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Polytopal Realizations
of Generalized Associahedra

To Robert Moody on the occasion of his 60th birthday

Frédéric Chapoton, Sergey Fomin and Andrei Zelevinsky

Abstract. We prove polytopality of the generalized associahedra introduced in [5].
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In [5], a complete simplicial fan was associated to an arbitrary finite root system.
It was conjectured that this fan is the normal fan of a simple convex polytope (a

generalized associahedron of the corresponding type). Here we prove this conjecture
by explicitly exhibiting a family of such polytopal realizations (see Theorems 1.4–1.5
and Corollary 1.9 below).

The name “generalized associahedron” was chosen because for the type An the

construction in [5] produces the n-dimensional associahedron (also known as the
Stasheff polytope). Its face complex was introduced by J. Stasheff [13] as a basic tool
for the study of homotopy associative H-spaces. The fact that this complex can be
realized by a convex polytope was established much later in [8, 6]. Note that the

realizations given in Corollary 1.9 are new even in this classical case.

The face complex of a generalized associahedron of type Bn (or Cn) is another fa-
miliar polytope: the n-dimensional “cyclohedron.” It was first introduced by R. Bott
and C. Taubes [1] (and given its name by J. Stasheff [14]) in connection with the
study of link invariants; an alternative combinatorial construction was independently

given by R. Simion [11, 12]. Polytopal realizations of cyclohedra were constructed ex-
plicitly by M. Markl [9] (cf. also [14, Appendix B]) and R. Simion [12]; again, our
construction in Corollary 1.9 gives a new family of such realizations.
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Associahedra of types A and B have a number of remarkable connections with al-
gebraic geometry [6], topology [13], moduli spaces, knots and operads [1, 3], com-

binatorics [10], etc. It would be interesting to extend these connections to the type D
and the exceptional types.

As explained in [5], the construction of generalized associahedra given there was

motivated by the theory of cluster algebras, introduced in [4] as a device for studying
dual canonical bases and total positivity in semisimple Lie groups. This motivation
remained a driving force for the present paper as well; although cluster algebras are
not mentioned below, some of the present constructions and results will play an im-

portant role in a forthcoming sequel to [4]; this especially applies to Theorem 1.14.

The paper is organized as follows. In order to make it self-contained, we begin Sec-
tion 1 by recalling the necessary background from [5]; in particular, we reproduce the

construction of generalized associahedra as simplicial fans. We then state our main
results. Section 2 describes their proof modulo three key statements: Theorem 1.14,
Theorem 1.17, and Lemma 2.5. These are proved, respectively, in Sections 3, 4 and 5.

Acknowledgments We are grateful to Bernd Sturmfels and Jürgen Bokowski for
supplying us, on the prehistoric stage of this project, in June 2000, with the evidence
that the generalized associahedron of type D4 can indeed be realized as a convex
polytope. Additional experimental evidence (including the exceptional types E6, E7,

E8) was later obtained with the help of the software porta.

We are happy to dedicate this paper to Robert Moody, and are grateful for his
support and encouragement since the early stages of this project. Some of the ideas

presented here were reported for the first time at the conference “Aspects of Symme-
try” held in his honor at The Banff Centre in August 2001.

1 Main Results

Let Φ be a rank n finite root system with the set of simple roots Π = {αi : i ∈ I}
and the set of positive roots Φ>0. Let Q = ZΠ denote the root lattice and QR the
ambient real vector space. Let W be the Weyl group of Φ. It is generated by the
simple reflections si , i ∈ I; they act on simple roots by

si(α j) = α j − ai jαi ,

where A = (ai j)i, j∈I is the Cartan matrix of Φ. Let w◦ denote the longest element of
W .

Without loss of generality, from this point on we assume that Φ is irreducible.

Then the Coxeter graph associated to Φ is a tree; recall that this graph has the index
set I as the set of vertices, with i and j joined by an edge whenever ai j < 0. In
particular, the Coxeter graph is bipartite; the two parts I+, I− ⊂ I are determined
uniquely up to renaming. The sign function ε : I → {+,−} is defined by

ε(i) =

{

+ if i ∈ I+;

− if i ∈ I−.
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For α ∈ QR, we denote by [α : αi] the coefficient of αi in the expansion of α in
the basis Π. Let τ+ and τ− denote the piecewise-linear automorphisms of QR given

by

[τεα : αi] =

{

−[α : αi]−
∑

j 6=i ai j max([α : α j], 0) if i ∈ Iε;

[α : αi] otherwise.
(1.1)

Let Φ≥−1 = Φ>0 ∪ (−Π). It is easy to see that each of τ+ and τ− is an involution
that preserves the setΦ≥−1. In fact, the action of τ+ and τ− inΦ≥−1 can be described
as follows:

τε(α) =

{

α if α = −αi , i ∈ I−ε;
∏

i∈Iε
si(α) otherwise.

(1.2)

(The product
∏

i∈Iε
si is well defined since its factors commute). To illustrate, con-

sider the type A2, with I+ = {1} and I− = {2}. Then

−α1
τ+←→ α1

τ−
←→ α1 + α2

τ+←→ α2
τ−
←→ −α2.

� �

τ− τ+

(1.3)

Theorem 1.1 ([5, Theorem 2.6]) Every 〈τ−, τ+〉-orbit in Φ≥−1 has a non-empty in-

tersection with (−Π). Furthermore, the correspondence Ω 7→ Ω ∩ (−Π) is a bijection
between the 〈τ−, τ+〉-orbits in Φ≥−1 and the 〈−w◦〉-orbits in (−Π).

According to [5, Section 3.1], there exists a unique function (α, β) 7→ (α ‖ β) on
Φ≥−1 × Φ≥−1 with nonnegative integer values, called the compatibility degree, such
that

(−αi ‖ α) = max([α : αi], 0)(1.4)

for any i ∈ I and α ∈ Φ≥−1, and

(τεα ‖ τεβ) = (α ‖ β)(1.5)

for any α, β ∈ Φ≥−1 and any sign ε. We say that α and β are compatible if (α ‖ β) =

0. (This is equivalent to (β ‖ α) = 0 by [5, Proposition 3.3.2].)
The simplicial complex∆(Φ) (a generalized associahedron) has Φ≥−1 as the set of

vertices; its simplices are the subsets of mutually compatible elements in Φ≥−1. The
maximal simplices of∆(Φ) are called clusters.

Theorem 1.2 ([5, Theorems 1.8, 1.10]) All clusters are of the same size n, i.e., the

simplicial complex ∆(Φ) is pure of dimension n − 1. Moreover, each cluster is a Z-
basis of the root lattice Q. The simplicial cones generated by the clusters form a complete
simplicial fan in QR: the interiors of these cones are mutually disjoint, and they tile the
entire space QR.
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Corollary 1.3 ([5, Theorem 3.11]) Every vector γ in the root lattice Q has a unique
cluster expansion, i.e., can be expressed uniquely as a nonnegative linear combination of

mutually compatible roots from Φ≥−1.

An efficient algorithm for computation of cluster expansions is presented in Sec-
tion 5.4.

By a common abuse of notation, we denote the simplicial fan in Theorem 1.2 by
∆(Φ), since it provides a geometric realization for the (spherical) simplicial complex
∆(Φ).

Our main result is the following theorem that confirms Conjecture 1.12 from [5].

Theorem 1.4 The simplicial fan ∆(Φ) is the normal fan of a simple n-dimensional
convex polytope.

The type A2 case of Theorem 1.4 is illustrated in Figure 1.
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Figure 1: The complex∆(Φ) and the corresponding polytope in type A2

Theorem 1.4 implies in particular the following statement conjectured in [5, Con-
jecture 1.13]: the complex∆(Φ), viewed as a poset under reverse inclusion, is the face

lattice of a simple n-dimensional convex polytope. As pointed out in [5], the type
A and type B (or, equivalently, type C) cases of this statement were known before:
the corresponding polytopes are, respectively, the Stasheff polytope, or associahedron
(see, e.g., [13, 8] or [6, Chapter 7]) and the Bott-Taubes polytope, or cyclohedron (see

[1, 9, 12]).

To make Theorem 1.4 more specific, let us recall some terminology and notation
related to normal fans of convex polytopes (cf., e.g., [15, Example 7.3]); we shall only

need the special case when a polytope is simple. Let P be a full-dimensional simple
convex polytope in a real vector space V of dimension n. The support function of P is
a real-valued function F on the dual vector space V ∗ given by

F(γ) = max
ϕ∈P
〈γ, ϕ〉.(1.6)

https://doi.org/10.4153/CMB-2002-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-054-1


Polytopal Realizations of Generalized Associahedra 541

The normal fan N(P) is a complete simplicial fan in the dual space V ∗ whose maximal
(i.e., full-dimensional) cones are the domains of linearity for F. More precisely, these

cones correspond to the vertices of P as follows: each vertex ϕ of P gives rise to the
cone

{γ ∈ V ∗ : F(γ) = 〈γ, ϕ〉}.

We prove Theorem 1.4 by explicitly describing a class of support functions F
whose domains of linearity are the maximal cones of the fan ∆(Φ). Any such func-
tion is uniquely determined by its restriction to a set of representatives of 1-dimen-
sional cones in ∆(Φ). A natural choice of such a set is Φ≥−1. By Theorem 1.1,

〈τ+, τ−〉-invariant functions on Φ≥−1 are naturally identified with 〈−w◦〉-invariant
functions on −Π. With this in mind, we state the following refinement of Theo-
rem 1.4.

Theorem 1.5 Suppose that a function F : −Π→ R satisfies two conditions:

F
(

w◦(αi)
)
= F(−αi) for all i ∈ I;(1.7)

∑

i∈I

ai jF(−αi) > 0 for all j ∈ I.(1.8)

Then its unique 〈τ+, τ−〉-invariant extension to Φ≥−1 (also denoted by F) extends by
linearity to the support function of a simple convex polytope with normal fan∆(Φ).

Let the α∨i , for i ∈ I, be the simple coroots for Φ, i.e., the simple roots of the dual
root system Φ∨ in Q∗

R
; recall that they are given by 〈α∨i , α j〉 = ai j .

Remark 1.6 For any 〈−w◦〉-invariant regular dominant coweight λ∨ ∈ Q∗
R

, the
function F(−αi) = [λ∨ : α∨i ] satisfies conditions (1.7)–(1.8). Indeed, the left-hand

side in (1.8) is then equal to 〈λ∨, α j〉, and the positivity of all these values is precisely
what makes λ∨ regular dominant. In particular, one can take λ∨ = ρ∨, the half-sum
of all positive coroots; for this choice, the left-hand side of each inequality in (1.8) is
equal to 1.

Remark 1.7 In view of [7, Theorem 4.3], condition (1.8) in Theorem 1.5 implies
that F(−αi) > 0 for all i ∈ I.

Remark 1.8 One can prove the following converse of Theorem 1.5: if a 〈τ+, τ−〉-
invariant function F onΦ≥−1 extends by linearity to the support function of a simple
convex polytope with normal fan ∆(Φ), then its restriction to (−Π) satisfies condi-
tions (1.7)–(1.8).

The definition (1.6) of a support function implies the following explicit geometric
realizations of generalized associahedra.
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Corollary 1.9 Let F : −Π→ R be a function satisfying the conditions in Theorem 1.5.
Then its unique 〈τ+, τ−〉-invariant extension to Φ≥−1 (also denoted by F) defines the

following simple convex polytope P in Q∗
R

whose normal fan is∆(Φ) and whose support
function is (the piecewise-linear extension of) F:

1. For a cluster C in Φ≥−1, let ϕC ∈ Q∗
R

be the (unique) linear form such that F(α) =
〈ϕC , α〉 for α ∈ C. The vertices of P are the points ϕC for all clusters C.

2. The minimal system of linear inequalities defining P is

〈ϕ, α〉 ≤ F(α), for all α ∈ Φ≥−1.(1.9)

Remark 1.10 Let us represent a point ϕ ∈ Q∗
R

by an n-tuple (z j = 〈ϕ, α j〉) j∈I . In
these coordinates, Corollary 1.9.2 takes the following form: the generalized associa-
hedron is given inside the real affine space R

I by the set of linear inequalities

∑

j

[α : α j]z j ≤ F(α), for all α ∈ Φ≥−1.(1.10)

(cf. (1.9)). Here, as before, F is an arbitrary 〈τ+, τ−〉-invariant function on Φ≥−1

satisfying (1.8).

In the examples below, we use the numeration of simple roots from [2].

Example 1.11 In type A2, there is only one 〈τ+, τ−〉-orbit, so F must be constant;
say, F(α) = c for all α. Condition (1.8) requires that c > 0. Inequalities (1.10) then
become

max(−z1,−z2, z1, z2, z1 + z2) ≤ c,

defining a pentagon (cf. Figure 1).
In type A3, there are two 〈τ+, τ−〉-orbits:

{−α1,−α3, α1, α3, α1 + α2, α2 + α3} and {−α2, α2, α1 + α2 + α3};

let c1 and c2 be the corresponding values of F. Condition (1.8) takes the form

0 < c1 < c2 < 2c1.

For c1 and c2 satisfying these inequalities, the associahedron of type A3 can be defined
by the corresponding version of (1.10):

max(−z1,−z3, z1, z3, z1 + z2, z2 + z3) ≤ c1

max(−z2, z2, z1 + z2 + z3) ≤ c2, .

In particular, choosing ci = [ρ∨ : α∨i ] (see Remark 1.6), we obtain c1 = 3/2 and c2 =

2. The corresponding polytope is shown in Figure 2, where we marked each visible
facet by the (positive) root α that defines the corresponding supporting hyperplane
∑

j[α : α j]z j = F(α). (The hidden facets correspond in the same way to the negative
simple roots.)
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Figure 2: The type A3 associahedron

Example 1.12 In type C2, there are two 〈τ+, τ−〉-orbits: {−α1, α1, α1 + α2} and
{−α2, α2, 2α1 + α2}; let c1 and c2 be the corresponding values of F. Condition (1.8)
takes the form

0 < c1 < c2 < 2c1.

The generalized associahedron of type C2 (the rank 2 cyclohedron) is the hexagon

max(−z1, z1, z1 + z2) ≤ c1,

max(−z2, z2, 2z1 + z2) ≤ c2.

In type C3, there are three 〈τ+, τ−〉-orbits:

{−α1, α1, α1 + α2, α2 + α3},

{−α2, α2, α1 + α2 + α3, α1 + 2α2 + α3},

{−α3, α3, 2α2 + α3, 2α1 + 2α2 + α3}.

Let c1, c2, and c3 be the corresponding values of F. Condition (1.8) takes the form

c2 < 2c1, c1 + c3 < 2c2, c2 < c3.

https://doi.org/10.4153/CMB-2002-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-054-1


544 Frederic Chapoton, Sergey Fomin and Andrei Zelevinsky

The generalized associahedron of type C3 (the rank 3 cyclohedron) is then given by
the inequalities

max(−z1, z1, z1 + z2, z2 + z3) ≤ c1

max(−z2, z2, z1 + z2 + z3, z1 + 2z2 + z3) ≤ c2.

max(−z3, z3, 2z2 + z3, 2z1 + 2z2 + z3) ≤ c3.

The choice ci = [ρ∨ : α∨i ] leads to (c1, c2, c3) = (5/2, 4, 9/2). This polytope is shown
in Figure 3, where we followed the same conventions as in Figure 2.

�
�

�
�

�
�

�
�

�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@

�
�
�
�

�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

��

@
@

@
@

HHHHHHHH

�
�
�
�
B

B
B
B

B
B

HHHH

@
@

@
@

@
@

@
@

@
@

@@

HHHH

�
�

�
�

A
A

A
A

�
�

�
�HHHHHHHH

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

α2

α1 + α2

α2 + α3

2α2 + α3

α1 + α2 + α3

α1 + 2α2

+α3

α1

α3

α1 + 2α2 + α3

s s

s

s s

s s s

s s

s s

s

s

s

s

s s

s s

Figure 3: The type C3 generalized associahedron (cyclohedron)

Our proof of Theorem 1.5 relies on the following results that we find of indepen-
dent interest.
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Proposition 1.13 Let C = R≥0C be the maximal cone of∆(Φ) generated by a cluster
C. Every piecewise-linear transformation σ ∈ 〈τ+, τ−〉 restricts to a linear transforma-

tion on C, sending this cone bijectively to the cone σ(C) = R≥0σ(C). Consequently, if
γ ∈ Q has the cluster expansion γ =

∑

β mββ, then σ(γ) has the cluster expansion
σ(γ) =

∑

β mβσ(β).

Proof It suffices to prove this for the generators σ = τε. Then the claim follows from

the definition (1.1) once we notice that the components [γ : αi] do not change sign
when γ runs over C.

Theorem 1.14 Suppose that n > 1, and let α and α ′ be two elements of Φ≥−1 such

that (α ‖ α ′) = (α ′ ‖ α) = 1. Then the set

E(α, α ′) =
{
σ
(
σ−1(α) + σ−1(α ′)

)
: σ ∈ 〈τ+, τ−〉

}
(1.11)

consists of two elements of Q, one of which is α + α ′, and another will be denoted by
α ] α ′. In the special case where α ′ = −α j , j ∈ I, we have

(−α j ) ] α = τ−ε( j)

(
−α j + τ−ε( j)(α)

)

= α− α j +
∑

i 6= j

ai jαi .
(1.12)

Remark 1.15 If n = 1, i.e., Φ is of type A1 with a unique simple root α1, then

{α, α ′} = {−α1, α1}, and the group 〈τ+, τ−〉 is just the Weyl group W = 〈s1〉.
Thus, in this case, the set in Theorem 1.14 consists of a single element α + α ′ = 0. It
is then natural to set α ] α ′ = 0 as well.

Remark 1.16 For α ′ = −α j ∈ −Π, the condition (α ‖ α ′) = (α ′ ‖ α) = 1 is

equivalent to

[α : α j] = [α∨ : α∨j ] = 1,(1.13)

whereα∨ is the coroot corresponding toα under the natural bijection betweenΦ and
the dual system Φ∨. This follows from (1.4) and the property (α ‖ β) = (β∨ ‖ α∨)
established in [5, Proposition 3.3.1].

Theorem 1.17 Let α, α ′ ∈ Φ≥−1 be such that (α ‖ α ′) = (α ′ ‖ α) = 1. Assume
that [α ] α ′ : αi] > 0 for some i ∈ I. Then [α + α ′ : αi] > 0.

2 Proof of Theorem 1.5 (General Layout)

The proof of Theorem 1.5 presented in this section depends on Theorem 1.14, The-
orem 1.17, and Lemma 2.5, which will be proved in Sections 3, 4 and 5, respectively.
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2.1 Generalities on Normal Fans

As before, let V be an n-dimensional vector space over R. Not every complete sim-
plicial fan ∆ in the dual space V ∗ is the normal fan of a simple polytope in V . The
following lemma provides a useful criterion, which will be our tool in proving Theo-

rem 1.5.

Lemma 2.1 Let ∆ be a complete simplicial fan in V ∗. Let F : V ∗ → R be a contin-
uous function which is linear within each maximal cone of ∆; as such, F is uniquely

determined by its values on a set S of representatives of 1-dimensional cones in∆. Then
the following are equivalent:

(i) ∆ is the normal fan N(P) of a (unique) full-dimensional simple convex polytope P

in V with the support function F.
(ii) The values F(α), α ∈ S satisfy the following system of linear inequalities. For each

pair of adjacent maximal cones C and C
′ in ∆, denote {α} = (S ∩ C) − C

′ and
{α ′} = (S ∩ C

′)− C, and write the unique (up to a nonzero real multiple) linear

dependence between the elements of S ∩ (C ∪ C
′) in the form

mαα + mα ′α
′ −

∑

β∈S∩C∩C ′

mββ = 0,(2.1)

where mα and mα ′ are positive real numbers. Then

mαF(α) + mα ′F(α ′)−
∑

β∈S∩C∩C ′

mβF(β) > 0.(2.2)

Proof Within each maximal cone C of∆, the function F is given by F(γ) = 〈γ, ϕC〉,
for some (unique) ϕC ∈ V . In view of (1.6), condition (i) is equivalent to

(i ′) F(γ) > 〈γ, ϕC〉 for all maximal cones C in∆ and all γ ∈ V ∗ − C.

It is clear that (i ′)⇒ (ii): the inequality (2.2) is a special case of the inequality in
(i ′) for γ = α ′.

To show that (ii)⇒ (i ′), take a maximal cone C in∆ and a point γ ∈ V ∗−C. For

dimension reasons, there exists a line segment L joining γ with some interior point of
C and not crossing any cone of codimension two or more in∆. Let C1,C2, . . . ,Cm =

C be all maximal cones consecutively crossed by L (so that γ ∈ C1). Condition (ii)
then implies that 〈δ, ϕCk

〉 > 〈δ, ϕCk+1
〉 for k = 1, . . . ,m− 1 and δ ∈ L∩ (Ck−Ck+1).

Looking at the restrictions of the linear forms ϕCk
onto L, we conclude that

F(γ) = 〈γ, ϕC1
〉 > 〈γ, ϕC2

〉 > · · · > 〈γ, ϕC〉,

implying (i ′).

Thus a complete simplicial fan∆ is a normal fan for some polytope P if and only
if there exists a function F : S→ R>0 defined on a given set S of representatives of 1-
dimensional cones in∆ that satisfies the linear inequalities in part (ii) of Lemma 2.1.
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2.2 Dependences (2.1) and Cluster Expansions

In what follows, ∆ will be the fan ∆(Φ), with the set of representatives S = Φ≥−1.
To deduce Theorem 1.5 from Lemma 2.1, we need to describe explicitly all linear
dependences of the form (2.1).

Lemma 2.2 Each of the dependences (2.1) for the simplicial fan ∆(Φ) can be nor-
malized (that is, multiplied by a positive constant) to have the following features: (α ‖
α ′) = (α ′ ‖ α) = 1, mα = mα ′ = 1, and all coefficients mβ are nonnegative integers,
i.e., the dependence expresses the cluster expansion of α + α ′.

Proof Let C and C
′ be two adjacent maximal cones in∆(Φ) generated by the clusters

C and C ′, respectively. Let {α} = C − C ′ and {α ′} = C ′ − C . Consider the
corresponding dependence (2.1). Since all the participating vectors lie in the lattice

Q, we can normalize it so that the coefficients become relatively prime integers. We
claim that this normalization has all the features listed in the lemma. First, let us
show that mα = mα ′ = 1. Indeed, by Theorem 1.2, the cluster C is a Z-basis of the
root lattice Q, so all the coefficients in the expansion

α ′ = −
mα

mα ′
α +

∑

β∈C∩C ′

mβ

mα ′
β

are integers, implying that mα ′ = 1. In view of the obvious symmetry between α and

α ′, we have mα = 1 as well.

Next, let us show that (α ‖ α ′) = 1 (implying that (α ′ ‖ α) = 1, by the above-
mentioned symmetry). Since every transformation in the group 〈τ+, τ−〉 preserves
the compatibility degree and sends clusters to clusters, Theorem 1.1 allows us to as-
sume without loss of generality that α = −αi ∈ −Π. In view of (1.4), we need to

show that [α ′ − αi : αi] = 0. This follows from the fact that αi does not occur in
any root β ∈ C ∩ C ′ appearing in (2.1); indeed, every such β is compatible with
α = −αi .

It remains to show that all coefficients mβ are nonnegative (note that this property
does not hold for arbitrary simplicial fans). We will deduce this from the following

result.

Lemma 2.3 Let α, α ′ ∈ Φ≥−1 be such that (α ‖ α ′) = (α ′ ‖ α) = 1. Then

every root β that appears with a positive coefficient in the cluster expansion of α + α ′ is
compatible with both α and α ′, and also with any root which is itself compatible with
both α and α ′.

Proof Let γ ∈ Φ≥−1 be either one of α and α ′, or be compatible with α and α ′. We
need to show that β and γ are compatible. To do this, choose σ ∈ 〈τ+, τ−〉 so that

σ(γ) = −αi for some i ∈ I. It suffices to show that σ(β) is compatible with −αi .
By Proposition 1.13, the root σ(β) appears with positive coefficient in the cluster
expansion of σ(α + α ′). Note that by Theorem 1.14, σ(α + α ′) is equal to either
σ(α) + σ(α ′) or σ(α) ] σ(α ′). We need to consider the following two cases:
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Case 1 γ is one of α and α ′, say γ = α. Then σ(α) = −αi , and [σ(α ′) : αi] = 1.
Thus [σ(α)+σ(α ′) : αi] = 0. By Theorem 1.17, this implies [σ(α)]σ(α ′) : αi] ≤ 0.

It follows that [σ(β) : αi] ≤ 0; hence σ(β) is compatible with−αi , as desired.

Case 2 γ is compatible with α and α ′. Then both σ(α) and σ(α ′) are compatible
with −αi , that is, [σ(α) : αi] ≤ 0 and [σ(α ′) : αi] ≤ 0. The same argument as in

Case 1 then shows that σ(β) is compatible with−αi , and we are done.

Let us finish the proof of Lemma 2.2. By Lemma 2.3, each β that appears with a
positive coefficient in the cluster expansion of α + α ′ is compatible with every root

in C and with every root in C ′. Hence β ∈ C ∩C ′, so the cluster expansion of α+α ′

does indeed coincide with the dependence (2.1). Lemma 2.2 is proved.

2.3 Completing the Proof of Theorem 1.5

Combining Lemmas 2.1 and 2.2, we see that Theorem 1.5 becomes a consequence of
the following statement.

Lemma 2.4 Let F be a 〈τ+, τ−〉-invariant function onΦ≥−1 satisfying condition (1.8)
in Theorem 1.5. Let α, α ′ ∈ Φ≥−1 be such that (α ‖ α ′) = (α ′ ‖ α) = 1, and let

α + α ′ =
∑

β

mββ(2.3)

be the cluster expansion of α + α ′. Then

F(α) + F(α ′)−
∑

β

mβF(β) > 0.(2.4)

Using 〈τ+, τ−〉-invariance of F, we can substantially reduce the list of linear in-
equalities to be checked. Namely, we claim that each inequality of the form (2.4)

appears already in the special case where α ′ ∈ −Π. Indeed, take any pair (α, α ′) as
in Lemma 2.4. By Theorem 1.1, there exists σ ∈ 〈τ+, τ−〉 such that σ(α ′) = −α j for
some j ∈ I. By Proposition 1.13,

σ(α + α ′) =
∑

β

mβσ(β)

is the cluster expansion of σ(α + α ′). On the other hand, Theorem 1.14 implies that

σ(α + α ′) ∈ {σ(α) + σ(α ′), σ(α) ] σ(α ′)}

∈
{
σ(α)− α j , τ−ε( j)

(
τ−ε( j)σ(α)− α j

)}
.

We thus have the following alternative: either

σ(α)− α j =

∑

β

mβσ(β)
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is the cluster expansion of σ(α)− α j , or

τ−ε( j)σ(α)− α j =

∑

β

mβτ−ε( j)σ(β)

is the cluster expansion of τ−ε( j)σ(α) − α j . Each of these cluster expansions is of

the form (2.3), and each gives rise to the same inequality (2.4) as the original pair
{α, α ′}. Our claim follows.

Summarizing, we have reduced Theorem 1.5 (modulo Theorems 1.14 and 1.17)
to the following lemma.

Lemma 2.5 Let F : −Π→ R be a function satisfying conditions (1.7)–(1.8). Let the
roots α ∈ Φ>0 and α j ∈ Π satisfy (1.13), and let

α− α j =

∑

β

mββ(2.5)

be the cluster expansion of α− α j . Then

F(−α j ) + F(α)−
∑

β∈Φ>0

mβF(β) > 0.(2.6)

Example 2.6 Take any j ∈ I and set

α = τ−ε( j)τε( j)(−α j ) = α j −
∑

i 6= j

ai jαi .

Then (1.13) is satisfied (indeed, we haveα∨ = α∨j −
∑

i 6= j a jiα
∨
i ). The corresponding

inequality (2.6) is just (1.8), so Lemma 2.5 holds in this instance.

Lemma 2.5 is proved in Section 5.

3 Proof of Theorem 1.14

We denote by h the Coxeter number, i.e., the order in W of the (Coxeter) element
∏

i∈I−
si ·
∏

i∈I+
si . We shall use the following result; although not explicitly stated in

[5], it is an immediate consequence of [5, Theorem 1.4, Proposition 2.5].

Theorem 3.1 We have

τ−τ+τ− · · · τ∓τ±
︸ ︷︷ ︸

h+2 factors

= τ+τ−τ+ · · · τ±τ∓
︸ ︷︷ ︸

h+2 factors

= −w◦.(3.1)

Furthermore, if i ∈ Iε is such that w◦(−αi) 6= αi , then the 〈τ−, τ+〉-orbit of −αi

contains precisely h positive roots, and they are

τε(−αi), τ−ετε(−αi), . . . , τ± · · · τ−ετε
︸ ︷︷ ︸

h factors

(−αi);
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if w◦(−αi) = αi , then the 〈τ−, τ+〉-orbit of −αi contains precisely h/2 positive roots,
and they are

τε(−αi), τ−ετε(−αi), . . . , τ± · · · τ−ετε
︸ ︷︷ ︸

h/2 factors

(−αi).

For every σ ∈ 〈τ+, τ−〉, let us denote

α +σ α
′
= σ(σ−1α + σ−1α ′),(3.2)

so that

E(α, α ′) = {α +σ α
′ : σ ∈ 〈τ+, τ−〉}

(cf. (1.11)). This definition implies at once that

α +σ1σ2
α ′ = σ1(σ−1

1 α +σ2
σ−1

1 α
′)(3.3)

for any σ1 and σ2. Consequently,

E(σα, σα ′) = σ
(

E(α, α ′)
)

(3.4)

for any σ ∈ 〈τ+, τ−〉.
The following lemma is immediate from the definitions (1.1) and (1.2).

Lemma 3.2 If both α andα ′ are positive roots, or both τεα and τεα
′ are positive roots

for some sign ε, then α +τε α
′ = α + α ′.

To prove the main statement of Theorem 1.14, we need to show that the set
E(α, α ′) consists of two elements whenever α, α ′ ∈ Φ≥−1 satisfy (α ‖ α ′) =
(α ′ ‖ α) = 1. In view of (3.4), we can assume without loss of generality that

α ′ = −α j ∈ −Π; then α is a positive root. We calculate

−α j +τ−ε( j)
α = α− α j +

∑

i 6= j

ai jαi ,(3.5)

implying −α j +τ−ε( j)
α 6= −α j + α (here we use the condition n > 1) and proving

(1.12). It remains to show that

E(−α j , α) = {−α j + α,−α j +τ−ε( j)
α}.(3.6)

Let us abbreviate
σ(ε; l) = τετ−ετε · · · τ±

︸ ︷︷ ︸

l factors

.

We need to show that for any sign ε and any l ≥ 1, we have

−α j +σ(ε;l) α ∈ {−α j + α,−α j +τ−ε( j)
α}.(3.7)
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We prove (3.7) by induction on l. The case l = 1 is clear since one checks easily that

−α j +τε( j)
α = −α j + α.

So we can assume that l > 1, and that our claim holds for all smaller values of l.
Let us dispose of the case ε = −ε( j). We have

σ
(
−ε( j); l

)
= τ−ε( j)σ

(
ε( j); l − 1

)
.

Applying (3.3) to this factorization, we obtain

−α j +σ(−ε( j);l) α = τ−ε( j)(−α j +σ(ε( j);l−1) τ−ε( j)α).(3.8)

By the induction assumption,

−α j +σ(ε( j);l−1) τ−ε( j)α ∈ {−α j + τ−ε( j)α,−α j +τ−ε( j)
τ−ε( j)α}

Applying τ−ε( j) and using (3.8), we obtain (3.7).
Let us consider the case ε = ε( j). If l ≥ h + 2, then we have σ(ε; l) = σ1σ2 with

σ1 = σ(ε; l − h− 2) and σ2 = −w◦ (see (3.1)). Applying (3.3), we obtain

−α j +σ(ε;l) α = −α j +σ(ε;l−h−2) α;

here we use an obvious fact that β +σ β
′ = β + β ′ if σ is a linear transformation.

Therefore, we can assume that 2 ≤ l ≤ h + 1. Then the same argument shows that

−α j +σ(ε;l) α = −α j +σ(−ε;h+2−l) α.(3.9)

In particular, we have

−α j +σ(ε( j);h+1) α = −α j +τ−ε( j)
α;

Therefore, (3.7) holds for l = h + 1, and we can assume that 2 ≤ l ≤ h.
Now it is time to use Lemma 3.2. Applying (3.3) to the factorization σ(ε; l) =

σ(ε; l− 1)τ±, we see that

−α j +σ(ε;l) α = −α j +σ(ε;l−1) α

whenever both σ(ε; l − 1)−1(−α j ) and σ(ε; l − 1)−1(α) are positive roots, or both

σ(ε; l)−1(−α j) and σ(ε; l)−1(α) are positive roots. Thus, we can assume that each of
the pairs {σ(ε; l− 1)−1(−α j), σ(ε; l− 1)−1(α)} and {σ(ε; l)−1(−α j ), σ(ε; l)−1(α)}
contains a root from −Π. Since 2 ≤ l ≤ h, Theorem 3.1 implies that both roots
σ(ε; l−1)−1(−α j) and σ(ε; l)−1(−α j) are positive. Therefore, both σ(ε; l−1)−1(α)

and σ(ε; l)−1(α) must belong to−Π. This is only possible whenα = σ(ε; l−1)(−αi)
for some i ∈ I, and the last factor in σ(ε; l − 1) is τε(i). To complete the proof, it
suffices to show that, in these particular circumstances, we have

−α j +σ(ε;l) α = −α j +τ−ε α(3.10)
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(remember that ε = ε( j)). Using (3.9) and (3.3), we obtain

−α j +σ(ε;l) α = τ−ε(−α j +σ(ε;h+1−l) α
′),

where
α ′ = τ−ε(α) = σ(−ε; l)(−αi).

Therefore, (3.10) can be rewritten as

−α j +σ(ε;h+1−l) α
′
= −α j + α ′.

We prove this by iterating Lemma 3.2: all we need is to show that all the roots
σ(ε; k)−1(−α j) and σ(ε; k)−1(α ′) for 1 ≤ k ≤ h − l are positive. The fact that
every σ(ε; k)−1(−α j ) is positive follows from the second part of Theorem 3.1. As for

σ(ε; k)−1(α ′), this root is equal to σ
(
ε(i); k + l

)−1
(−αi), so Theorem 3.1 assures its

positivity as well. This completes the proof of Theorem 1.14.

4 Proof of Theorem 1.17

We proceed case by case. For the classical types, we use the planar geometric realiza-
tions of Φ≥−1 given in [5, Section 3.5].

4.1 Type An

We identify the set I in a standard way with [1, n] = {1, . . . , n}. The positive roots
are

α[i, j] = αi + αi+1 + · · · + α j(4.1)

for 1 ≤ i ≤ j ≤ n.

Lemma 4.1 Assume that (−α j ‖ α) = 1; say, α = α[i, k] for some i and k with
1 ≤ i ≤ j ≤ k ≤ n. Then

(−α j) + α[i, k] = α[i, j − 1] + α[ j + 1, k],(4.2)

(−α j) ] α[i, k] = α[i, j − 2] + α[ j + 2, k],(4.3)

with the convention that α[`, `− 1] = 0 and α[`, `− 2] = −α`−1 (the latter formula
yields 0 for ` = 1 or ` = n + 2).

Proof Formulas (4.2)–(4.3) are easily checked using (1.12) and (4.1).

As in [5, Section 3.5], we identify Φ≥−1 with the set of all diagonals of a regular
(n+3)-gon. Under this identification, the roots in−Π correspond to the diagonals on
the “snake” shown in Figure 4. Non-crossing diagonals represent compatible roots,
while crossing diagonals correspond to roots whose compatibility degree is 1. (Here
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Figure 4: The “snake” in type A5

and in the sequel, two diagonals are called crossing if they are distinct and have a
common interior point.) Thus each root α[i, j] corresponds to the unique diagonal
that crosses precisely the diagonals −αi ,−αi+1, . . . ,−α j from the snake (cf. (1.4)).
The group 〈τ+, τ−〉 becomes the group of all symmetries of the (n + 3)-gon. See [5]

for further details.

Lemma 4.2 Suppose the roots α, α ′ ∈ Φ≥−1 correspond to two crossing diagonals.
Then one of the vectors α + α ′ and α ] α ′ has the cluster expansion β1 + β3, while

another has the cluster expansion β2 + β4, where the roots β1, . . . , β4 correspond to
the sides of the quadrilateral with diagonals α and α ′, as shown in Figure 5, with the
convention that βi = 0 if the corresponding side is not a diagonal.

Furthermore, ifα ′ ∈ −Π (say,α ′ = −α j), then formulas (4.2)–(4.3) provide cluster
expansions of α + α ′ and α ] α ′.
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Figure 5: Lemma 4.2
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Proof Applying if needed a symmetry of the (n + 3)-gon (which preserves cluster
expansions by Proposition 1.13), we can assume that α ′ = −α j for some j, so that

Lemma 4.1 applies. By inspection, the pairs {α[i, j − 1], α[ j + 1, k]} and {α[i, j −
2], α[ j + 2, k]} that appear in the right hand sides of (4.2) and (4.3), are precisely
the pairs {β1, β3} and {β2, β4} in the lemma. In particular, the elements of each pair
are non-crossing, so both (4.2) and (4.3) provide cluster expansions for respective

left-hand sides.

To complete the proof of Theorem 1.17 for the type An, let α, α ′, and β1, . . . , β4

have the same meaning as in Lemma 4.2, and suppose that [α ] α ′ : αi] > 0 for
some i ∈ I. Taking into account the cluster expansion α ] α ′ = β2 + β4, we may

assume that [β4 : αi] > 0. Thus, the diagonal corresponding to −αi crosses the
one corresponding to β4. Since β4 corresponds to a side of the quadrilateral with
diagonals α and α ′, it is geometrically obvious that the diagonal −αi crosses at least
one of α and α ′. It follows that [α + α ′ : αi] > 0, and we are done.

4.2 Types Bn and Cn

Let Φ be a root system of type Bn or Cn. We identify the set I in a standard way with
[1, n]. To treat both cases at the same time, we set d = 1 for Φ of type Bn, and d = 2
for Φ of type Cn. Our convention for the Cartan matrices is different from the one
in [2] but agrees with that in [7]: we have an−1,n = −d and an,n−1 = −2/d. The

positive roots of Φ can be found in [2]: they are

α[i, k] = αi + αi+1 + · · · + αk (1 ≤ i ≤ k < n),(4.4)

α[i, k]+ = αi + · · · + αk + 2(αk+1 + · · · + αn−1) +
2

d
αn (1 ≤ i ≤ k < n),(4.5)

α[i] = d(αi + · · · + αn−1) + αn (1 ≤ i ≤ n).(4.6)

We can now formulate a type Bn/Cn counterpart of Lemma 4.1.

Lemma 4.3 Suppose that (−α j ‖ α) = (α ‖ −α j) = 1. Then−α j +α and−α j]α
are given by one of the following formulas:

(−α j ) + α[i, k] = α[i, j − 1] + α[ j + 1, k] (1 ≤ i ≤ j ≤ k < n),(4.7)

(−α j ) ] α[i, k] = α[i, j − 2] + α[ j + 2, k] (1 ≤ i ≤ j ≤ k < n),(4.8)

(−α j ) + α[i, k]+ = α[i, j − 1] + α[ j + 1, k]+ (1 ≤ i ≤ j ≤ k < n),(4.9)

(−α j) ] α[i, k]+ = α[i, j − 2] + α[ j + 2, k]+ (1 ≤ i ≤ j ≤ k < n),(4.10)

(−αn) + α[i] = dα[i, n− 1] (1 ≤ i ≤ n),(4.11)

(−αn) ] α[i] = dα[i, n− 2] (1 ≤ i ≤ n),(4.12)
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where in the right-hand sides we use the following conventions:

α[`, `− 1] = 0 (1 ≤ ` ≤ n),

α[`, `− 2] = −α`−1 (1 < ` ≤ n),

α[1,−1] = 0,

α[n + 1, n− 1] = −
2

d
αn,

α[`, `− 1]+ =
2

d
α[`] (2 < ` ≤ n),

α[`, `− 2]+ = α[`− 1, `− 1]+ (2 < ` ≤ n),

α[n + 1, n− 1]+ = 0.

Proof The equalities (4.7)–(4.12) are checked using definitions (4.4)–(4.6) and for-
mula (1.12).

LetΘ denote the 180◦ rotation of a regular (2n + 2)-gon. There is a natural action

of Θ on the diagonals of the (2n + 2)-gon. Each orbit of this action is either a diam-
eter (i.e., a diagonal connecting antipodal vertices) or an unordered pair of centrally
symmetric non-diameter diagonals of the (2n + 2)-gon. Following [5], we identify
Φ≥−1 with the set of these orbits. Under this identification, each of the roots−αi for

i = 1, . . . , n − 1 is represented by a pair of diagonals on the “snake” shown in Fig-
ure 6, whereas −αn is identified with the only diameter on the snake. Two Θ-orbits
represent compatible roots if and only if the diagonals they involve do not cross each
other. More generally, for α, β ∈ Φ≥−1 in type Bn (resp., Cn), the compatibility

degree (α ‖ β) is equal to the number of crossings of one of the diagonals represent-
ing α (resp., β) by the diagonals representing β (resp., α). Thus, each positive root
β =
∑

i biαi in type Bn (resp., Cn) is represented by the uniqueΘ-orbit such that ev-
ery diagonal representing −αi (resp., β) crosses the diagonals representing β (resp.,

−αi) at bi points. In particular, the n + 1 diameters of the (2n + 2)-gon represent the
roots α[i], 1 ≤ i ≤ n, together with −αn. The group 〈τ+, τ−〉 is isomorphic to the
quotient of the group of symmetries of the (2n + 2)-gon modulo its center, which is
generated by the involutionΘ. See [5, Section 3.5] for a more detailed description of

this construction.
We have the following type Bn/Cn analogue of Lemma 4.2.

Lemma 4.4 Suppose the rootsα, α ′ ∈ Φ≥−1 are such that (α ‖ α ′) = (α ′ ‖ α) = 1.
Then two cases are possible. (See Figure 7.)

1. Each of α and α ′ is represented by a pair of diagonals, and they cross at exactly two
centrally symmetric points. Pick two crossing diagonals among these four, and let
β1, . . . , β4 be the roots that correspond to the sides of the quadrilateral whose vertices

are the endpoints of these diagonals. Then one of the vectorsα+α ′ andα]α ′ has the
cluster expansion b1β1 + b2β3, while another has the cluster expansion b2β2 + b4β4,
where bi =

2
d

if the corresponding side is a diameter, bi = 1 if it is a non-diameter
diagonal, and bi = 0 if it lies on the perimeter.
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Figure 6: The “snake” for the types B3 and C3

2. Each of α and α ′ is represented by a diameter. Let β1 and β2 be the roots that
correspond to the pairs of opposite sides of the rectangle whose diagonals are these
diameters. Then one of the vectors α + α ′ and α] α ′ has the cluster expansion dβ1,

while another has the cluster expansion dβ2.

If, in addition, α ′ ∈ −Π (say, α ′ = −α j), then formulas (4.7)–(4.12) provide the

cluster expansions of α + α ′ and α ] α ′.

Proof The proof is analogous to the type A case, with Lemma 4.3 replacing
Lemma 4.1. In fact, all we need is (4.7)–(4.8) and (4.11)–(4.12), since one can use
the 〈τ+, τ−〉 action to transform any pair (α, α ′) in the lemma into one of these two
special positions.
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Figure 7: Lemma 4.4

The proof of Theorem 1.17 for the type Bn/Cn is exactly the same as in type An,
with Lemma 4.4 playing the role of Lemma 4.2.
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4.3 Type Dn

Let Φ be the root system of type Dn for some n ≥ 4. We choose I = [1, n − 1] ∪
{n− 1} as an indexing set; see Figure 8.

HHH

���
r r r r r r r

r

r

1 2 n− 2
n− 1

n− 1

Figure 8: Coxeter graph of type Dn

The positive roots of Φ can be found in [2] (replace αn by αn−1); they are:

α[i, k] = αi + αi+1 + · · · + αk (1 ≤ i ≤ k < n),

α[i, k]+ = αi + · · · + αk + 2(αk+1 + · · · + αn−2) + αn−1 + αn−1

(1 ≤ i ≤ k < n− 1),

α[i, n− 1]+ = (αi + · · · + αn−2) + αn−1 (1 ≤ i < n).

We next state the type Dn analogue of Lemmas 4.1 and 4.3. The proof is omitted.

Lemma 4.5 Suppose that (−α j ‖ α) = 1. Then −α j + α and−α j ] α are given by
one of the following formulas, subject to conventions (4.25)–(4.34) below.

Case 1 For 1 ≤ i ≤ j ≤ k < n with j ≤ n− 2,

(−α j) + α[i, k] = α[i, j − 1] + α[ j + 1, k],(4.13)

(−α j) ] α[i, k] = α[i, j − 2] + α[ j + 2, k],(4.14)

(−α j) + α[i, k]+ = α[i, j − 1] + α[ j + 1, k]+,(4.15)

(−α j ) ] α[i, k]+ = α[i, j − 2] + α[ j + 2, k]+.(4.16)

(Note that in some cases, the right-hand sides of the cluster expansions (4.14)–(4.16)
may in effect involve three roots1.)

Case 2 For 1 ≤ i < n,

(−αn−1) + α[i, n− 1] = α[i, n− 2],(4.17)

(−αn−1) ] α[i, n− 1] = α[i, n− 3],(4.18)

(−αn−1) + α[i, n− 1]+ = α[i, n− 2],(4.19)

(−αn−1) ] α[i, n− 1]+ = α[i, n− 3].(4.20)

1In the subcase j = k = n − 2, the second term in the right-hand side of (4.14) is given by (4.33).
Likewise, the subcase j = k ≤ n− 2 of (4.15) and the subcase j + 1 = k ≤ n− 2 of (4.16) invoke (4.26).
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Case 3 For 1 ≤ i ≤ k ≤ n− 2,

(−αn−1) + α[i, k]+ =

{

α[i, n− 2] + α[k + 1, n− 1]+ if n 6≡ k mod 2;

α[i, n− 1]+ + α[k + 1, n− 2] if n ≡ k mod 2;
(4.21)

(−αn−1) ] α[i, k]+ =

{

α[k + 1, n− 3] + α[i, n− 1]+ if n 6≡ k mod 2;

α[k + 1, n− 1]+ + α[i, n− 3] if n ≡ k mod 2;
(4.22)

(−αn−1) + α[i, k]+ =

{

α[i, n− 2] + α[k + 1, n− 1] if n 6≡ k mod 2;

α[i, n− 1] + α[k + 1, n− 2] if n ≡ k mod 2;
(4.23)

(−αn−1) ] α[i, k]+ =

{

α[k + 1, n− 3] + α[i, n− 1] if n 6≡ k mod 2;

α[k + 1, n− 1] + α[i, n− 3] if n ≡ k mod 2.
(4.24)

Conventions used in formulas (4.13)–(4.24):

α[`, `− 1] = 0 (1 ≤ ` < n),(4.25)

α[`, `− 1]+ = α[`, n− 1] + α[`, n− 1]+ (1 < ` < n),(4.26)

α[n, n− 1] = −αn−1(4.27)

α[n, n− 1]+ = −αn−1,(4.28)

α[`, `− 2] = −α`−1 (1 < ` ≤ n),(4.29)

α[`, `− 2]+ = α[`− 1, `− 1]+ (2 < ` < n),(4.30)

α[1,−1] = 0,(4.31)

α[n + 1, n− 1] = 0,(4.32)

α[n, n− 2] = (−αn−1) + (−αn−1),(4.33)

α[n, n− 2]+ = 0.(4.34)

Let us recall the geometric representation of the setΦ≥−1 given in [5, Section 3.5].
Consider the set of diagonals in a regular 2n-gon, in which each diameter can be of
one of two different “colors.” The 180◦ rotation Θ naturally acts on this set. We

represent each root in Φ≥−1 by a Θ-orbit. The negative simple roots form a “type D
snake” shown in Figure 9. TwoΘ-orbits represent compatible roots if and only if the
diagonals they involve do not cross each other; here we use the following convention:

diameters of the same color do not cross each other.(4.35)

More generally, for α, β ∈ Φ≥−1, the compatibility degree (α ‖ β) is equal to the

number of Θ-orbits in the set of crossing points between the diagonals representing
α and β (again, with the convention (4.35)). Each positive root β =

∑

i biαi is then
represented by the unique Θ-orbit such that the diagonals representing β cross the
diagonals representing −αi at bi pairs of centrally symmetric points (counting an

https://doi.org/10.4153/CMB-2002-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-054-1


Polytopal Realizations of Generalized Associahedra 559

intersection of two diameters of different color and location as one such pair). In
particular, the 2n colored diameters of the 2n-gon represent the roots α[i, n− 1] and

α[i, n − 1]+, for 1 ≤ i < n, together with −αn−1 and −αn−1. Under this identifi-

cation, the element τ−τ+ acts by rotating the 2n-gon 180◦

n
degrees and changing the

colors of all diameters. See [5, Section 3.5] for further details.
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Figure 9: Representing the roots in−Π for the type D4

The type Dn analogue of Lemmas 4.2 and 4.4 is stated below.

Lemma 4.6 Suppose the roots α, α ′ ∈ Φ≥−1 are such that (α ‖ α ′) = 1. Then four
cases are possible. (Refer to Figure 10.)

1. Each of α and α ′ is represented by a pair of diagonals, and they cross at exactly
two centrally symmetric points. Pick two crossing diagonals among these four, and
consider the quadrilateral whose vertices are their endpoints. First assume that none

of the sides of this quadrilateral is a diameter. Let β1, . . . , β4 be the corresponding
roots. Then one of the vectors α + α ′ and α ] α ′ has the cluster expansion β1 + β3,
while another has the cluster expansion β2 +β4. (Throughout this lemma, we use the
convention that βi = 0 if the corresponding side lies on the perimeter.)

2. Same situation as above, except one of the sides of the quadrilateral is a diameter.
Let β1, β

′
1 ∈ Φ≥−1 be the two roots associated with this diameter, and let β2, β3, β4

correspond to the remaining sides. Then one of the vectors α+α ′ and α]α ′ has the
cluster expansion β1 + β ′1 + β3, while another has the cluster expansion β2 + β4.
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3. The roots α and α ′ are represented by diameters of different color and location. Let
β1 and β2 be the roots that correspond to the pairs of opposite sides of the rectangle

whose diagonals are these diameters. Then one of the vectors α + α ′ and α ] α ′ has
the cluster expansion β1, while another has the cluster expansion β2.

4. One of α and α ′ (say, α) is represented by a diameter [T,T ′] (of any color), while
another (say, α ′) is represented by a pair of diagonals [P,Q] and [P ′,Q ′], so that

the counter-clockwise order of these six points is P, T, Q, P ′, T ′, Q ′. Let β1 and β2

be the roots that correspond to the diameters [P, P ′] and [Q,Q ′] and have the same
color as α, and let β3 and β4 correspond to [T, P] and [T,Q], respectively. Then one
of the vectors α+α ′ and α]α ′ has the cluster expansion β1 +β3, while another has

the cluster expansion β2 + β4.

If, in addition, α ′ ∈ −Π (say, α ′ = −α j), then formulas (4.13)–(4.24) provide the

cluster expansions of α + α ′ and α ] α ′.
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Figure 10: Lemma 4.6
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The proofs of Lemma 4.6 and the type Dn case of Theorem 1.17 follow the lines of
their counterparts in types ABC . The details are left to the reader.

4.4 Exceptional Types

For the exceptional types E6, E7, E8, F4, and G2, Theorem 1.17 can be verified on a

computer without much difficulty; we in particular used Maple. The sets E(α, α ′)
are constructed recursively within each orbit

{
(α, α ′) =

(
σ(−α j), σ(β)

)
: σ ∈ 〈τ+, τ−〉

}

(for β and α j satisfying [β : α j] = [β∨ : α∨j ] = 1), starting with

E(−α j , β) =
{

−α j + β,−α j + β +
∑

i 6= j

ai jαi

}

(cf. (1.12)) and using (3.4). One then checks the statement of Theorem 1.17 directly
for each pair E(α, α ′) = {α + α ′, α ] α ′}.

5 Proof of Lemma 2.5

We prove Lemma 2.5 case by case. For the classical types ABCD, we directly prove
the (seemingly) more general Lemma 2.4.

5.1 Type An

We follow the conventions of Section 4.1. In the geometric model described there,

a 〈τ+, τ−〉-invariant function F of Lemma 2.4 becomes a function on diagonals of a
regular (n + 3)-gon that is invariant under the symmetries of the latter. One can view
such an F as a function f : {1, . . . , n} → R satisfying

f (n + 1− i) = f (i).(5.1)

In other words, we use f (i) as a shorthand for F(−αi) = F(αi), that is, for the value
of F at diagonals that connect vertices i + 1 steps apart. Condition (1.8) takes the
form

2 f ( j)− f ( j − 1)− f ( j + 1) > 0,(5.2)

for 1 ≤ j ≤ n, with the conventions

f (0) = f (n + 1) = 0.(5.3)

To rephrase, f is a strictly concave function on {0, 1, . . . , n + 1} satisfying (5.1) and
(5.3). Under these assumptions, we need to prove the type An version of (2.4). In
view of Lemma 4.2, and using its notation, it is enough to show that

F(α) + F(α ′) > F(β2) + F(β4)(5.4)
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for any pair of crossing diagonals representing roots α and α ′ (cf. Figure 5). Equiva-
lently, we need to show that

f (i1 + i2 + 1) + f (i2 + i3 + 1) > f (i2) + f (i4)(5.5)

for any positive integers i1, i2, i3, i4 satisfying

(i1 + 1) + (i2 + 1) + (i3 + 1) + (i4 + 1) = n + 3.(5.6)

The concavity condition (5.2) implies that

f (x) + f (y) > f (x − t) + f (y + t)

for x < y and t > 0. Combining this with (5.1) and (5.6), we obtain

f (i1 + i2 + 1) + f (i2 + i3 + 1) > f (i2) + f (i1 + i2 + i3 + 2) = f (i2) + f (i4),

as desired.

5.2 Types Bn and Cn

We follow the conventions of Section 4.2. The proof is similar to the type An. For a
〈τ+, τ−〉-invariant function F onΦ≥−1, we define a function f : {0, . . . , 2n} → R by

f (i) =







F(−αi) if 1 ≤ i ≤ n− 1;
2
d

F(−αn) if i = n;

F(−α2n−i) if n + 1 ≤ i ≤ 2n− 1;

0 if i = 0 or i = 2n.

(5.7)

Condition (1.8) can then be rewritten as

2 f ( j)− f ( j − 1)− f ( j + 1) > 0,(5.8)

for 1 ≤ j ≤ 2n− 1. Thus, f satisfies the same conditions (5.1)–(5.3) as before, with
n replaced by 2n− 1.

The roots in Φ≥−1 can be represented by the Θ-orbits of diagonals of a regular
(2n + 2)-gon. (Recall thatΘ is the 180◦ degree rotation.) Then F becomes a function
on diagonals of the (2n + 2)-gon that is invariant under its symmetries. The type Bn

version of (2.4) can be restated, by virtue of Lemma 4.4 and using its notation, as

follows: in a situation of Figure 7(1), we have the inequality

F(α) + F(α ′) > b2F(β2) + b4F(β4),(5.9)

whereas in a situation of Figure 7(2), we have

F(α) + F(α ′) > dF(β1).(5.10)
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One easily checks that (5.9) would follow if we show that

f (i1 + i2 + 1) + f (i2 + i3 + 1) > f (i2) + f (i4)

for any positive integers i1, i2, i3, i4 satisfying

(i1 + 1) + (i2 + 1) + (i3 + 1) + (i4 + 1) = 2n + 2;

this is proved in the same way as (5.5). Finally, (5.10) can be restated as f (n) > f (i),
for i < n, which follows from concavity of f together with the symmetry condition
f (i) = f (2n− i).

5.3 Type Dn

We follow the conventions of Section 4.3. The proof is similar to the types ABC , with
(5.7) replaced by

f (i) =







F(−αi) if 1 ≤ i ≤ n− 2;

F(−αn−1) + F(−αn−1) if i = n− 1;

F(−α2n−2−i) if n ≤ i ≤ 2n− 3;

0 if i = 0 or i = 2n− 2.

Details are left to the reader.

5.4 Calculation of Cluster Expansions

For γ ∈ Q, let

γ+ =

∑

[γ:αi ]>0

[γ : αi]αi .

Also, let K(γ) denote the set of nonzero terms mββ contributing to the cluster ex-
pansion γ =

∑

β mββ of γ.

Lemma 5.1 For any γ ∈ Q and any sign ε, we have

K(γ) = {(−[γ : αi])(−αi) : [γ : αi] < 0} ∪ τε

(

K
(
τε(γ+)

))

.(5.11)

Proof Follows from Proposition 1.13 together with [5, Lemma 3.12] (which is in
turn an easy consequence of (1.4)).

Lemma 5.1 enables us to efficiently compute cluster expansions, by recursively
applying (5.11) with ε = −1,−1, 1,−1, 1, . . . , until we hit K(0) = ∅. The fact that
this computation terminates follows from Theorems 1.1 and 3.1; in fact, the depth of
recursion is at most h.
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5.5 Exceptional Types

We describe the verification of Lemma 2.5 for type E6 only; other exceptional types
are treated in a similar way, and in fact are easier to handle since the involution α 7→
−w◦(α) is trivial.

r r r r r

r

1 3 4 5 6

2

Figure 11: Coxeter graph of type E6

We use the numeration of roots shown in Figure 11. The involution −w◦ inter-
changes α1 with α6, and α3 with α5, and fixes α2 and α4. We denote F(−α1) =

F(−α6) = f1, F(−α2) = f2, F(−α3) = F(−α5) = f3, and F(−α4) = f4. The
inequalities (1.8) take the form

2 f1 − f3 > 0,

2 f2 − f4 > 0,

− f1 + 2 f3 − f4 > 0,

− f2 − 2 f3 + 2 f4 > 0.

(5.12)

We need to show that these linear inequalities imply every inequality

c1 f1 + c2 f2 + c3 f3 + c4 f4 > 0(5.13)

on the list of the type E6 versions of the inequalities (2.6). Equivalently, we need to
show that the parameters c1, c2, c3, c4 of each inequality (5.13) satisfy

2c1 + 2c2 + 3c3 + 4c4 ≥ 0,

c1 + 2c2 + 2c3 + 3c4 ≥ 0,

3c1 + 4c2 + 6c3 + 8c4 ≥ 0,

2c1 + 3c2 + 4c3 + 6c4 ≥ 0.

(5.14)

(The coefficient matrix in (5.14) is the transposed inverse of the matrix in (5.12), so
the left-hand sides in (5.14) are the coefficients in the expansion of the left-hand side

of (5.13) as a linear combination of the left-hand sides in (5.12).)
We find the cluster expansions (2.5) using the algorithm described in Section 5.4.

We then produce the corresponding inequalities (2.6) (note that the values F(β) ap-
pearing in (2.6) are obtained as a byproduct of the same algorithm), and verify the

conditions (5.14) in each instance. To illustrate, consider the following example:

α = α1 + α2 + α3 + 2α4 + 2α5 + α6, j = 3.

https://doi.org/10.4153/CMB-2002-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-054-1


Polytopal Realizations of Generalized Associahedra 565

α j cluster expansion of α− α j

[1, 1, 1, 1, 1, 1] 1 [0, 1, 1, 1, 1, 1]
2 [1, 0, 1, 1, 1, 1]
3 [1, 0, 0, 0, 0, 0] + [0, 1, 0, 1, 1, 1]
4 [0, 0, 0, 0, 1, 1] + [1, 0, 1, 0, 0, 0] + [0, 1, 0, 0, 0, 0]

5 [0, 0, 0, 0, 0, 1] + [1, 1, 1, 1, 0, 0]
6 [1, 1, 1, 1, 1, 0]

[1, 1, 1, 2, 1, 1] 1 [0, 1, 1, 2, 1, 1]
2 [1, 0, 1, 1, 0, 0] + [0, 0, 0, 1, 1, 1]

3 [1, 0, 0, 0, 0, 0] + [0, 1, 0, 1, 0, 0] + [0, 0, 0, 1, 1, 1]
5 [0, 0, 0, 0, 0, 1] + [0, 1, 0, 1, 0, 0] + [1, 0, 1, 1, 0, 0]
6 [1, 1, 1, 2, 1, 0]

[1, 1, 2, 2, 1, 1] 1 [0, 0, 1, 1, 1, 1] + [0, 1, 1, 1, 0, 0]

2 [0, 0, 1, 1, 0, 0] + [1, 0, 1, 1, 1, 1]
5 [0, 0, 0, 0, 0, 1] + [0, 0, 1, 1, 0, 0] + [1, 1, 1, 1, 0, 0]
6 [1, 1, 2, 2, 1, 0]

[1, 1, 1, 2, 2, 1] 1 [0, 1, 1, 2, 2, 1]

2 [0, 0, 0, 1, 1, 0] + [1, 0, 1, 1, 1, 1]
3 [1, 0, 0, 0, 0, 0] + [0, 0, 0, 1, 1, 0] + [0, 1, 0, 1, 1, 1]
6 [1, 0, 1, 1, 1, 0] + [0, 1, 0, 1, 1, 0]

[1, 1, 2, 2, 2, 1] 1 [0, 0, 1, 1, 1, 0] + [0, 1, 1, 1, 1, 1]

2 [1, 0, 1, 1, 1, 0] + [0, 0, 1, 1, 1, 1]
6 [0, 0, 1, 1, 1, 0] + [1, 1, 1, 1, 1, 0]

[1, 1, 2, 3, 2, 1] 1 [0, 1, 1, 2, 1, 0] + [0, 0, 1, 1, 1, 1]
2 [0, 0, 1, 1, 0, 0] + [0, 0, 0, 1, 1, 0] + [1, 0, 1, 1, 1, 1]

6 [0, 1, 1, 2, 1, 0] + [1, 0, 1, 1, 1, 0]
[1, 2, 2, 3, 2, 1] 1 [0, 1, 1, 2, 2, 1] + [0, 1, 1, 1, 0, 0]

6 [1, 1, 2, 2, 1, 0] + [0, 1, 0, 1, 1, 0]

Figure 12: Cluster expansions (2.5) in type E6

We compute the cluster expansion of α− α j (cf. line 18 in Figure 12) as

α− α j = (α1) + (α4 + α5) + (α2 + α4 + α5 + α6),

with

F(α1) = F(α4 + α5) = F(α2 + α4 + α5 + α6) = f1.

Since F(α) = f3, the corresponding inequality (2.6) (or (5.13)) is

−3 f1 + 2 f3 > 0.

Thus, in this case, c1 = −3, c2 = 0, c3 = 2, c4 = 0, and conditions (5.14) hold.
The verifications based on the procedures described above were performed for all
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exceptional types using Maple and altogether took a few minutes of processor time.
This completes our proof of Lemma 2.5.

We conclude by providing the list of “most interesting” instances of cluster expan-
sions (2.5) in type E6. More precisely: note that in view of [5, Proposition 3.3.3], the
cluster expansion of a vector γ ∈ Q that belongs to a root sublattice generated by a

proper subset of simple roots coincides with the cluster expansion of γ with respect
to the corresponding root subsystem. Thus, such cluster expansions already appear
in smaller rank. Consequently, we only list the cluster expansions (2.5) for the roots
α (in type E6) that have full support. See Figure 12, where notation [b1, . . . , b6] is

used to denote a root b1α1 + · · ·+ b6α6. Similar tables in types E7 and E8 have 56 and
121 rows, respectively, and are omitted due to space limitations.
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