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Abstract
For graphs G and H, the Ramsey number r(G,H) is the smallest positive integer N such that any red/blue
edge colouring of the complete graphKN contains either a redG or a blueH. A book Bn is a graph consisting
of n triangles all sharing a common edge.
Recently, Conlon, Fox, and Wigderson conjectured that for any 0< α < 1, the random lower bound
r(B�αn�, Bn)≥ (

√
α + 1)2n+ o(n) is not tight. In other words, there exists some constant β > (

√
α + 1)2

such that r(B�αn�, Bn)≥ βn for all sufficiently large n. This conjecture holds for every α < 1/6 by a result
of Nikiforov and Rousseau from 2005, which says that in this range r(B�αn�, Bn)= 2n+ 3 for all sufficiently
large n.
We disprove the conjecture of Conlon, Fox, andWigderson. Indeed, we show that the random lower bound
is asymptotically tight for every 1/4≤ α ≤ 1. Moreover, we show that for any 1/6≤ α ≤ 1/4 and large n,
r(B�αn�, Bn)≤

(
3
2 + 3α

)
n+ o(n), where the inequality is asymptotically tight when α = 1/6 or 1/4. We also

give a lower bound of r(B�αn�, Bn) for 1/6≤ α < 52−16
√
3

121 ≈ 0.2007, showing that the random lower bound is
not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.
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1. Introduction
For graphs G and H, the Ramsey number r(G,H) is the smallest positive integer N such that any
red/blue edge colouring of the complete graph KN contains either a red G or a blue H. A central
problem in extremal graph theory is to determine the Ramsey number r(G,H).

Let B(k)n be the book graph consisting of n copies of Kk+1, all sharing a common Kk. We always
call n the size of the book. When k= 2, we write Bn instead of B(2)n . Books have attracted a great
deal of attention in graph Ramsey theory, see, for example, the recent breakthrough of Campos,
Griffiths, Morris and Sahasrabudhe [1].

For the diagonal Ramsey number of books, Erdős, Faudree, Rousseau and Schelp [2] and inde-
pendently Thomason [3] proved that (2k + o(1))n≤ r(B(k)n , B(k)n )≤ 4kn. In particular, Rousseau
and Sheehan [4] showed that r(Bn, Bn)= 4n+ 2 if 4n+ 1 is a prime power. Recently, a break-
through result of Conlon [5] established that for each k≥ 2,

r(B(k)n , B(k)n )= 2kn+ o(n),
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which confirms a conjecture of Thomason [3] asymptotically and also gives an answer to a prob-
lem proposed by Erdős, Faudree, Rousseau and Schelp [2]. The error term o(n) of the upper bound
has been improved to O

( n
( log log log n)1/25

)
by Conlon, Fox, and Wigderson [6] using a different

method, in particular avoiding the use of the full regularity lemma.
For the off-diagonal Ramsey number of books, a simple lower bound is as follows: for any

k,m, n ∈N withm≤ n,
r(B(k)m , B(k)n )≥ k(n+ k− 1)+ 1. (1)

Indeed, this follows from an observation of Chvátal and Harary [7] which states that if H is con-
nected, then r(G,H)≥ (χ(G)− 1)(|V(H)| − 1)+ 1. We say that H is G-good if this inequality is
tight. Burr and Erdős [8] initiated the study of such Ramsey goodness problems; the reader is
referred to the survey of Conlon, Fox, and Sudakov [9] for a detailed history of the area. Among
these results, Nikiforov and Rousseau [10] obtained extremely general results. In particular, they
proved the following theorem; see Fox, He and Wigderson [11] for a new proof avoiding the
application of the regularity lemma.

Theorem 1.1 (Nikiforov and Rousseau [10]). For every k≥ 2, there exists some α0 ∈ (0, 1) such
that, for any 0< α ≤ α0 and sufficiently large n,

r(B(k)�αn�, B
(k)
n )= k(n+ k− 1)+ 1.

Since we are concerned with the asymptotic behaviour of the Ramsey number, we always omit
the ceiling and floor signs henceforth.

We know that α0 in Theorem 1.1 is always small. In fact, if α is sufficiently far from 0, then the
situation of the lower bound is much different. As pointed out by Conlon, Fox, and Wigderson
[12], we can get a random lower bound for r(B(k)αn, B(k)n ) as follows (one can also see [13] for the
special case of k= 2). Indeed, for any k ∈N and 0< α ≤ 1, let p= 1

α1/k+1 and N = (p−k − o(1))n.
Then we randomly and independently colour every edge of KN blue with probability p and red
with probability 1− p. A standard application of the Chernoff bound yields that the probability
containing a blue B(k)n or a red B(k)αn is o(1). Therefore, for any k ∈N and 0< α ≤ 1,

r(B(k)αn, B
(k)
n )≥ (α1/k + 1)kn− o(n).

A simple calculation implies that for large k, if α > ((1+ o(1)) log kk )k, then the above lower bound
is much larger than that of (1), where the logarithm is to base e.

Furthermore, Conlon, Fox, and Wigderson [12] show that the random lower bound becomes
asymptotically tight at this point.

Theorem 1.2 (Conlon, Fox, and Wigderson [12]). For every k≥ 2, there exists some α1 = α1(k) ∈
(0, 1] such that, for any fixed α1 ≤ α ≤ 1,

r(B(k)αn, B
(k)
n )= (α1/k + 1)kn+ o(n).

Moreover, one may take α1(k)= ((1+ o(1)) log kk )k.

From Theorem 1.1 and Theorem 1.2, we know that for every k≥ 2, there exist α0, α1 ∈ (0, 1]
such that the following holds:

(i) if 0< α ≤ α0, then r(B(k)αn, B(k)n )= k(n+ k− 1)+ 1;
(ii) if α1 ≤ α ≤ 1, then r(B(k)αn, B(k)n )= (α1/k + 1)kn+ o(n).

However, the values of α0 and α1 are not very clear in general. Moreover, although Theorem
1.2 shows that the random lower bound becomes asymptotically tight when k→ ∞, it does not
say anything non-trivial in the simplest case k= 2 except when α = 1.
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Nikiforov and Rousseau [14] proved that

for any fixed α < 1/6 and all large n, r(Bαn, Bn)= 2n+ 3, (2)

which implies the Ramsey goodness of large books. Moreover, the constant 1/6 is asymptotically
best possible, i.e., for any α > 1/6 and all large n,

r(Bαn, Bn)> 2n+ 3.

Recently, the second author together with Chen and You [13] proved that for all large m≤ n,
r(Bm, Bn)≤ 2(m+ n)+ o(n). However, the behaviour of r(Bαn, Bn) is still not well-understood for
1/6≤ α < 1.

More recently, Conlon, Fox, and Wigderson [12, Conjecture 6.1] proposed the following con-
jecture, which would imply that the random lower bound r(Bαn, Bn)≥ (

√
α + 1)2n− o(n) is not

tight for any α < 1.

Conjecture 1.3 (Conlon, Fox, and Wigderson [12]). For every α < 1, the random lower bound for
r(Bαn, Bn) is not tight. In other words, there exists some β > (

√
α + 1)2 such that r(Bαn, Bn)≥ βn

for all n sufficiently large.

Note that Conjecture 1.3 holds for any α ≤ 1/6, by (2). However, in this paper, we dis-
prove Conjecture 1.3 by showing that the random lower bound is asymptotically tight for any
1/4≤ α ≤ 1.

Theorem 1.4. For any fixed 1/4≤ α ≤ 1 and sufficiently large n,

r(Bαn, Bn)= (
√

α + 1)2n+ o(n).

Moreover, we give an upper bound of r(Bαn, Bn) for 1/6≤ α ≤ 1/4.

Theorem 1.5. For any fixed 1/6≤ α ≤ 1/4 and sufficiently large n,
r(Bαn, Bn)≤ (3/2+ 3α) n+ o(n).

The inequality is asymptotically tight when α = 1/6 or 1/4.

We also have the following lower bound.

Theorem 1.6. Let 1/6≤ α ≤ 52−16
√
3

121 ≈ 0.2007 be fixed, and let p= 1−√
α(3−2α)
1−2α . Then for all

sufficiently large n,

r(Bαn, Bn)≥ 3n
1+ 2p2

− o(n).

The inequality is asymptotically tight when α = 1/6.

Remark 1.7. Since 3
1+2p2 > (

√
α + 1)2 for any 1/6≤ α < 52−16

√
3

121 , we have that Conjecture 1.3
holds in this interval.

1.1. Notation
For a book Bn, we refer to the common edge as the base of the book Bn. For a graphG= (V , E) with
vertex setV and edge set E, we write bkG for the size of the largest book in a graphG. Let uv denote
an edge of G. For X ⊆V , e(X) is the number of edges in X. For two disjoint subsets X, Y ⊆V ,
eG(X, Y) denotes the number of edges between X and Y . The neighbourhood of a vertex v in
U ⊆V is denoted byNG(v,U), and degG (v,U)= |NG(v,U)| and the degree of v inG is degG (v)=
|NG(v,V)|. Let X  Y denote the disjoint union of X and Y . Let [n]= {1, 2, . . . , n}, and [m, n]=
{m,m+ 1, . . . , n}. We always delete the subscriptions if there is no confusion from the context.
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The rest of the paper is organised as follows. In Section 2, we will collect several useful lemmas.
In Sections 3 and 4, we shall present the proofs of Theorems 1.4, 1.5 and 1.6. Finally, we will have
some discussion in Section 5.

2. Preliminaries
The proofs rely on the regularity method [15], which is a powerful tool in extremal graph theory.
There are many important applications of the regularity lemma, and we refer the reader to the
nice surveys [16–18] and many other recent references.

Let G= (V , E) be a graph. For two vertex sets A, B⊆V(G), we call d(A, B)= e(A,B)
|A||B| the density

of the pair (A, B). Let ε > 0, a pair (A, B) is said to be ε-regular if |d(A, B)− d(X, Y)| ≤ ε for every
X ⊆A, Y ⊆ B with |X| ≥ ε|A| and |Y| ≥ ε|B|. Also, a subset A is said to be ε-regular if the pair
(A,A) is ε-regular.

Given a graph G, an equitable ε-regular partition V(G)= k
i=1Vi of G is a partition of V(G)

such that (i) ||Vi| − |Vj|| ≤ 1 for all distinct i and j; (ii) each Vi is ε-regular; and (iii) for every
1≤ i≤ k, there are at most εk values 1≤ j≤ k such that the pair (Vi,Vj) is not ε-regular.

When establishing the asymptotic order of r(B(k)n , B(k)n ), Conlon [5, Lemma 3] applied a refined
version of the regularity lemma which guarantees a regular subset in each part of the partition for
any graph.We will use the following refined regularity lemma due to Conlon, Fox, andWigderson
[6, Lemma 2.1], which is a strengthening of that due to Conlon [5] and the usual version of
Szemerédi’s regularity lemma [15].

Lemma 2.1 (Conlon, Fox, and Wigderson [6]).For every ε > 0 and M0 ∈N, there is some M =
M(ε,M0)>M0 such that for every graph G, there is an equitable ε-regular partition V(G)= k

i=1Vi
where M0 ≤ k≤M.

We will use the following version of the counting lemma, proved by Conlon [5, Lemma 5].
(A similar counting lemma was proved by Nikiforov and Rousseau [14, Corollary 11], but they
required all of the clusters to be different.) For the general local counting lemma, see Rödl and
Schacht [18, Theorem 18].

Lemma 2.2 (Conlon [5]). For any δ > 0, there is ε > 0 such that if U1,U2 (not necessarily distinct),
W1, . . . ,Wl are vertex sets with (U1,U2) ε-regular of density at least δ and (Ui,Wj) ε-regular of
density dij for all i ∈ [2] and j ∈ [l], then there exists an edge u1u2 where u1 ∈U1 and u2 ∈U2 such
that u1 and u2 have at least

∑l
j=1 (d1jd2j − δ)|Wj| common neighbours in l

j=1Wj.

We will also use the following well-known Turán’s bound.

Lemma 2.3 (Turán [19]). For any graph G of order n with average degree d, the independence
number α(G) is at least n

1+d .

3. Proofs of Theorem 1.4 and Theorem 1.5
In the following, for a red/blue edge colouring of KN , we always use R/B to denote the subgraph
induced by all red/blue edges. For every i, j, (i �= j), let dij be the red density of the pair (Vi,Vj), i.e.,
dij = eR(Vi,Vj)

|Vi||Vj| .
We will use the following definition introduced by Conlon, Fox, and Wigderson [12].

Definition 3.1. Fix parameters � ∈N and ε, γ ∈ (0, 1) and suppose that we are given a red/blue
colouring of E(KN). Then an �-tuple of pairwise disjoint vertex sets V1, . . . ,V� ⊆V(KN) is called
an (�, ε, γ )-red-blocked configuration if the following properties are satisfied:
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1. Each Vi is ε-regular with itself,
2. Each Vi has internal red density at least γ , and
3. For all i �= j, the pair (Vi,Vj) is ε-regular and has blue density at least γ .

Similarly, we say that V1, . . . ,V� is an (�, ε, γ )-blue-blocked configuration if properties (1–3)
hold, but the roles of red and blue interchanged.

We first have a specific structure as in the following lemma, where the proof relies on the refined
regularity lemma due to Conlon, Fox, and Wigderson [6] together with the idea from Nikiforov
and Rousseau [14].

Lemma 3.2. Let 1/6≤ α ≤ 1, ε, γ ∈ (0, 1) where ε is sufficiently small in terms of γ , and n is a
large integer. Consider a red/blue edge colouring of KN and an equitable ε-regular partition of V(R)
guaranteed by Lemma 2.1 with N = (x+ yα)n+ o(n), where x+ y= xy, 1≤ x≤ y≤ 2x. If R is
Bn-free and B is Bαn-free, then the following two properties hold:

(1) there exists no (3, ε, γ )-red-blocked configuration;
(2) there exists no (2, ε, γ )-blue-blocked configuration.

Proof. Let N = (x+ yα + η)n where η > 0 is sufficiently small. Consider a red/blue edge colour-
ing of KN on vertex set [N]. We assume that γ > 0 is taken sufficiently small in terms of η. Set
δ = γ 2/2. Note that ε is sufficiently small in terms of δ, since ε is sufficiently small in terms of γ .

By Lemma 2.1, there is an equitable ε-regular partition [N]= k
i=1Vi for the red graph R, i.e.,

(i) ||Vi| − |Vj|| ≤ 1 for all distinct i and j; (ii) each part Vi is ε-regular; and (iii) for every 1≤ i≤
k, there are at most εk values 1≤ j≤ k such that the pair (Vi,Vj) is not ε-regular. Because the
colours are complementary, the same conclusion holds for the blue graph. For convenience, we
may assume |Vi| =N/k= : t for all i ∈ [k]. By the assumption that R is Bn-free and B is Bαn-free,
we have

bkR <
1

x+ yα + η
N = 1

x+ yα + η
kt ≤

(
1

x+ yα
− γ

)
kt, (3)

bkB <
α

x+ yα + η
N = α

x+ yα + η
kt ≤ α

(
1

x+ yα
− γ

)
kt. (4)

Now we shall prove that there exists no (3, ε, γ )-red-blocked configuration. On the contrary,
we may assume that V1,V2,V3 is a (3, ε, γ )-red-blocked configuration. Let M be the set of all
s ∈ [k] \ [3] such that every pair (Vi,Vs) for i ∈ [3] is ε-regular; clearly, |M| ≥ (k− 3)− 3εk≥ (1−
4ε)k.

We compute the maximum size of the red books with bases in E(Vi) for i ∈ [3]. Since the red
density of the pair (Vi,Vs) is dis, we apply Lemma 2.2 to obtain that

bkR ≥
∑
s∈M

(d2is − δ)t. (5)

On the other hand, applying Lemma 2.2, we obtain that the maximum size S of the blue books
with bases in E(V1,V2) satisfies

bkB ≥ S≥
∑
s∈M

((1− d1s)(1− d2s)− δ)t. (6)

Considering in turn (V1,V3) and (V2,V3), we obtain exactly in the same way,

bkB ≥
∑
s∈M

((1− d1s)(1− d3s)− δ)t, (7)

bkB ≥
∑
s∈M

((1− d2s)(1− d3s)− δ)t. (8)
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Let

ds =
3∑

i=1
dis, and d0 = 1

|M|
∑
s∈M

ds.

Adding (6), (7), and (8) each multiplied by y/3 together with (5) for each i ∈ [3] multiplied by x/3,
noting 2x≥ y, and applying Cauchy’s inequality to the double sum we obtain

y · bkB + x · bkR ≥ y
3
∑
s∈M

⎛
⎝3− 2ds +

∑
1≤i<j≤3

disdjs − 3δ

⎞
⎠ t + x

3
∑
s∈M

( 3∑
i=1

d2is − 3δ

)
t

≥
∑
s∈M

(
y
3

(
3− 2ds + d2s

2
− 1

2

3∑
i=1

d2is

)
+ x

3

3∑
i=1

d2is

)
t − (x+ y)δkt

≥
∑
s∈M

(
y
3

(
3− 2ds + d2s

2

)
+
(x
3

− y
6

)
· 1
3
d2s
)
t − (x+ y)δkt

=
∑
s∈M

(
y
3
(
3− 2ds

)+ x+ y
9

d2s
)
t − (x+ y)δkt

≥|M|
(
y
3
(
3− 2d0

)+ x+ y
9

d20
)
t − (x+ y)δkt.

Therefore, from (3) and (4), we obtain that

|M|
(
y
3
(
3− 2d0

)+ x+ y
9

d20
)
t − (x+ y)δkt <

(
yα
(

1
x+ yα

− γ

)
+ x

(
1

x+ yα
− γ

))
kt.

Since |M| ≥ (1− 4ε)k, we have

(1− 4ε)
(
x+ y
9

d20 − 2y
3
d0 + y

)
− (x+ y)δ < 1− (x+ yα)γ .

Thus, by noting δ = γ 2/2, ε is sufficiently small in terms of γ , we have

x+ y
9

d20 − 2y
3
d0 + y− 1<

1− (x+ yα)γ + (x+ y)δ
1− 4ε

− 1= −(x+ yα)γ + (x+ y)γ 2/2+ 4ε
1− 4ε

.

This leads to a contradiction since the right-hand side is negative for sufficiently small γ and
the left-hand side is non-negative for x+y

9 > 0 and the discriminant of the quadratic form 
 =
( 2y3 )

2 − 4(x+y)(y−1)
9 = 4

9 (−xy+ x+ y)= 0 since x+ y= xy.
It remains to prove that there exists no (2, ε, γ )-blue-blocked configuration. On the contrary,

suppose that V1,V2 is a (2, ε, γ )-blue-blocked configuration without loss of generality. Let M
be the set of all s ∈ [k] \ [2] such that all pairs (V1,Vs) and (V2,Vs) are ε-regular; clearly |M| ≥
(k− 2)− 2εk≥ (1− 3ε)k.

By a similar argument as aforementioned, we obtain that for i ∈ [2],

bkB ≥
∑
s∈M

((1− dis)2 − δ)t. (9)

Similarly,

bkR ≥
∑
s∈M

(d1sd2s − δ)t. (10)
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Let ds =∑2
i=1 dis, and d0 = 1

|M|
∑

s∈M ds. Adding (10) multiplied by x together with (9) for each
i ∈ [2] multiplied by y/2, noting x≤ y, and applying Cauchy’s inequality to the double sum we
obtain

y · bkB + x · bkR ≥ y
2
∑
s∈M

(
2− 2ds +

2∑
i=1

d2is − 2δ

)
t + x

∑
s∈M

(
d1sd2s − δ

)
t

≥
∑
s∈M

(
y
2
(2− 2ds)+ y

2

2∑
i=1

d2is +
x
2

(
d2s −

2∑
i=1

d2is

))
t − (x+ y)δkt

≥
∑
s∈M

(
y
2
(2− 2ds)+ y+ x

2
· d

2
s
2

)
t − (x+ y)δkt

≥|M|
(
y
2
(2− 2d0)+ y+ x

4
d20
)
t − (x+ y)δkt.

Therefore, from (3) and (4), we obtain that

|M|
(
y
2
(2− 2d0)+ y+ x

4
d20
)
t − (x+ y)δkt <

(
yα
(

1
x+ yα

− γ

)
+ x

(
1

x+ yα
− γ

))
kt.

Since |M| ≥ (1− 3ε)k, we have

(1− 3ε)
(
y+ x
4

d20 − yd0 + y
)

− (x+ y)δ < 1− (x+ yα)γ .

Thus, by noting δ = γ 2/2, ε is sufficiently small in terms of γ , we have that

y+ x
4

d20 − yd0 + y− 1<
1− (x+ yα)γ + (x+ y)δ

1− 3ε
− 1= −(x+ yα)γ + (x+ y)γ 2/2+ 3ε

1− 3ε
.

This leads to a contradiction since the right-hand side is negative for sufficiently small γ and
the left-hand side is non-negative for y+x

4 > 0 and the discriminant of the quadratic form 
 =
y2 − (y+ x)(y− 1)= −xy+ x+ y= 0. This completes the proof of Lemma 3.2. �

Now, we are ready to give proofs for Theorem 1.4 and Theorem 1.5.

Proof sketches of Theorem 1.4 and Theorem 1.5. Consider a red/blue edge colouring of KN for
some suitable N. On the contrary, we suppose that bkR < n and bkB < αn. Firstly, we apply the
refined regularity lemma due to Conlon, Fox, and Wigderson [6] to obtain an equitable ε-regular
partition of V(R) which guarantees the regularity of each cluster with itself. Secondly, from the
assumption that bkR < n and bkB < αn, Lemma 3.2 implies that there are no (3, ε, γ )-red-blocked
and (2, ε, γ )-blue-blocked configurations, which are the bases for subsequent calculations of the
corresponding book sizes. According to the densities of clusters, we partition these clusters into
red clusters and blue clusters. For Theorem 1.4, applying the counting lemma due to Conlon [5]
to a single red/blue cluster, and combining with Turán’s bound on the subgraphH defined on the
red clusters, we finally obtain 2bkR + bkB ≥ 2n+ αn, which leads to a contradiction. For Theorem
1.5, based on the lower bounds of the book sizes of R/B, we need to consider the total blue/red
densities between red-cluster sets and blue-cluster sets. The situation is more complicated and the
computation is much more technical.

The reason we have some improvements is that the specific structure, i.e., there exists no
(3, ε, γ )-red-blocked and (2, ε, γ )-blue-blocked configurations, is more in line with the essence
for 2-books than the structure that no (2, ε, γ )-red-blocked and (2, ε, γ )-blue-blocked configu-
rations used by Conlon, Fox, and Wigderson [12]. In particular, the refined regularity lemma by
Conlon, Fox, and Wigderson [6] is a key ingredient of the proofs.
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Proof of Theorem 1.4. Let 1/4≤ α ≤ 1 be fixed, and η > 0 is sufficiently small and n is sufficiently
large. Let N = (x+ yα + η)n where x+ y= xy, 1≤ x≤ y≤ 2x. Consider a red/blue edge colour-
ing of KN on vertex set [N]. Let γ > 0 be sufficiently small in terms of η. Set δ = γ 2/2. We assume
that ε > 0 is sufficiently small in terms of δ and γ .

By Lemma 2.1, there is an equitable ε-regular partition [N]= k
i=1Vi for the red graph R, i.e.,

(i) ||Vi| − |Vj|| ≤ 1 for all distinct i and j; (ii) each part Vi is ε-regular; and (iii) for every 1≤ i≤
k, there are at most εk values 1≤ j≤ k such that the pair (Vi,Vj) is not ε-regular. Because the
colours are complementary, the same conclusion holds for the blue graph. For convenience, we
may assume |Vi| =N/k= : t for all i ∈ [k]. It suffices to show that for all sufficiently large n, there
exists a red Bn or a blue Bαn. On the contrary,

bkR <
1

x+ yα + η
N = 1

x+ yα + η
kt ≤

(
1

x+ yα
− γ

)
kt, (11)

bkB <
α

x+ yα + η
N = α

x+ yα + η
kt ≤ α

(
1

x+ yα
− γ

)
kt. (12)

We call a cluster Vi red if at least half of its internal edges are red and blue otherwise. Clearly,
every cluster is either red or blue.

Now we assume that V1, . . . ,Vl are blue clusters without loss of generality and set l= λk, 0≤
λ ≤ 1. To finish the proof, we will show that (11) or (12) is not true.

We first fix a blue cluster Vi and compute the maximum size of the blue books whose bases
lie in E(Vi). Let Mi be the set of all s ∈ [k] \ {i} such that (Vi,Vs) is an ε-regular pair, and let
Mi1 =Mi ∩ [l]. Clearly, l≥ |Mi1| ≥ l− 1− εk≥ (λ − 2ε)k since |Mi| ≥ (1− ε)k.

By Lemma 3.2 (2), for every s ∈Mi1, the red density dis of the pair (Vi,Vs) satisfies dis ≤ γ , so
the blue density of (Vi,Vs) is at least 1− γ . Therefore, by Lemma 2.2 and noting δ = γ 2/2, the
maximum size S of the blue books whose bases are in E(Vi) satisfies

S≥
∑
s∈Mi1

(
(1− γ )2 − δ

)
t ≥ (1− 2γ )|Mi1|t.

Then, by noting |Mi1| ≥ (λ − 2ε)k, we find that
bkB ≥ S≥ (1− 2γ )(λ − 2ε)kt. (13)

Next we consider themaximum size of the red books whose bases are contained in a red cluster.
Let us define the graphH as follows. The vertex set ofH is [l+ 1, k] and two vertices i, j ∈ [l+ 1, k]
are joined if and only if the red density dij of the ε-regular pair (Vi,Vj) satisfies dij > 1− γ .

By Lemma 3.2 (1), the complement of H is triangle-free, i.e., the independence number of H
is at most two, hence Lemma 2.3 implies that the average degree of H is at least (k− l)/2− 1. So
there exists a vertex i ∈ [l+ 1, k] such that the degree of i in H is at least (k− l)/2− 1. Let Ni be
the set of all s ∈ [k] \ {i} such that (Vi,Vs) is an ε-regular pair, and let Ni1 =Ni ∩NH(i). Clearly,
k− l≥ |Ni1| ≥ (k− l)/2− 1− εk since |Ni| ≥ (1− ε)k.

By Lemma 2.2 and δ = γ 2/2, the maximum size S of the red books whose bases lie in E(Vi)
satisfies

S≥
∑
s∈Ni1

(
(1− γ )2 − δ

)
t ≥ (1− 2γ )|Ni1|t.

Then, by noting |Ni1| ≥ (k− l)/2− 1− εk≥ ( 1−λ
2 − 2ε

)
k, we find that

bkR ≥ S≥ (1− 2γ )
(
1− λ

2
− 2ε

)
kt. (14)

Adding (13) and (14) multiplied by 2, we obtain
2bkR + bkB ≥(1− 2γ ) (1− λ − 4ε) kt + (1− 2γ )(λ − 2ε)kt ≥ (1− 2γ − 6ε)kt
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To prove Theorem 1.4, we take x= √
α + 1, y= 1+ 1√

α
. Since ε is sufficiently small in terms

of γ and 2+α
x+yα ≤ 1 for 1

4 ≤ α ≤ 1, we have

2bkR + bkB ≥
(

2+ α

x+ yα
− 2γ − αγ

)
kt.

It follows that either 2bkR ≥ ( 2
x+yα − 2γ )kt, or bkB ≥ ( α

x+yα − αγ )kt, which contradicts (11) or
(12), respectively. The proof of Theorem 1.4 is complete. �
Proof of Theorem 1.5. Let 1/6≤ α ≤ 1/4 be fixed, and η > 0 is sufficiently small and n is suffi-
ciently large. Let N = (x+ yα + η)n, where x= 3/2 and y= 3, so x+ y= xy. Consider a red/blue
edge colouring of KN on vertex set [N]. Let γ > 0 be sufficiently small in terms of η. Set δ = γ 2/2,
and ε > 0 is taken sufficiently small in terms of δ and γ .

Similarly, by Lemma 2.1, there is an equitable ε-regular partition [N]= k
i=1Vi for the red

graph R. For convenience, we may assume |Vi| =N/k= : t for all i ∈ [k]. It suffices to show that
for all sufficiently large n, there exists a red Bn or a blue Bαn. On the contrary,

bkR <
1

x+ yα + η
N = 1

x+ yα + η
kt ≤

(
1

x+ yα
− γ

)
kt, (15)

bkB <
α

x+ yα + η
N = α

x+ yα + η
kt ≤ α

(
1

x+ yα
− 20γ

)
kt. (16)

We call a cluster Vi red if at least half of its internal edges are red and blue otherwise. Clearly,
every cluster is either red or blue. Now we assume that V1, . . . ,Vl are blue clusters without loss of
generality and set l= λk, 0≤ λ ≤ 1.We first consider a blue clusterVi and compute the maximum
size of the blue books whose bases lie in E(Vi). LetMi be the set of all s ∈ [k] \ {i} such that (Vi,Vs)
is an ε-regular pair, and let

Mi1 =Mi ∩ [l], and Mi2 =Mi ∩ [l+ 1, k].

Clearly, l≥ |Mi1| ≥ l− 1− εk≥ (λ − 2ε)k since |Mi| ≥ (1− ε)k.
By Lemma 3.2 (2), for every s ∈Mi1, the red density dis of the pair (Vi,Vs) satisfies dis ≤ γ , so

the blue density of (Vi,Vs) is at least 1− γ . Therefore, by Lemma 2.2 and noting δ = γ 2/2, the
maximum size S of the blue books whose bases are in E(Vi) satisfies

S≥
∑
s∈Mi1

(
(1− γ )2 − δ

)
t +

∑
s∈Mi2

((1− dis)2 − δ)t

≥ (1− 2γ )|Mi1|t +
∑
s∈Mi2

(1− dis)2t − δ|Mi2|t.

Then, by noting ε is sufficiently small in terms of δ, |Mi1| ≥ (λ − 2ε)k and |Mi2| ≤ k, and applying
Cauchy’s inequality, we obtain

bkB ≥ S≥(1− 2γ )(λ − 2ε)kt +
∑
s∈Mi2

(1− dis)2t − δkt

≥(1− 2γ )λkt + 1
|Mi2|

⎛
⎝∑

s∈Mi2

(1− dis)

⎞
⎠

2

t − 2δkt.
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Recall (16) and δ = γ 2/2, we obtain that

1
|Mi2|

⎛
⎝∑

s∈Mi2

(1− dis)

⎞
⎠

2

t <
(

α

x+ yα
− 20γ − (1− 2γ )λ + 2δ

)
kt ≤

(
α

x+ yα
− λ − 15γ

)
kt.

(17)

We may assume λ ≤ α
x+yα < 1/2, otherwise the right-hand side of (17) is negative, which is not

possible since the left-hand side is non-negative. Since |Mi2| ≤ k− l= (1− λ)k, we have

∑
s∈Mi2

(1− dis)< k

√(
α

x+ yα
− λ − 15γ

)
(1− λ).

Summing over all i ∈ [l] and noting that l= λk< k/2, we obtain that the total blue densities of all
regular pairs (Vi,Vs) where i ∈ [l] and s ∈ [l+ 1, k] satisfies that

l∑
i=1

∑
s∈Mi2

(1− dis)< λk2
√(

α

x+ yα
− λ − 15γ

)
(1− λ). (18)

Next we consider themaximum size of the red books whose bases are contained in a red cluster.
Let us define the graph H as follows. The vertices of H are the numbers [l+ 1, k] and two vertices
i, j are joined if and only if the red density dij of the ε-regular pair (Vi,Vj) satisfies dij > 1− γ .

By Lemma 3.2 (1), the complement of H is triangle-free, hence Lemma 2.3 implies that the
average degree of H is at least (k− l)/2− 1. Thus, recall l≤ k/2, if k is sufficiently large, then

e(H)≥ k− l
2

(
k− l
2

− 1
)

≥
(
1
4

− ε

)
(k− l)2. (19)

For any i ∈ [l+ 1, k], let Ni be the set of all s ∈ [k] \ {i} such that (Vi,Vs) is ε-regular, and let

Ni1 =Ni ∩NH(i), and Ni2 =Ni ∩ [l].

Since |Ni| ≥ (1− ε)k, we have degH (i)≥ |Ni1| ≥ degH (i)− εk. Therefore, since ε is sufficiently
small in terms of δ, the maximum size Si of the red books whose bases lie in E(Vi) satisfies

Si ≥
∑
s∈Ni1

(
(1− γ )2 − δ

)
t +

∑
s∈Ni2

(d2is − δ)t

≥(1− 2γ )|Ni1|t +
∑
s∈Ni2

d2ist − δ|Ni2|t

≥(1− 2γ ) degH (i)t +
∑
s∈Ni2

d2ist − 2δkt.

It follows that
k∑

i=l+1

Si ≥
k∑

i=l+1

(1− 2γ ) degH (i)t +
k∑

i=l+1

∑
s∈Ni2

d2ist − 2δk(k− l)t

≥(1− 2γ )2e(H)t +
k∑

i=l+1

∑
s∈Ni2

d2ist − 2δk(k− l)t.
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Hence by (19) and ε is sufficiently small in terms of δ, we obtain that
k∑

i=l+1

Si ≥(1− 2γ )(1/2− 2ε)(k− l)2t +
k∑

i=l+1

∑
s∈Ni2

d2ist − 2δk(k− l)t

≥1
2
(1− 2γ )(k− l)2t +

k∑
i=l+1

∑
s∈Ni2

d2ist − 4δk(k− l)t.

Then by noting that |Ni2| ≤ l= λk and applying Cauchy’s inequality to the double sum, we have

bkR ≥ 1
k− l

k∑
i=l+1

Si ≥1
2
(1− 2γ )(k− l)t + 1

k− l

k∑
i=l+1

∑
s∈Ni2

d2ist − 4δkt

≥1
2
(1− 2γ )(1− λ)kt + 1

(k− l)l

k∑
i=l+1

⎛
⎝∑

s∈Ni2

dis

⎞
⎠

2

t − 4δkt

≥1
2
(1− 2γ )(1− λ)kt + 1

(k− l)2l

⎛
⎝ k∑

i=l+1

∑
s∈Ni2

dis

⎞
⎠

2

t − 4δkt.

So we obtain

bkR ≥ 1
2
(1− 2γ )(1− λ)kt − 4δkt. (20)

Recall (15), we obtain that

1
(k− l)2l

⎛
⎝ k∑

i=l+1

∑
s∈Ni2

dis

⎞
⎠

2

t <
(

1
x+ yα

− γ

)
kt − 1

2
(1− 2γ )(1− λ)kt + 4δkt

≤
(

1
x+ yα

− 1− λ

2
+ 4δ

)
kt.

Recall l= λk, we obtain that the total red densities of all regular pairs (Vi,Vs) where i ∈ [l+ 1, k]
and s ∈ [l] satisfies that

k∑
i=l+1

∑
s∈Ni2

dis < (1− λ)k2
√(

1
x+ yα

− 1− λ

2
+ 4δ

)
λ. (21)

Therefore, adding (18) and (21), we obtain
l∑

i=1

∑
s∈Mi2

1=
l∑

i=1

∑
s∈Mi2

(1− dis)+
l∑

i=1

∑
s∈Mi2

dis =
l∑

i=1

∑
s∈Mi2

(1− dis)+
k∑

i=l+1

∑
s∈Ni2

dis

< λk2
√(

α

x+ yα
− λ − 15γ

)
(1− λ)+ (1− λ)k2

√(
1

x+ yα
− 1− λ

2
+ 4δ

)
λ.

Note that
∑l

i=1
∑

s∈Mi2 1≥ (k− l)l− εk2 = ((1− λ)λ − ε)k2, we have

((1− λ)λ − ε)k2 < λk2
√(

α

x+ yα
− λ − 15γ

)
(1− λ)+ (1− λ)k2

√(
1

x+ yα
− 1− λ

2
+ 4δ

)
λ.
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Suppose λ ≤ η/10, then we are done from (20) that

bkR ≥ 1
2
(1− 2γ )(1− λ)kt − 4δkt ≥

(
1
2

− γ − λ

2
− 4δ

)(
3
2

+ 3α + η

)
n≥ n

by noting α ≥ 1/6, and γ and δ are sufficiently small in terms of η. Therefore, we may assume
λ > η/10.

Since γ is sufficiently small in terms of λ, α, x and y, and δ = γ 2/2, and ε is sufficiently small
in terms of γ , we obtain

(1− λ)λ <λ

√(
α

x+ yα
− λ

)
(1− λ)+ (1− λ)

√(
1

x+ yα
− 1− λ

2

)
λ,

and consequently,

√
(1− λ)λ <

√(
α

x+ yα
− λ

)
λ +

√(
1

x+ yα
− 1− λ

2

)
(1− λ). (22)

Since (22) makes sense, we obtain 1− 2
x+yα ≤ λ ≤ α

x+yα . Recall that 1/6≤ α ≤ 1/4, x= 3/2
and y= 3, so α+11/6

x+yα ≤ 1, implying α
x+yα ≤ 1

12 + 11
12 (1− 2

x+yα )≤ 1
12 + 11

12λ = 1
12 (1− λ)+ λ. Thus

α
x+yα − λ ≤ 1

12 (1− λ), and so
√
( α
x+yα − λ)λ ≤ 1

2
√
3

√
(1− λ)λ.

Moreover, since 1
2 − 1

x+yα ≥ 0, we obtain that

1
x+ yα

− 1
2

≤
(
2
(
1− 1

2
√
3

)2
− 1

)(
1
2

− 1
x+ yα

)
≤
((

1− 1
2
√
3

)2
− 1

2

)
λ.

Thus 1
x+yα − 1−λ

2 ≤ (1− 1
2
√
3
)2λ, and so

√
( 1
x+yα − 1−λ

2 )(1− λ)≤ (1− 1
2
√
3
)
√
(1− λ)λ.

Therefore, adding these two terms, the right-hand side of (22) is at most
√
(1− λ)λ, which

leads to a contradiction. The proof of Theorem 1.5 is complete. �

4. Proof of Theorem 1.6
Let 1

6 ≤ α ≤ 52−16
√
3

121 be fixed, and p= 1−√
α(3−2α)
1−2α , and N = ( 3

1+2p2 − η)n, where η > 0 is suffi-
ciently small and n is sufficiently large. We shall show that for sufficiently large N there exists a
partially random red/blue colouring of the edges of KN for which

bkR < n, and bkB < αn.
For convenience, assume that N is divisible by 3. Partition [N] into three sets A1,A2,A3, each

with N/3 vertices, and colour the graphs induced by A1,A2,A3 in red. Then edges of the form
uv where u ∈Ai, v ∈Aj (1≤ i< j≤ 3) are independently coloured red with probability p and blue
with probability 1− p. For u, v ∈Ai, the size of the red book with base uv is a random variable
with expected value

N
3

− 2+ 2N
3
p2 ≤ N

3
(1+ 2p2)= 1

3

(
3

1+ 2p2
− η

)
(1+ 2p2)n=

(
1− (1+ 2p2)η

3

)
n. (23)

Now suppose u ∈Ai and v ∈Aj where i �= j. If uv is a blue edge, the size of the blue book with
base uv is a random variable with expected value
N
3
(1− p)2 = 1

3

(
3

1+ 2p2
− η

)
(1− p)2n=

(
(1− p)2

1+ 2p2
− (1− p)2η

3

)
n=

(
1− (1+ 2p2)η

3

)
αn,

by noting that α = (1−p)2
1+2p2 .
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By noting (23), if uv is a red edge, then the size of the red book with base uv is a random variable
with expected value

N
3
p2 +

(
2N
3

− 2
)
p≤ N

3
− 2+ 2N

3
p2 ≤

(
1− (1+ 2p2)η

3

)
n.

We will use the following version of the Chernoff bound [20, Corollary 2.4 and Theorem 2.8]:
let X1, . . . , Xt be independent random variables taking values in {0,1} and let X =∑t

i=1 Xi. If
x≥ cE(X) for some c> 1, then Pr(X ≥ x)≤ e−c′x, where c′ = ln c− 1+ 1

c .
Plugging in c= 1/(1− (1+2p2)η

3 ), since y= ln x− 1+ 1
x is increasing when x≥ 1, we find that

c′ > 0. Since Pr(X1 ≥ n)≤ e−c′n and Pr(X2 ≥ αn)≤ e−c′αn, whereX1 denotes the size of a red book
and X2 denotes the size of a blue book, applying a union bound over all edges, we obtain that the
probability that there is a red book Bn or a blue book Bαn tends to 0 as n→ ∞. Thus for large
enough N the desired red/blue colouring of the edges of KN exists.

5. Concluding remarks
From the result of Nikiforov and Rousseau [14], we know the exact value of r(Bαn, Bn) for 0< α <

1/6; and from Theorem 1.4, we know the asymptotic behaviour of r(Bαn, Bn) for 1/4≤ α ≤ 1, i.e.,
the random lower bound r(Bαn, Bn)≥ (

√
α + 1)2n+ o(n) is asymptotically tight for 1/4≤ α ≤ 1.

Moreover, the asymptotic behaviour of r(Bn, Bn) is already known from a more general result, see
[5,6]. For the remaining cases, when 1/6≤ α ≤ 1/4, we only know that r(Bαn, Bn)≤ ( 32 + 3α)n+
o(n) from Theorem 1.5. We do not know whether this upper bound is asymptotically tight or not
for any 1/6< α < 1/4. Note that for any 1/6< α < 1/4,

3/2+ 3α > (
√

α + 1)2,
therefore, if r(Bαn, Bn)= ( 32 + 3α)n+ o(n) holds in this interval, then it means that Conjecture
1.3 proposed by Conlon, Fox, and Wigderson [12] indeed holds in this interval. In particular, we
already know that for any 1

6 ≤ α < 52−16
√
3

121 ≈ 0.2007, Conjecture 1.3 holds from Theorem 1.6.
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