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1. Introduction

Let A(1)
n and A(2)

n be free algebras over C with n generators, x
(ε)
1 , . . . , x

(ε)
n , ε = 1, 2,

respectively. Denote by σ : A(1)
n → A(2)

n the unique anti-homomorphism (that is, a map
satisfying σ(λa + µb) = λ̄σ(a) + µ̄σ(b), σ(ab) = σ(b)σ(a) for all λ, µ ∈ C, a, b ∈ A(1)

n )
such that σ(x(1)

j ) = x
(2)
j for all j = 1, . . . , n.

Let A be a finite-dimensional algebra, such that A � A(1)
n /I for some ideal I ∈ A(1)

n .
Then the set σ(I) is an ideal in A(2)

n and we can consider the algebra A∗ = A(2)
n /σ(I).

It is easy to see that A∗ does not depend on the presentation of A.
Consider now the quotient algebra A(∗) of the free product A(1,2)

n of A(1)
n and A(2)

n

(i.e. the free algebra with 2n generators x
(1)
1 , . . . , x

(1)
n , x

(2)
1 , . . . , x

(2)
n ) by the ideal J gener-

ated by I and σ(I). The algebra A(∗) is identified with the free product of A and A∗ in a
natural way. The algebra A(1,2)

n possesses a natural ∗-structure, defined by (x(1)
j )∗ = x

(2)
j ,

j = 1, . . . , n, and one sees that J is a ∗-ideal with respect to this structure. Hence
A(∗) inherits the ∗-structure and we call A(∗) with this ∗-structure the ∗-double of A.
The algebra A(∗) together with the natural inclusion algebra morphism i : A → A(∗)
defined via i(x(1)

1 ) = x
(1)
1 is characterized by the following universal property: if B is any

∗-algebra and ϕ : A → B is an algebra morphism, then there exists a unique morphism
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ϕ̂ : A(∗) → B of ∗-algebras, which makes the following diagram commutative:

A i ��

ϕ

��

A(∗)

ϕ̂
��

B

Representations of ∗-doubles of some particular algebras appeared and were investi-
gated in [1,6,9] (see also [8] and the references therein). The results obtained showed that
except for a few cases the representations have a very complicated structure (the corre-
sponding ∗-algebras are ∗-wild) indicating that it could be a common feature. The aim of
this note is to give a complete classification for the ∗-representation type of the algebras
A(∗) into ∗-finite, ∗-tame and ∗-wild types, answering a question posed by Samoilenko
(personal communication). We show that, as for finite-dimensional non-involutive alge-
bras (see [3]), ∗-doubles of finite-dimensional algebras can be subdivided into ∗-tame
(including ∗-finite) and ∗-wild ∗-algebras. Moreover, the subdivision is determined by
the dimension of the original algebra. Using this result we derive some corollaries on
representation type of ∗-doubles of not necessarily finite-dimensional associative algebra,
in particular, we prove that the ∗-double of a finite-dimensional Lie algebra (i.e. of the
corresponding universal enveloping algebra) is ∗-wild.

The paper is organized as follows: in § 2 we recall basic definitions on ∗-wild and ∗-tame
algebras and fix the notation. In § 3 we formulate our main results, which are proved in § 5
after some auxiliary lemmas collected in § 4.

All algebras in this paper are over C and have a unit. All tensor products are taken
over C.

2. ∗-Wild and ∗-tame algebras

In this section we list some notation and definitions of ∗-wild and ∗-tame algebras follow-
ing [6]. Within this section we assume the following convention: all ∗-algebras are unital
with the unit e and representations of ∗-algebras are unital ∗-homomorphisms into B(H),
the ∗-algebra of linear bounded operators on a separable Hilbert space, H. We denote
by Rep(A) the category of all representations of a ∗-algebra, A. Given a ∗-algebra, A,
of operators on H, we denote its commutator by A′, i.e. A′ = {C ∈ B(H) | [C, A] =
0, for each A ∈ A}.

Let A be a ∗-algebra. We call a pair (Ã; φ : A → Ã), where Ã is a ∗-algebra and φ

is a unital ∗-homomorphism, an enveloping ∗-algebra of the algebra A if, for any ∗-
representation π : A → B(H) of A, there exists a unique ∗-representation π̃ : Ã → B(H)
such that the diagram

A
φ

��

π

��

Ã

π̃
��

B(H)
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is commutative, and any operator X : H1 → H2 which intertwines representations π1 :
A → B(H1) and π2 : A → B(H2) of A is an intertwining operator for the representations
π̃1 and π̃2 of the algebra Ã.

Let Mn(A) (= Mn(C) ⊗ A) be the matrix algebra over A. If A is a C∗-algebra, then
Mn(A) carries the natural structure of a C∗-algebra too. Let π : A → B(H) be a
representation of A. It induces the representation πn : Mn(A) → B(H ⊕ · · · ⊕ H) of the
algebra Mn(A). The representation πn determines the representation π̃n of an enveloping
algebra (M̃n(A), φ) of Mn(A) on the same Hilbert space. If ψ is a unital ∗-homomorphism
of a ∗-algebra B to the algebra M̃n(A), then π̃n ◦ ψ defines a representation of B. So we
can define a functor, Fψ : Rep(A) → Rep(B), in the following natural way:

(i) Fψ(π) = π̃n ◦ ψ, for every π ∈ Rep(A);

(ii) Fψ(c) = diag(c, . . . , c) for a morphism, c : π1 → π2, of representations π1, π2 of A.

We say that a ∗-algebra B majorizes a ∗-algebra A (B � A) if there exist n ∈
N, an enveloping algebra, M̃n(A), of the algebra Mn(A), and a ∗-homomorphism
ψ : B → M̃n(A) such that the functor Fψ : Rep(A) → Rep(B) is full. Note that the
functor Fψ is automatically faithful. Clearly, in this case two representations π1, π2 of A
are unitarily equivalent if and only if the representations Fψ(π1), Fψ(π2) of B are uni-
tarily equivalent, a representation π of A is irreducible if and only if the representation
Fψ(π) is irreducible. Thus the problem of unitary classification of the representations of
the ∗-algebra B contains, as a subproblem, the problem of unitary classification of the
representations of the ∗-algebra A. Note that, in order to verify that the functor Fψ is
full, it is sufficient to show that for each representation π ∈ Rep A on H and C ∈ B(H)
the inclusion C ∈ Fψ(π)(B)′ implies C = diag(c, . . . , c), where c ∈ π(A)′. We also note
that the majorization of ∗-algebras is a quasi-order relation: if C � B and B � A, then
C � A (see [8] for details).

It was proved in [5,6] that S2 = C〈a1, a2 | a1 = a∗
1, a2 = a∗

2〉 majorizes any finitely
generated ∗-algebra and therefore the C∗-algebra C∗(F2) of the free group F2 with two
generators. Besides, C∗(F2) � S2, motivating the following definition.

Definition 2.1. A ∗-algebra A is called ∗-wild if A � C∗(F2).

By the arguments given above, a ∗-algebra A is ∗-wild if and only if A � S2. For other
results and examples on ∗-wild algebras we refer the reader to [6,8].

Definition 2.2. A ∗-algebra is called ∗-finite if it has only finitely many irreducible
representations up to unitary equivalence, and ∗-tame if it is of type I and not ∗-finite
(see [2]).

Note that every finitely generated ∗-algebra whose irreducible representations are
finite-dimensional is of type I [2].

3. Main results

Our main result is the following.
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Theorem 3.1. Let A be a finite-dimensional algebra over C. Then

(1) the ∗-algebra A(∗) is ∗-finite if and only if dim(A) = 1 if and only if A � C;

(2) the ∗-algebra A(∗) is ∗-tame if and only if dim(A) = 2 if and only if A � C ⊕ C or
A � C[X]/(X2);

(3) the ∗-algebra A(∗) is ∗-wild if and only if dim(A) > 2.

From Theorem 3.1 one easily derives the following two corollaries.

Corollary 3.2. If A is an associative algebra which has a finite-dimensional irreducible
representation of dimension n > 1 or a finite-dimensional indecomposable representation
of dimension n > 2, then A(∗) is ∗-wild.

Corollary 3.3. The ∗-double of the universal enveloping algebra of a finite-dimen-
sional Lie algebra is ∗-wild.

The proof of all these results will require several auxiliary lemmas, which we collect in
the next section. The results themselves will be proved in § 5.

4. Auxiliary lemmas

Lemma 4.1. The ∗-algebra Mn(C)(∗) is ∗-wild for n > 1.

Proof. We consider first the case n = 2 and denote by est, s, t ∈ {1, 2}, the canonical
generators of M2(C). We define the ∗-homomorphism ψ2 : M2(C)(∗) → M2(S2) by

ψ2(e11) =

(
e −a1 − ia2

0 0

)
, ψ2(e12) =

(
0 e

0 0

)
,

ψ2(e21) =

(
a1 + ia2 −(a1 + ia2)2

e −a1 − ia2

)
, ψ2(e22) =

(
0 a1 + ia2

0 e

)
.

If we have a 2 × 2 self-adjoint operator matrix commuting with π2(ψ2(e12)),
π2(ψ2(e12)∗), where π ∈ Rep S2, then it must be block diagonal, with the same opera-
tors on the diagonal, say c. Commuting it further with π2(ψ2(e11)) and the corresponding
adjoint we get c(π(a1) ± iπ(a2)) = (π(a1) ± iπ(a2))c, and therefore [c, π(ai)] = 0 proving
that the corresponding functor Fψ : Rep S2 → Rep M2(C)(∗) is full and the ∗-algebra
M2(C)(∗) is ∗-wild.

If n > 2, we define ψn : Mn(C)(∗) → Mn(S2) via

ψn(ets) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ2(ets) ⊕ 0n−2, if t, s ∈ {1, 2},

(ψ2(e21) ⊕ 0n−2)E
(n)
1s , if t = 2, s > 2,

E
(n)
t1 (ψ2(e11) ⊕ 0n−2), if t > 2, s = 1,

E
(n)
ts , otherwise,
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where E
(n)
ts = ets ⊗ e ∈ Mn(C) ⊗ S2. To see that ψn is a ∗-homomorphism we have to

show that ψn(ekl)ψn(ets) = δltψn(eks). This clearly holds if both pairs (k, l) and (t, s)
differ from (m, 1) and (2, m), m � n. The relations which have to be checked are

ψn(em1)ψn(ets) = δ1tψn(ems), ψn(ets)ψn(em1) = δsmψn(et1),

ψn(e2m)ψn(ets) = δmtψn(e2s), ψn(ets)ψn(e2m) = δs2ψn(etm).

We restrict ourselves to verifying the first one leaving the rest to the reader.
All entries of the matrix ψn(em1) are zero except for the first two in the nth row if m �= 2

and the first two in the first and the second rows if m = 2. Therefore, ψn(em1)ψn(ets)
might be non-zero only if t = 1 or t = 2. Clearly, if m, t, s ∈ {1, 2}, the relation is
satisfied and hence we can assume that one of the indexes is not equal to 1 or 2. A direct
calculation shows that ψn(e11)ψn(e1s) = ψn(e1s) for any s > 1. ψn(e21)ψn(e1s) = ψn(e2s)
holds by the definition of ψn(e2s) for s > 2. If m > 2, we have that

ψn(em1) = E
(n)
m1ψn(e11) and ψn(em1)ψn(e1s) = E

(n)
m1ψn(e11)ψn(e1s) = E

(n)
m1ψn(e1s),

which is equal to E
(n)
m1E

(n)
1s = E

(n)
ms = ψn(ems) if s > 1 and to ψn(em1) if s = 1 by the

definition. Thus ψn(em1)ψn(e1s) = ψn(ems). If s > 2 and m = 1, 2, then

ψn(em1)ψn(e2s) = ψn(em1)ψn(e21)E
(n)
1s = 0.

For m > 2 we have that ψn(em1)ψn(e2s) = E
(n)
m1ψn(e11)ψn(e2s) = 0 by the previous

relation and the relation ψn(e11)ψn(e2s) = 0 for s = 1, 2. Therefore, ψn(em1)ψn(e2s) = 0
for every m, s and ψn(em1)ψn(ets) = δ1tψn(ems) for each m, t and s.

To see that the functor Fψn is full, consider a representation, π, of S2 on H and a
self-adjoint bounded operator, C ∈ B(H), which commutes with each πn(ψn(ets)) and
their adjoint. As C commutes with πn(ψn(ets)) = πn(E(n)

ts ), t, s > 2, writing C as an
n × n operator matrix, C = [cts]nt,s=1, we obtain that cts = 0 if t �= s and if one of t and
s is greater than 2, and ctt = css for t, s > 2. Since C commutes with πn(ψn(ets)) for
t, s ∈ {1, 2}, we get c11 = c22, c12 = c21 = 0 and [c11, ai] = 0 so that the matrix C is
diagonal. That C = diag(c11, . . . , c11) follows from the relation

[C, πn(ψn(e13))] = [C, πn(E(n)
13 )] = 0,

giving us c11 = c33. �

Lemma 4.2 (see §3.1.3 in [8]). The ∗-algebra Qn,⊥(∗), where

Qn,⊥ = C〈q1, . . . , qn | q2
i = qi, i = 1, . . . , n, qiqj = qjqi = 0, for j �= i〉,

is ∗-wild for n � 2.

Proof. We define the homomorphism ψ : Qn,⊥(∗) → M3(S2) as follows:

ψ(q1) =

⎛
⎜⎝e e a1 + ia2

0 0 0
0 0 0

⎞
⎟⎠ , ψ(q2) =

⎛
⎜⎝0 −e −e

0 e e

0 0 0

⎞
⎟⎠ , ψ(qi) = 0, i > 2.
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We leave it to the reader to check that ψ is a homomorphism and the generated functor
Fψ : Rep S2 → Rep Qn,⊥(∗) is full. �

Lemma 4.3. The ∗-algebra B(∗), where B = C[x]/(x2 − αe), α ∈ C, is ∗-tame. Every
irreducible representation of B(∗) is either one or two dimensional.

Proof. Set a = Re x = (x+x∗)/2 and b = Im x = (x−x∗)/2i. Clearly, a and b are self-
adjoint. Moreover, x2 = αe and (x∗)2 = ᾱe imply a2−b2 = (Re α)e and ab+ba = (Im α)e.
By [8, § 1.2.3] or [7], every irreducible representation of these relations is either one or
two dimensional and therefore the corresponding ∗-algebra is ∗-tame. �

In the lemmas that follow we will need invertibility of a1 and a2 and positivity of their
images under each bounded representation in order to be able to prove that the functors
which we define are full. This means that we will not be able to work with the algebra S2

any more, so we shall substitute for it the algebra C (defined below), obtained from S2

by imposing formal conditions of invertibility and positivity for a1 and a2. This algebra
happens to be ∗-wild, as we will show in the next lemma. Let us consider, for some fixed
0 < m < n, the seminorm ‖a‖ = ‖a‖m,n = supπ(a) on the ∗-algebra S2, where the
supremum is taken over all representations π of S2 such that mI � π(ai) � nI, i = 1, 2,
I being the identity operator. Denote by

C = Cm,n = C∗(a1, a2 : m � ai = a∗
i � n, i = 1, 2)

the C∗ algebra which is obtained by the completion of S2/(a : ‖a‖ = 0) with respect
to ‖ · ‖. Clearly, the elements a1 and a2 become invertible in C and positive in every
bounded representation. In the lemma that follows we prove that C is actually ∗-wild.

Lemma 4.4. The algebra C is ∗-wild.

Proof. Define the homomorphism ψ : C → M4(C∗(F2)) as follows:

ψ(a1) = diag(λ1e, λ2e, λ3e, λ4e),

where m � λi � n, i = 1, 2, 3, 4, are distinct complex numbers, and

ψ(a2) =
1
β

⎛
⎜⎜⎜⎝

αe u∗ e e

u αe v∗ e

e v αe e

e e e αe

⎞
⎟⎟⎟⎠ ,

where u, v are the generators of the C∗-algebra C∗(F2) and α, β ∈ R are chosen so that
mE4 � ψ(a2) � nE4, where E4 = diag(e, e, e, e), in M4(C∗(F2)). That this can always
be done follows by the following arguments. The element ψ(a2) with α = 0 and β = 1 is,
in fact, a self-adjoint element of the C∗-algebra M4(C∗(F2)). It has a norm, say K, and
−Ke � ψ(a2) � Ke in general. So, adding some αE4 to ψ(a2), we can ensure ψ(a2) > 0
and then, dividing by some positive constant, we get it in the required interval. It is now
routine to check that the functor Fψ is full. �
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Lemma 4.5. The ∗-algebra ARn
(∗), where ARn

= C〈x | Rn(x) = 0〉 and Rn is a
complex polynomial in one variable of degree n, is ∗-wild if and only if n � 3.

Proof. By Lemma 4.3, AR2(∗) is ∗-tame. Clearly, it is enough to show that AR3(∗)
is ∗-wild (see Lemma 4.10 below). Assume first that R3 has distinct roots: R3(x) =
(x − α1)(x − α2)(x − α3), α1, α2, α3 ∈ C, αi �= αj for i �= j. Defining the homomorphism
ψ : AR3(∗) → Q2,⊥(∗) by setting

ψ(x) = αq1 + α2q2 + α3(e − q1 − q2),

one easily checks that the corresponding functor Fψ : Rep Q2,⊥(∗) → Rep AR3(∗) is full
and therefore AR3(∗) majorizes the ∗-algebra Q2,⊥(∗). Since majorization is a quasi-
order, we obtain from Lemma 4.2 that AR3(∗) is ∗-wild.

If R3(x) = (x−α1)2(x−α2), α1, α2 ∈ C are equal or distinct, then the homomorphism
ψ : AR3(∗) → M3(C) defined by

ψ(x) =

⎛
⎜⎝α1e a1 e

0 α1e a2

0 0 α2e

⎞
⎟⎠

generates a full functor Fψ : Rep C → Rep AR3(∗). In fact, let π be a representation of C.
To prove that Fψ is full it is enough to show that any operator C = C∗ = [cij ]3i,j=1,
which intertwines the representation π3 ◦ ψ of AR3(∗), is diag(c, c, c), where c intertwines
the representation π of C. Taking into account that π(ai), i = 1, 2, are invertible one
gets that if [C, π3(ψ(x))] = 0, then C = diag(c11, c22, c11) and c11π(a1) = π(a1)c22,
c22π(a2) = π(a2)c11. Since c11 and c22 are necessarily self-adjoint, we obtain from this
that c11π(a1)2 = π(a1)2c11 and, therefore, by the positivity of the operator π(a1),
c11π(a1) = π(a1)c11. Thus we have π(a1)c22 = c11π(a1) = π(a1)c11 and, using that
π(a1) is invertible, it follows that c11 = c22, giving AR3(∗) � C. By Lemma 4.4, we have
that AR3(∗) is ∗-wild. �

Remark 4.6. That ARn(∗) is ∗-wild when Rn has three or more distinct roots was
proved in [1,8].

Lemma 4.7. The ∗-algebra B(∗), where B = C[x, y]/(x2, y2, xy), is ∗-wild.

Proof. Define the homomorphism ψ : B(∗) → M2(C) in the following way:

ψ(x) =

(
0 a1

0 0

)
, ψ(y) =

(
0 a2

0 0

)
.

Using arguments similar to those used in Lemma 4.5 one obtains that the corresponding
functor is full and therefore the ∗-algebra B(∗) is ∗-wild. �

Lemma 4.8. The ∗-algebra B(∗), where B = C〈f, x | f2 = f, xf = (1 − f)x = x〉, is
∗-wild.
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Proof. The homomorphism ψ : B(∗) → M2(C), defined by

ψ(f) =

(
e a1

0 0

)
, ψ(x) =

(
−a1a2 −a1a2a1

a2 a2a1

)
,

generates a full functor, Fψ : Rep C → Rep B(∗). �

Lemma 4.9. The ∗-algebra B(∗), where B = C ⊕ C[x]/(x2), is ∗-wild.

Proof. B(∗) is generated by the idempotent f = (1, 0), the element x and their
adjoints, subject to the relations f2 = f , x2 = 0, fx = xf = 0. We define ψ : B(∗) →
M4(C) by setting

ψ(f) =

⎛
⎜⎜⎜⎝

e 0 λe a1

0 e 0 µe

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , ψ(x) =

⎛
⎜⎜⎜⎝

0 0 0 −λa2

0 0 0 0
0 0 0 a2

0 0 0 0

⎞
⎟⎟⎟⎠ .

We leave it to the reader to check that the functor Fψ is full. �

We finish our preparation with the following obvious observation.

Lemma 4.10. Let A be a finite-dimensional algebra and I an ideal in A. If A/I(∗)
is ∗-wild, then A(∗) is ∗-wild as well.

5. Proof of the main results

Let B = A/R, where R = rad(A) is the radical of A. We first recall the well-know
fact that in A one can always lift idempotents from quotient algebras modulo any ideal
contained in R (see, for example, [4, § 3.2]). The algebra B is semi-simple, say

B �
⊕

i

Mni(C).

By Lemma 4.10, if B(∗) is ∗-wild, so is the ∗-algebra A(∗). If some of the ni in the above
decomposition is greater than 1, then from Lemmas 4.1 and 4.10 it follows that B(∗) is
∗-wild. According to Lemma 4.2, the algebra B(∗) is also ∗-wild if all ni = 1 and the
number of the components is greater than two. Otherwise, B � C or B � C ⊕ C (the
corresponding ∗-doubles are tame), and we have to study these cases separately.

Assume first that B � C and consider the quotient R/R2. If dim(R/R2) > 1, then
R contains a subspace, say J , such that J ⊃ R2 and the codimension of J/R2 in
R/R2 is 2. Since the only primitive idempotent of A is the identity, it follows that J

is an ideal of A and A/J � C[x, y]/(x2, y2, xy). From Lemmas 4.7 and 4.10 we get
that A(∗) is ∗-wild in this case. If dim(R/R2) = 1, then R is generated by one ele-
ment, say x, as an algebra, and hence A is a quotient of the polynomial algebra C[x].
Since R is nilpotent, we have that xn = 0 for some n > 1 and thus A � C[x]/(xn).
If n = 2, i.e. A is two dimensional, then, by Lemma 4.3, A(∗) is ∗-tame. If n > 2,
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then, by Lemmas 4.5 and 4.10, A(∗) is ∗-wild. If dim(R/R2) = 0, we have R = 0,
A = C and therefore A(∗) is ∗-finite. Note that this is the only case when A(∗) is finite
dimensional.

Finally, assume that B � C ⊕ C. In this case A has two orthogonal idempotents, say a

and b, a+ b = e. If R = 0, then A = C⊕C (A is two dimensional) and the ∗-double A(∗)
is ∗-tame by Lemma 4.3. Assume now that there exists x ∈ R \ R2 such that xa = x and
bx = x (or ax = x and xb = x). Let A′ denote the quotient of A by the ideal J , generated
by R2, aRa and bRb. Then we have either (x+J)(a+J) = x+J and (b+J)(x+J) = x+J

or (x+J)(b+J) = x+J and (a+J)(x+J) = x+J . Moreover, any subspace of rad(A′) is
an ideal of A′. Let V ⊂ rad(A′) be a subspace of codimension 1, which does not contain
x + J . Then A′/V � C〈f, x | f2 = f, xf = (1 − f)x = x〉. This means that we can use
Lemmas 4.8 and 4.10 and conclude that A′(∗) and hence A(∗) are ∗-wild.

If the element x with the properties above does not exist, we have that aRb = bRa = 0,
and hence, if R is non-zero, we obtain that either aRa/(aRa)2 �= 0 or bRb/(bRb)2 �= 0,
with both aRa and bRb being ideals in A. Without loss of generality we can assume that
aRa/(aRa)2 �= 0. Then we find V ⊂ aRa such that V ⊃ (aRa)2 and the codimension
of V/(aRa)2 in aRa/(aRa)2 is 1. For the ideal J = V + R2 + bRb we obtain that
A/J = C[x]/(x2) ⊕ C, whose ∗-double is ∗-wild by Lemma 4.9. This completes the proof
of Theorem 3.1.

Corollary 3.2 follows using the following arguments. The only associative algebra of
dimension one is the field C itself, and for this one all indecomposable representations
are irreducible and have dimension one. Any associative algebra of dimension two is
commutative and thus isomorphic to C[x]/(x2 + ax + b) for some a, b ∈ C. If the roots of
x2 + ax + b are different, the algebra is isomorphic to C ⊕ C, which is semi-simple with
one-dimensional irreducible representations, hence all indecomposable representations are
again irreducible and have dimension 1. Finally, if the roots of x2+ax+b coincide, we get
an algebra, isomorphic to C[x]/(x2), which has only one irreducible representation (up to
isomorphism) of dimension one and one indecomposable non-irreducible representation
of dimension 2 by the Jordan Theorem. Hence, under the assumptions of Corollary 3.2,
we must have dim(A) > 2 and thus A(∗) is ∗-wild by Theorem 3.1.

Corollary 3.3 is proved as follows. If L is a finite-dimensional Lie algebra, then
L/ rad(L) is either semi-simple or zero. We have, therefore, the following two possi-
bilities: (a) L = rad(L) and L/[L, L] is abelian and non-zero, or (b) L has a quotient,
which is a non-zero simple Lie algebra. In the first case the universal enveloping algebra
U(L/[L, L]) is a polynomial ring and hence the ∗-double of U(L/[L, L]) is ∗-wild (by, say,
Lemmas 4.10 and 4.5). Therefore, U(L)(∗) is ∗-wild by Lemma 4.10. In the second case
the algebra U(L) has an irreducible representation of dimension greater than 1 and, by
Corollary 3.2, U(L)(∗) is ∗-wild.
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