m 0.1638o, 0.0085m
θ ey, rey −0.1798o, −0.0107m 0.1780o, 0.0113m 0.1259o, 0.0069m
θ ez, rez −0.2723o, −0.0501m 0.2677o, 0.0149m 0.1857o, 0.0177m
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Figure 7. Control torque and force.

leader effectively and track the trajectory of the virtual leader while maintaining the desired formation
configuration.

4.2 Comparison
To highlight the advantages of the proposed triggering condition Equation (24), we use the trigger
conditions in [17] as a comparison, which can be expressed as

gij(t) =
∫ t

tk

η1hmax

∣∣η2ij(tk) + B3

∣∣ ds − ι

1 + ι

∣∣∣∣ ˙̂vij(tk) + ko4

ι

∣∣∣∣ (46)

where ko4 is positive parameter. Meanwhile, to obtain a fair comparison, take the two cases of ko4 = ko1

√
e

and ko4 = ko1

√
e1+ko2 for comparison, where ko1

√
e and ko1

√
e1+ko2 are the upper and lower bounds of the
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Figure 9. Curves of triggering condition thresholds.

nonlinear term ko1

√
e1+ko2 tanh(ko3|ξij(tk)|) in Equation (24), respectively. The two cases are expressed as

gij(t) =
∫ t

tk

η1hmax

∣∣η2ij(tk) + B3

∣∣ ds − ι

1 + ι

∣∣∣∣ ˙̂vij(tk) + ko1

ι

√
e

∣∣∣∣ (47)

gij(t) =
∫ t

tk

η1hmax

∣∣η2ij(tk) + B3

∣∣ ds − ι

1 + ι

∣∣∣∣ ˙̂vij(tk) + ko1

ι

√
e1+ko2

∣∣∣∣ (48)

According to the statistical analysis of the trigger simulation data, Figs. (8)–(9) can be obtained.
Figure (8) plots the comparison results of the trigger threshold. The triggering intervals of the SFF
system is presented in Fig. (9).

We divide the convergence process of the observation errors into the transient-state phase and the
steady-state phase for discussion, aiming to demonstrate the superiority of the proposed ETM in detail.
(A). In the transient-state phase. Equation (24) has a larger trigger threshold than Equation (47), but
almost the same as Equation (48). Hence, the trigger times of Equation (24) is in the middle of the trigger
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Figure 10. Comparison of observer performance under different ETMs.

times of Equation (47) and Equation (48). (B). In the steady-state phase. Equation (24) has a smaller
trigger threshold than Equation (48), but almost the same as Equation (47). Therefore, the trigger times of
Equation (24) and Equation (47) are almost the same. Further, The norm distribution of the observation
errors of Equation (24) and Equation (47) are almost the same.

As can be observed in these discussions and figures, Equation (24) achieves the same steady-state
performance as Equation (47) with less communication penalty. It is because that the lower limit of the
trigger threshold of Equation (24) fluctuates with the accuracy compared with the stable lower limit of
the trigger threshold of Equation (46). In other words, Equation (24) realises the amplification of the
lower limit of trigger threshold when the error is large and the reduction of the lower limit of trigger
threshold when the error is small, that is the proposed ETM achieves the same steady-state performance
with less communication penalty.

However, there is no win-win situation in control systems. In fact, although Equation (24) has reduced
communication penalty compared to Equation (47), it has increased fuel consumption. Figure (10)
illustrates this with an example θ̃ x and ˙̂

θ x of the follower spacecraft 1. For an observer, the fuel it
consumes is its control input ˙̂

θ x. The quantitative analysis of the different ETMs is given in Table 5,
where errors distribution denotes the range of

∑4
i=1

∑6
j=1 |zij|/24 with observer error zij, and total input

denotes
∑4

i=1

∑6
j=1

∫
ouij(t) with observer control input ouij. It can be calculated that ETM Equation (24)

achieves a 8.98% saving in communication resources at a cost of 2.62% fuel consumption compared to
ETM Equation (47).

Remark 10. It should be noted that the execution of the observer is fully digital and does not really
require the consumption of fuel, which is why fuel is quoted in the text above. In other words,
the application of the ETM in the observer designed in this paper circumvents the cost of its fuel
consumption.

Please note that ETM is only embedded in the observer and is not mounted on the controller.
Figure (11) illustrates the impact of different ETMs on the controller’s performance with an example
θ ex of the follower spacecraft 1. It can be seen that the observer embedding different ETMs has no effect
on the transient performance of the controller, which is due to the fact that the observer converges much
faster than the controller converges. Equation (24) and (47) have the same effect on the steady-state per-
formance of the controller, and Equation (48) causes the steady-state performance of the controller to
deteriorate. This is because the observation error of Equation (48) is higher than that of Equation (24)
and Equation (47) (as shown in Fig. 10), and the observation error affects the convergence error of the
controller.

Besides, to emphasise the advantages of the proposed control scheme, we reproduced the asymptotic
controller [40] and the finite-time controller [41] in numerical simulations for comparison. We consider
two performance indices for an intuitive comparison: (A) The Attitude Station-Keeping Absolute Error
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Table 5. Communication analysis of different ETMs for all spacecrafts in 10 seconds

Total trigger times Errors distribution (e − 4) Total input
Equation (24) 167 [−0.8475, 0.8364] 653.5
Equation (47) 182 [−0.8503, 0.8421] 636.8
Equation (48) 148 [−83.5347, 84.3176] 1513.0
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Figure 11. Impact of different ETMs on the controller’s performance.
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Figure 12. The comparison curves of the two performance indicators.

(ASKAE)
n∑

i=1

∥∥qe,i

∥∥. (B) The Position Station-Keeping Absolute Error (PSKAE)
n∑

i=1

∥∥re,i

∥∥. Figure 12

gives the two performance indicators’ comparison curves for each control scheme. Obviously, the
proposed fixed time controllers demonstrate faster convergence rates in both performance indices.

5.0 Conclusion
This paper investigated the attitude and position coupled tracking control problem of SFF systems with
actuator saturation and input quantisation under an undirected communication graph. Since the commu-
nication bandwidth is limited, a resource-saving distributed control scheme was developed based on an
event-triggered observer and the adding a power integrator technique. It is worth remarking that the novel
observer realised the amplification of the trigger threshold when the error is large, but neither increased
the convergence time nor affected the final accuracy. Besides, the control scheme compensated the actu-
ator saturation and input quantisation in an ingenious way. Finally, a simulation of a four-spacecraft on
LEO is carried out to illustrate the successful application of the proposed distributed control algorithm.
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The control scheme subject to the limited communication under the directed graph will be investigated
in our future work.
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