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A new way to tackle a conjecture of
Rémond
Arnaud Plessis

Abstract. Let Γ ⊂ Q∗ be a finitely generated subgroup. Denote by Γdiv its division group. A
recent conjecture due to Rémond, related to the Zilber–Pink conjecture, predicts that the absolute
logarithmic Weil height of an element ofQ(Γdiv)

∗/Γdiv is bounded from below by a positive constant
depending only on Γ. In this paper, we propose a new way to tackle this problem.

1 Introduction

1.1 Rémond’s conjecture

Let α ∈ Q. The (absolute logarithmic) Weil height of α is the real number

h(α) = 1
[Q(α) ∶ Q] log(∣l c(α)∣∏

σ
max{1, ∣σα∣}) ,

where l c(α) denotes the leading coefficient of the minimal polynomial of α over
Z, and where σ runs over all field embeddings Q(α) → Q. The function h ∶ Q→ R

is nonnegative and vanishes precisely at μ∞, the set of all roots of unity, and 0 by
a theorem of Kronecker. It is also invariant under Galois conjugation and satisfies
h(αn) = ∣n∣h(α) for all α ∈ Q and all n ∈ Z. For more properties on h, see [8].

Let X be a set of algebraic numbers. We say that points of small height (or short,
small points) of X lie in a set Y ⊂ Q if there exists a positive constant c such that h(α) ≥
c for all α ∈ X/Y .

The case where small points of an algebraic field lie in μ∞ ∪ {0} has been inten-
sively studied since the beginning of this century (see, for example, [2, 3, 5, 9, 11–14, 16,
18, 21, 22, 28]). For various technical reasons, it is difficult to adapt the ideas of these
papers to locate small points of an algebraic field that are not contained in μ∞ ∪ {0}.
As far as [1] shows, the first one who managed to do this is Amoroso in 2016, see our
explanation below for more details.

Consider the field L = Q(μ∞, α, α1/2 , α1/3 , . . . ), where α ∈ Q∗. It is trivial to con-
struct small points in L∗. For instance, we have all roots of unity, but also α1/n

with n large enough since h(α1/n) = h(α)/n. But does L∗ also contain nonobvious
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small points; i.e., elements of small height not in {ζαq , ζ ∈ μ∞, q ∈ Q}? By a result
of Amoroso and Dvornicich [3], the answer is no if α ∈ μ∞. But this question is still
open for α ∉ μ∞. A very particular case of a deep and recent conjecture of Rémond,
related to the Zilber–Pink conjecture, predicts a negative answer to this question (see
Conjecture 1.1).

Throughout this introduction, Γ always denotes a finitely generated subgroup of
Q
∗

. Define Γdiv as the division group of Γ, i.e., the set of γ ∈ Q∗ for which there exists
an integer n ∈ N = {1, 2, . . . } satisfying γn ∈ Γ.

Conjecture 1.1 (Rémond [27, Conjecture 3.4]) Let Γ ⊂ Q
∗ be a finitely generated

subgroup.
(i) (Strong form): There is a positive constant c such that

h(α) ≥ c
[Q(Γdiv , α) ∶ Q(Γdiv)]

for all α ∈ Q∗/Γdiv .

(ii) (Weak form): For any ε > 0, there exists a positive constant cε such that

h(α) ≥ cε

[Q(Γdiv , α) ∶ Q(Γdiv)]1+ε for all α ∈ Q∗/Γdiv .

(iii) (Degree one form): Small points of Q(Γdiv)∗ lie in Γdiv.

The reader interested on recent advances concerning Rémond’s conjecture is
referred to [1, 15, 23, 24, 26, 27].

Write ⟨X⟩ for the group generated by a set X ⊂ Q
∗

. We clearly have the implications
(i) ⇒ (ii) ⇒ (iii). The strong form generalizes the relative Lehmer’s problem, which
corresponds to the case Γ = {1}. As far as [3] and [4] show, the strong form is not yet
known in any situation and both the weak form and the degree one form are only
known when Γ is trivial. The first partial result going in the direction of Conjecture
1.1 for nontrivial groups was given by Amoroso. He proved that small points of
Q(ζ3 , 21/3 , ζ32 , 21/32

, . . . )∗, with ζn = e2iπ/n , lie in ⟨2⟩div [1, Theorem 1.3]. The author
then proved the same assertion by replacing 2 with α ∈ Q∗ and 3 with a rational prime
p > 2 [23, Théorème 1.8].

The proof of these last two results relies on the “classical method,” i.e., the one to
treat the case where small points of an algebraic field lie in μ∞ ∪ {0}. As already
implied in [1, Remark 3.4], it seems that this method is (very) limited to handle
Conjecture 1.1(iii), which explains why it is still largely open. So we need to tackle
this conjecture from a totally different angle. We suggest a new one below.

1.2 Presentation of results

Let (yn) be a sequence of Q(Γdiv)∗ such that h(yn) → 0. From Bilu’s equidistribution
theorem [6], it is not hard to check that

#{σ ∶ Q(yn) ↪ Q, 1 − ε ≤ ∣σ yn ∣ ≤ 1 + ε}
[Q(yn) ∶ Q]

�→
n→+∞

1

for all ε > 0 (if the sequence of terms [Q(yn) ∶ Q] is bounded, then yn ∈ μ∞ for all
n large enough by Northcott’s theorem, and so the ratio above is 1 for all n large
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enough). In other words, if the Weil height of yn is small enough, then “most of ” its
Galois conjugates over Q are “close” to the unit circle. Nonetheless, as KΓ = Q(μ∞, Γ)
is not a number field, Bilu’s theorem above cannot tell anything about the location
in the complex plane of Galois conjugates of yn over KΓ . Our results stipulate that
a fairly precise knowledge of the distribution of these numbers allows us to solve a
part of Conjecture 1.1(iii). In Section 3, we will prove a result reducing the study of
Conjecture 1.1(iii) to the case that for all n large enough, “most of ” Galois conjugates
of yn over KΓ are “close” to the unit circle.

Let α ∈ Q, and let ε > 0. We write OΓ(α) for the orbit of α under Gal(Q/KΓ) and
we put

dΓ,ε(α) ∶= #{x ∈ OΓ(α), 1 − ε ≤ ∣x∣2 ≤ 1 + ε}
#OΓ(α) .

Theorem 1.2 Let Γ ⊂ Q
∗

be a finitely generated subgroup. Then Conjecture 1.1(iii)
is equivalent to the following assertion: Let (yn) be a sequence of Q(Γdiv)∗ such that
h(yn) → 0. Assume that dΓ,ε(yn) �→

n→+∞
1 for all ε > 0. Then yn ∈ Γdiv for all n large

enough.

The length of an element x ∈ Q(Γdiv) is defined to be the smallest integer l ∈ N for
which x can express as x = ∑l

j=1 x jγ j with x j ∈ KΓ and γ j ∈ Γdiv. Each element of Γdiv
has length 1. For N ∈ N, put lN(Γ) the set of elements of Q(Γdiv) with length ≤ N .

From Theorem 1.2, it is enough to prove the following two conjectures to deduce
Conjecture 1.1(iii).

Conjecture 1.3 Let Γ ⊂ Q
∗ be a finitely generated subgroup, and let (yn) be a sequence

of Q(Γdiv)∗ such that h(yn) → 0 and dΓ,ε(yn) �→
n→+∞

1 for all ε > 0. Then there exists
N ∈ N such that yn ∈ lN(Γ) for all n large enough.

Conjecture 1.4 Let N ∈ N, and let Γ ⊂ Q
∗ be a finitely generated subgroup. Let (yn) be

a sequence of lN(Γ)/{0} such that h(yn) → 0 and dΓ,ε(yn) �→
n→+∞

1 for all ε > 0. Then
yn ∈ Γdiv for all n large enough.

Conjecture 1.4 with N = 1 was solved by Rémond, see Lemma 1.5. Conjectures
1.1(iii) and 1.3 with N = 1 are therefore equivalent. However, this does not remove
the interest of Conjecture 1.4 because Conjecture 1.3 could be easier to show when N
is large.

Both conjectures seem to be treated separately. Hence, we focus in this article on
the second one only.

For a set X of algebraic numbers, write X .Γdiv for the set of xγ with x ∈ X and
γ ∈ Γdiv. Note that l1(Γ) = KΓ .Γdiv. The rank of an abelian group G is given by the
maximal number of linearly independent elements in G. Note that Γ and Γdiv have the
same rank.

Lemma 1.5 (Rémond) Let Γ ⊂ Q
∗ be a finitely generated subgroup, and let F/KΓ be a

finite extension. Then small points of F∗ .Γdiv lie in Γdiv.

Proof By Amoroso and Zannier’s result [5, Theorem 1.2], small points of F∗ lie in
μ∞ ⊂ Γdiv. By assumption, Γ ⊂ Γdiv ∩ F∗ ⊂ Γdiv. Thus Γ, Γdiv ∩ F∗ and Γdiv all have the
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same rank, which is finite since Γ is finitely generated. For a ∈ F, set

hΓ(a) = min{h(aγ), γ ∈ Γdiv}.

Thanks to a result of Rémond [26, Corollary 2.3], there is a positive constant c such
that hΓ(a) ≥ c for all a ∈ F∗/Γdiv.

Let y = aγ ∈ F∗ .Γdiv, where a ∈ F∗ and γ ∈ Γdiv, such that h(y) < c. As c > h(y) ≥
hΓ(a), we get a ∈ Γdiv by the foregoing. The lemma follows. ∎
Remark 1.6 This lemma can be made quantitative since [5, Theorem 1.2] and [26,
Corollary 2.3] are.

Among all our theorems, the next one is the most difficult (and technical) to show.
Hence, we will prove it at the end of this paper, that is in Section 8.

Theorem 1.7 Let Γ ⊂ Q
∗ be a finitely generated subgroup, let N ∈ N, and let (yn) be

a sequence of lN(Γ). Assume that dΓ,ε(yn) �→
n→+∞

1 for all ε > 0. Then for all ε > 0, we
have dΓ,ε(yn) = 1 for all n large enough.

Remark 1.8 The proof of this theorem does not hold if we study the Galois conjugates
of yn over Q (or Q(Γ)) instead of KΓ . The reason is that we will use Kummer theory
and for this, it is primordial that our ground field contains all roots of unity.

Theorem 1.7 means that if “most of ” elements in OΓ(yn) are “close” to the unit
circle, then they all are. Note that this theorem holds regardless of the value of h(yn),
which leads to the following natural question: How are the elements of OΓ(yn)
scattered around the unit circle when h(yn) is small enough ? We predict they are
concyclic and located on a circle centered at the origin. If it checks out, then Conjecture
1.4 would immediately fall thanks to our next theorem, a proof of which is given in
Section 5.

Denote by U(Γ) the set of algebraic numbers α such that the elements of OΓ(α) are
concyclic and located on a circle centered at the origin. Check that Γdiv is a subgroup of
U(Γ): Let x ∈ Γdiv, and let σ ∈ Gal(Q/KΓ). By definition of the division group, we have
xn ∈ Γ for some n ∈ Z/{0}. Thus σ(xn) = xn implying ∣σx∣ = ∣x∣; whence x ∈ U(Γ).

Theorem 1.9 Let Γ ⊂ Q
∗

be a finitely generated subgroup, and let N ∈ N. Then small
points of lN(Γ) ∩U(Γ) lie in Γdiv.

Remark 1.10 Theorem 1.9 can be made quantitative by using the arguments of this
paper (see Remark 5.3 for details).

End this section by providing a collection of Γ for which small points of lN(Γ)/{0}
lie in U(Γ), thus giving credit to our approach to attack Conjecture 1.1(iii).

A CM-field is a totally imaginary quadratic extension of a totally real field. The
maximal totally real field extension Qtr of Q having only one quadratic extension,
namely Qtr(i), the CM-fields are therefore the subfields of Qtr(i) that are not totally
real. In particular, a compositum of CM-fields is a CM-field. The classification of CM-
number fields was made in [7]; these are the fields of the form Q(α)with α ∈ U/{±1},
where U denotes the set of algebraic numbers with all its conjugates over Q on the
unit circle. Note that if Γ ⊂ U , then Γdiv ⊂ U . The field Q(Γdiv) is therefore a CM-field
since it is the compositum of all Q(α) with α ∈ Γdiv/{±1}.
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Corollary 1.11 Let Γ ⊂ U be a finitely generated subgroup, and let N ∈ N. Then small
points of lN(Γ)/{0} lie in Γdiv.

Proof By a theorem of Schinzel [29, Theorem 2], see also [25], small points of
Qtr(i)∗ lie in U. As Γ ⊂ U , the field Q(Γdiv) is a CM-field; whence Q(Γdiv) ⊂ Qtr(i).
Small points of lN(Γ)/{0} therefore lie in U. The corollary now arises from Theorem
1.9 since U ⊂ U(Γ) by definition. ∎

Conjectures 1.1(iii) and 1.3 are therefore equivalent for CM-fields. This corollary
is the second partial result going in the direction of Conjecture 1.1(iii), and the first
one of this form.

2 Kummer theory

Fix once and for all a finitely generated subgroup Γ ⊂ Q
∗

of rank b. As Conjecture
1.1(iii), and therefore Conjecture 1.4, is true for b = 0 (see the introduction), we can
reduce the proof of all theorems mentioned in the introduction to the case that b > 0.
We also fix once and for all a generating set F = {α1 , . . . , αb} of the torsion-free part
of Γ. Finally, for n ∈ N, we put F1/n = {α1/n

1 , . . . , α1/n
b } and we define μn as the set of

roots of unity killed by n.
Let n be a positive integer dividing m ∈ N ∪ {∞} (by convention, all integers divide

∞). Galois theory claims that Gal(Q(μm ,F1/n)/Q(F)) is isomorphic to the inner
semidirect product of Gal(Q(μm ,F)/Q(F)) and Gal(Q(μm ,F1/n)/Q(μm ,F)). Thus
each element σ ∈ Gal(Q(μm ,F1/n)/Q(F)) can be identified with a pair

(ϕσ , ψσ) ∈ Gal(Q(μm ,F)/Q(F)) ×Gal(Q(μm ,F1/n)/Q(μm ,F)).

Concretely, if x = ∑l
j=1 a jγ j ∈ Q(μm ,F1/n) with a j ∈ Q(μm ,F) and γ j ∈ ⟨F1/n⟩, then

σx = ∑l
j=1 ϕσ(a j)ψσ(γ j).

The Cartesian product above can be explicitly described. The computation of the
left piece can be done thanks to the class field theory and that of the right piece by
using a result of Perruca and Sgobba [19, Theorem 13], see the lemma below.

Lemma 2.1 Let L/Q(F) be a finite extension. Then there exists an integer C ∈ N,
depending only on Γ and L, such that for all d1 , . . . , db ∈ N divising m, we have

G = Gal(L(μm , α1/d1
1 , . . . , α1/db

b )/L(μm)) ≃
b
∏
l=1

Z/(d l /c l)Z

for some positive integers c1 , . . . , cb ≤ C.

Proof Put L0 = L(μm) and L l = L l−1(α1/d l
l ) for all l ∈ {1, . . . , b}. Let G l denote

the Galois group of the extension L l /L l−1. Galois theory tells us that G is the
inner semidirect product of Gb and Gal(Lb−1/L0). As G is abelian, this product is
the Cartesian product. An easy induction shows that G ≃ ∏b

l=1 G l . For all l, it is
trivial that G l ≃ Z/(d l /c l)Z for some c l ∈ N. So G ≃ ∏b

l=1 Z/(d l /c l)Z. Write d =
max{d1 , . . . , db}. Theorem 13 in [19] claims that the extension L0(F1/d)/L0 has degree
at least db/C for some C ∈ N depending only on Γ and L. On the other hand,
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L0(F1/d)/L0(α1/d1
1 , . . . , α1/db

b ) has degree at most db/∏b
l=1 d l . The multiplicativity

formula for degrees proves that #G ≥ (∏b
l=1 d l)/C; whence ∏b

l=1 c l ≤ C. ∎

Remark 2.2 The isomorphism of Lemma 2.1 is explicit: For each (r1 , . . . , rb) ∈
∏b

l=1 Z/(d l /c l)Z, there is an unique ψ ∈ G such that ψα1/d l
l = ζ r l

d l /c l
α1/d l

l for all l.
Moreover, we have α1/c l

l ∈ L since ψα1/c l
l = (ψα1/d l

l )d l /c l = α1/c l
l for all ψ ∈ G. By abuse

of notation, this isomorphism becomes from now an equality.

Remark 2.3 The constant C of Lemma 2.1 can be explicitly determined (see [19,
Remark 20] for details).

3 Proof of Theorem 1.2

It is clear that Conjecture 1.1(iii) implies the assertion stated in Theorem 1.2. Now,
assume that this assertion is true and prove Conjecture 1.1(iii).

Let (xn) be a sequence of Q(Γdiv)∗ such that h(xn) → 0. We want to show that
xn ∈ Γdiv for all n large enough. For this, assume by contradiction that xn ∉ Γdiv for
infinitely many n, that is for all n by taking a suitable subsequence.

Lemma 3.1 We have [Q(x2
n) ∶ Q] → +∞.

Proof Let l be an accumulation point of the sequence ([Q(x2
n) ∶ Q]). Passing to

a subsequence, we get [Q(x2
n) ∶ Q] → l . If l < +∞, then our sequence is bounded

and Northcott’s theorem implies that x2
n ∈ μ∞ ⊂ Γdiv for all n large enough, which is

absurd. So l = +∞ and the lemma follows. ∎

Recall that KΓ = Q(μ∞, Γ) = Q(μ∞,F) and note that Q(Γdiv) = ⋃n∈N KΓ(F1/n).

Lemma 3.2 There is a sequence (σn) of Gal(Q/Q(F)) such that dΓ,ε(σn xn) �→
n→+∞

1
for all ε > 0.

Proof Let n ∈ N. There exists mn ∈ N such that xn ∈ KΓ(F1/mn). We can also find a
multiple m′n ∈ N of mn such that:

(i) xn ∈ Q(ζm′n ,F1/mn).
(ii) The restriction map Gal(KΓ(F1/mn)/KΓ) → Hn =

Gal(Q(ζm′n ,F1/mn)/Q(ζm′n ,F)) is an isomorphism.

Express xn as xn = ∑ln
j=1 a j,nγ j,n with a j,n ∈ Q(ζm′n ,F) and γ j,n ∈ ⟨F1/mn ⟩. Fix ε > 0.

For any ϕ ∈ Nn = Gal(Q(ζm′n ,F)/Q(F)), we set

dn(ϕ) =
#{ψ ∈ Hn , 1 − ε ≤ ∣∑ln

j=1 ϕ(a j,n)ψ(γ j,n)∣ 2 ≤ 1 + ε}
#Hn

and we pick ϕn ∈ Nn such that dn(ϕn) = maxϕ∈Nn{dn(ϕ)}.
By Galois theory, Gn = Gal(Q(ζm′n ,F1/mn)/Q(F)) is isomorphic to the inner

semidirect product of Nn and Hn . Denote by σn the element of Gn corresponding
to the pair (ϕn , 1) ∈ Nn × Hn . Section 2 tells us that σn xn = ∑ln

j=1 ϕn(a j,n)γ j,n .
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From (i) and (ii), we infer that OΓ(σn xn) is equal to the orbit of σn xn under Hn .
Thus, it follows from the definition of dΓ,ε(σn xn) (see Section 1.2) that

dΓ,ε(σn xn) =
#{ψ ∈ Hn , 1 − ε ≤ ∣ψσn xn ∣2 ≤ 1 + ε}

#Hn
= dn(ϕn).

A small calculation gives

un = #{σ ∈ Gn , 1 − ε ≤ ∣σxn ∣2 ≤ 1 + ε}

= #
⎧⎪⎪⎨⎪⎪⎩
(ϕ, ψ) ∈ Nn × Hn , 1 − ε ≤

###########

ln

∑
j=1

ϕ(a j,n)ψ(γ j,n)
###########

2 ≤ 1 + ε
⎫⎪⎪⎬⎪⎪⎭

= ∑
ϕ∈Nn

#
⎧⎪⎪⎨⎪⎪⎩

ψ ∈ Hn , 1 − ε ≤
###########

ln

∑
j=1

ϕ(a j,n)ψ(γ j,n)
###########

2 ≤ 1 + ε
⎫⎪⎪⎬⎪⎪⎭

,

and so
un

#Gn
= 1

#Nn
∑

ϕ∈Nn

dn(ϕ) ≤ dn(ϕn) = dΓ,ε(σn xn) ≤ 1.(1)

Recall that F is a finite set. As h(x2
n) = 2h(xn) → 0 and [Q(F, x2

n) ∶ Q(F)] =
[Q(F, x2

n) ∶ Q]/[Q(F) ∶ Q] → +∞ by Lemma 3.1, we infer from Bilu’s equidistribu-
tion theorem [30, Subsection 1.1, Theorem] applied to K = Q(F) that un/#Gn goes to
1 as n → +∞. Lemma follows by involving the squeeze theorem in (1). ∎

Proof of Theorem 1.4 We have h(σn xn) = h(xn) → 0 and dΓ,ε(σn xn) �→
n→+∞

1 for all
ε > 0 by Lemma 3.2. Applying the assertion of Theorem 1.2 (which is assumed to be
true) to yn = σn xn shows that σn xn ∈ Γdiv for all n large enough.

By definition of the division group, we deduce that σn(x jn
n ) ∈ ⟨F⟩ for some integer

jn ∈ N. As σn fixes the elements of F, we conclude x jn
n ∈ ⟨F⟩ ⊂ Γ, which contradicts

the fact that xn ∉ Γdiv. This finishes the proof of Theorem 1.2. ∎

4 Direct image of μd under a meromorphic function

Definition 4.1 Let N ∈ N. Denote by SN the set of integers d ∈ N for which there
exists a meromorphic function f (z) = ∑N

j=1 a jzb j on C∗ satisfying ∣ f (ζ)∣ = 1 for all
ζ ∈ μd . Moreover, we impose that:

• b1 = 0, b2 , . . . , bN ∈ Z are pairwise distinct integers such that b1 , . . . , bN and d have
no common positive factors other than 1;

• a1 , . . . , aN ∈ C satisfy ∑i∈I a i ≠ 0 for all non-empty subsets I ⊂ {1, . . . , N}.

The study of SN might be of independent interest, but we only prove in this section
what is needed for this article, namely the finiteness of it for all N ∈ N.

Let N ≥ 2, and let d ∈ SN be greater than 4N(N2 − 1). The lemma below asserts that
regardless of the choice of integers b1 , . . . , bN as in Definition 4.1, at least one of them
has an absolute value greater than or equal to d/4. We will then contradict this claim
thanks to Dirichlet’s theorem on simultaneous approximation.
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Lemma 4.2 Let M ≥ 2, and let g(z) = ∑M
j=1 u jzc j be a meromorphic function on C∗

with u1 , . . . , uM ∈ C∗ and c1 , . . . , cM ∈ Z pairwise distinct integers. If d ≥ M2 is an
integer such that ∣g(ζ)∣ = 1 for all ζ ∈ μd , then max{∣c1∣, . . . , ∣cM ∣} ≥ d/4.

Proof Assume by contradiction that max{∣c1∣, . . . , ∣cM ∣} < d/4. Write

{γ1 , . . . , γn} = {c i − c j , 1 ≤ i , j ≤ M}

with n ≤ M2 and γ1 , . . . , γn pairwise distinct. Note that 0 = c1 − c1 ∈ {γ1 , . . . , γn}.
We can thus assume that γ1 = 0. Moreover, γk ∈ [−d/2, d/2] for all k since
max{∣c1∣, . . . , ∣cM ∣} < d/4.

For each k ∈ {1, . . . , n}, define Ek as the set of pairs (i , j) ∈ {1, . . . , M}2 for
which γk = c i − c j . Clearly, E1 , . . . , En is a partition of {1, . . . , M}2. Then put vk =
∑(i , j)∈Ek

u i u j . An easy calculation gives, for all l ∈ {0, . . . , d − 1},
n
∑
k=1

ζ l γk
d vk =

n
∑
k=1

∑
(i , j)∈Ek

u i u jζ
l(c i−c j)
d

= ∑
(i , j)∈⊔n

k=1 Ek

u i u jζ
l(c i−c j)
d = ∑

1≤i , j≤M
u i u jζ

l(c i−c j)
d

= (
M
∑
i=1

u i ζ l c i
d )

⎛
⎝

M
∑
j=1

u jζ
−l c j

d
⎞
⎠
= g(ζ l

d)g(ζ l
d) = 1,

(2)

the last equality coming from the fact that ∣g(ζ)∣ = 1 for all ζ ∈ μd . We recognize a
linear system with n unknowns (namely, v1 , . . . , vn) and d equations. By assumption,
d ≥ M2 ≥ n. The (square) matrix associated with the linear subsystem

∀l ∈ {0, . . . , n − 1},
n
∑
k=1

ζ l γk
d vk = 1(3)

is the Vandermonde matrix (ζ l γk
d )

0≤l≤n−1
1≤k≤n

. It is well-known that its determinant is

∏1≤i< j≤n(ζγ j

d − ζγ i
d ). As γ1 , . . . , γn ∈ [−d/2, d/2] are pairwise distinct, the numbers

ζγ1
d , . . . , ζγn

d are therefore pairwise distinct. Hence, the determinant above is nonzero,
and so (3) has a unique solution. Thus, (2) has at most one solution. As γ1 = 0, it follows
that (v1 , . . . , vn) = (1, 0, . . . , 0) is the unique solution of (2).

Denote by i0, resp. j0, the element of {1, . . . , M} such that

c i0 = max{c1 , . . . , cM}, resp. c j0 = min{c1 , . . . , cM}.(4)

Let m ∈ {1, . . . , n} be the integer such that γm = c i0 − c j0 , and let (i , j) ∈ Em . Then c i −
c j = c i0 − c j0 and (4) leads to c i = c i0 and c j = c j0 . As c1 , . . . , cM are pairwise distinct,
we get (i , j) = (i0 , j0). In conclusion, Em = {(i0 , j0)}.

Recall that γ1 = 0. So the set E1 contains at least M ≥ 2 elements, namely,
(1, 1), . . . , (M , M); whence m > 1. But then, by the foregoing, we have

0 = vm = ∑
(i , j)∈Em

u i u j = u i0 u j0 ,

i.e., either u i0 = 0 or u j0 = 0, which is absurd. This completes the proof. ∎
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We can now prove the desired result.

Theorem 4.3 For all N ∈ N, the set SN is finite. Moreover, S1 = {1} and 4N(N2 − 1) is
an upper bound of SN for all N ≥ 2.

Proof Let d ∈ SN . There is a meromorphic function f (z) = ∑N
j=1 a jzb j on C∗ such

that ∣ f (ζ)∣ = 1 for all ζ ∈ μd , where a1 , . . . , aN and b1 , . . . , bN are as in Definition 4.1.
If N = 1, then d has to be coprime to b1 = 0, i.e., d = 1. As ∣1∣ = 1, we get S1 = {1}. Now
assume that N ≥ 2.

Dirichlet’s theorem on simultaneous approximation asserts the existence of inte-
gers p1 , . . . , pN ∈ Z and q ∈ {1, . . . , 4N} such that ∣q(b j/d) − p j ∣ < 1/4 for all j ∈
{1, . . . , N}. Write e for the greatest common divisor of q and d, then put q′ = q/e and
d′ = d/e. Clearly, q′ and d′ are coprime, e ∈ {1, . . . , 4N} and

∀ j ∈ {1, . . . , N}, ∣q′b j − d′p j ∣ < d′/4.(5)

Put {c1 , . . . , cM} = {q′b1 − d′p1 , . . . , q′bN − d′pN}, where c1 , . . . , cM are pairwise dis-
tinct. We can assume that c1 = q′b1 − d′p1. For all k ∈ {1, . . . , M}, denote by Ek the set
of integers j ∈ {1, . . . , N} such that ck = q′b j − d′p j . Clearly E1 , . . . , EM is a partition
of {1, . . . , N}. Put uk = ∑ j∈Ek

a j and g(z) = ∑M
k=1 uk zck .

As b1 = 0 by Definition 4.1 and ∣p1∣ < 1/4 by (5), we conclude c1 = 0. Let n be a
common positive factor of c1 , . . . , cM and d′. From the definition of c i , we deduce
that n divides q′b1 , . . . , q′bN and q′d′. By Definition 4.1, b1 , . . . , bN and d′ have no
common positive factors other than 1 since d′ divides d. Hence, n divides q′. But it
divides d′ too. Whence n = 1 since q′ and d′ are coprime.

We have ∑k∈I uk ≠ 0 for all non-empty subsets I ⊂ {1, . . . , M} since otherwise,

0 = ∑
k∈I

uk = ∑
k∈I

∑
j∈Ek

a j = ∑
j∈⊔k∈I Ek

a j ,

which disagrees with Definition 4.1. In particular, u1 , . . . , uM ∈ C∗. Finally,

∀l ∈ Z, f (ζql
d ) =

N
∑
j=1

a jζ
qb j l
d =

N
∑
j=1

a jζ
q′b j l
d′ =

N
∑
j=1

a jζ
(q′b j−d′ p j)l
d′

=
M
∑
k=1

∑
j∈Ek

a jζ
(q′b j−d′ p j)l
d′ =

M
∑
k=1

uk ζ ck l
d′ = g(ζ l

d′).

As ∣ f (ζ)∣ = 1 for all ζ ∈ μd , we infer that ∣g(ζ)∣ = 1 for all ζ ∈ μd′ .
Of all this, we conclude d′ ∈ SM . Recall that d′ = d/e with e ∈ {1, . . . , 4N}, that

u1 , . . . , uM ∈ C∗, that c1 , . . . , cM ∈ Z are pairwise distinct, that ∣g(ζ)∣ = 1 for all ζ ∈ μd′

and that max{∣c1∣, . . . , ∣cM ∣} < d′/4 by (5). If M ≥ 2, then Lemma 4.2 applied to d = d′
implies d′ = d/e < M2; whence d ≤ 4N(N2 − 1). If M = 1, then d′ = 1 since S1 = {1}.
Thus, d ≤ 4N and the theorem follows. ∎

5 Proof of Theorem 1.9

Fix once and for all an integer N ∈ N. Recall that the length of an element y ∈ Q(Γdiv) is
defined to be the smallest l ∈ N for which y can express as y = ∑l

j=1 y jγ j with y j ∈ KΓ =
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Q(μ∞, Γ) and γ j ∈ Γdiv. The lemma below shows that the length is invariant under
translation of points in Γdiv.

Lemma 5.1 Let y ∈ Q(Γdiv), and let z ∈ Γdiv. Then y and yz have the same length.

Proof Denote by l, resp. l ′, the length of y, resp. yz. We can express y as y = ∑l
j=1 y jγ j

with y j ∈ KΓ and γ j ∈ Γdiv. Hence, yz = ∑l
j=1 y j(γ jz) and the definition of the length

leads to l ′ ≤ l . The inequality l ≤ l ′ is obtained by replacing y with yz and z with z−1 ∈
Γdiv. This completes the proof. ∎

Recall that F = {α1 , . . . , αb} is the torsion-free part of Γ and that lN(Γ) denotes
the set of elements in Q(Γdiv) with length ≤ N . Concretely, each x ∈ lN(Γ)/{0} with
length l can express as x = ∑l

j=1 x j ∏b
t=1 αk j,t/d

t , where x j ∈ K∗Γ , d ∈ N and k j,t ∈ Z. We
also recall that U(Γ) is the set of elements in Q

∗
for which all its conjugates over KΓ

are concyclic and located on a circle centered at the origin. Finally, recall that for any
algebraic set X, we define X .Γdiv as the set of xγ with x ∈ X and γ ∈ Γ.

Proposition 5.2 There is m ∈ N such that lN(Γ) ∩U(Γ) ⊂ KΓ(F1/m)∗.Γdiv.

Proof Let x ∈ lN(Γ) ∩U(Γ) be an element of length l ≤ N that we express as above.
For each t ∈ {1, . . . , b}, set jt ∈ {1, . . . , l} such that k j t ,t = min{k1,t , . . . , k l ,t}. Let Dt
denote the greatest common divisor of k1,t − k j t ,t , . . . , k l ,t − k j t ,t and d, then c j,t =
(k j,t − k j t ,t)/Dt and dt = d/Dt . By construction, c1,t , . . . , c l ,t and dt have no common
positive factors other than 1 for all t ∈ {1, . . . , r}. Finally, set

y =
l
∑
j=1

x j
b
∏
t=1

αc j,t/d t
t and z =

b
∏
t=1

αk jt ,t/d
t ∈ Γdiv .(6)

We easily check that x = yz. As z ∈ Γdiv, Lemma 5.1 tells us that y has length l too.
Let s ∈ {1, . . . , b} be such that ds = max{d1 , . . . , db}. If ds is bounded from above by
a constant c depending only on Γ and N, then (6) would show that y ∈ KΓ(F1/c!). The
proposition with m = c! would follow since x = yz with z ∈ Γdiv.

Put {b1 , . . . , bn} = {c1,s , . . . , c l ,s}, where b1 , . . . , bn are pairwise distinct. We can
assume that b1 = c js ,s . For all k ∈ {1, . . . , n}, write Ek the set of j ∈ {1, . . . , l} such that
bk = c j,s . Clearly E1 , . . . , En is a partition of {1, . . . , l}.

Lemma 2.1 applied to L = Q(Γ) and m = ∞ as well as the multiplicativity formula
for degrees claim that the extension

L/M = KΓ(α1/d1
1 , . . . , α1/dr

r )/KΓ(α1/d1
1 , . . . , α1/ds−1

s−1 , α1/ds+1
s+1 , . . . , α1/dr

r )

has degree at least ds/C for some C > 0 depending only on Γ. Its Galois group is
therefore isomorphic to Z/(ds/c)Z for some c ≤ C. Put

y j = x j
b
∏

t=1,t≠s
αc j,t/d t

t ∈ M , vk = ∑
j∈Ek

y j , ak = vk αbk/ds
s and f (z) =

n
∑
k=1
(ak/y)zbk .

Note that y = ∑l
j=1 y jα

c j,s/ds
s . Establish below that ds/c ∈ Sn (see Definition 4.1).

First, c js ,s = 0 by definition of c j,t ; whence b1 = 0. Next, b1 , . . . , bn and ds/c have
no common positive factors other than 1 by construction of c1,s , . . . , c l ,s and ds .
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Assume that ∑k∈I ak = 0 for some subset I ⊂ {1, . . . , n}. Then

∑
j∈⊔k∈I Ek

y jα
c j,s/ds
s = ∑

k∈I
∑
j∈Ek

y jα
c j,s/ds
s = ∑

k∈I
vk αbk/ds

s = ∑
k∈I

ak = 0,

which allows us to deduce that

y =
l
∑
j=1

y jα
c j,s/ds
s = ∑

j∉⊔k∈I Ek

y jα
c j,s/ds
s = ∑

j∉⊔k∈I Ek

x j
b
∏
t=1

αc j,t/d t
t .

The definition of the length proves that y has length at most l − #⊔k∈I Ek . As y
has length l and E1 , . . . , En are non-empty sets, we conclude that I is empty. The
contrapositive proves that ∑k∈I ak ≠ 0 for all non-empty subsets I ⊂ {1, . . . , n}.

Let σ ∈ Gal(L/M). As y j ∈ M for all j, we get vk ∈ M for all k. Collecting the
information above, we obtain

σ y = σ
⎛
⎝

l
∑
j=1

y jα
c j,s/ds
s

⎞
⎠
= σ

⎛
⎝

n
∑
k=1

∑
j∈Ek

y jα
c j,s/ds
s

⎞
⎠

= σ (
n
∑
k=1

vk αbk/ds
s ) =

n
∑
k=1

vk αbk/ds
s ζbk lσ

ds/c = y f (ζ lσ
ds/c)

(7)

for some lσ ∈ {1, . . . , ds/c}. Recall that y = x/z, that x ∈ U(Γ) and that z ∈ Γdiv ⊂ U(Γ)
(see the introduction). As U(Γ) is a group, we deduce that y ∈ U(Γ), and so ∣σ y∣ = ∣y∣.
By varying σ ∈ Gal(L/M), we infer thanks to (7) that ∣ f (ζ)∣ = 1 for all ζ ∈ μds/c . From
all this, we finally conclude ds/c ∈ Sn . By Theorem 4.3, we get ds/c ≤ 4n n2, i.e., ds ≤
4N N2C, which ends the proof of the proposition. ∎

Proof of Theorem 1.9 By Proposition 5.2, small points of lN(Γ) ∩U(Γ) lie in
KΓ(F1/m)∗.Γdiv for some m ∈ N. Theorem 1.9 follows by applying Lemma 1.5 to F =
KΓ(F1/m). ∎
Remark 5.3 Lemma 1.5 is quantitative by Remark 1.6. Moreover, the proof of Propo-
sition 5.2 shows that we can take m = (4N N2C)!. Finally, C is explicit by Remark 2.3.
This proves that Theorem 1.9 can be made quantitative.

6 Equidistribution

As stated in the introduction, we will use equidistribution arguments to prove Theo-
rem 1.7, and especially Corollary 6.2. This section is therefore devoted to the proof of
this corollary.

In this section, M ∈ N denotes a positive integer. The Weil height can extend toQ
M

,
see [8, Section 1.5]; call it h again. We have h(ζ) = 0 for all ζ ∈ μM

∞.
We say that a sequence (μn) of probability measures on S = (C∗)M weakly con-

verges to μ, denoted by μn
w�→ μ, if ∫S f dμn → ∫S f dμ for any bounded continuous

function f ∶ S → R. For a finite set F ⊂ S, the discrete probability measure on S
associated with it is given by

μF =
1

#F ∑
α∈F

δα ,

where δα is the Dirac measure on S supported on α.
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Write νM for the uniform probability measure on S supported at the unit polycircle
∣z1∣ = ⋅ ⋅ ⋅ = ∣zM ∣ = 1, where it coincides with the normalized Haar measure.

Finally, we say that a sequence (Pn) of (Q∗)M is strict if any proper algebraic
subgroup of (Q∗)M contains Pn for only finitely many n. When M = 1, it is equivalent
to saying that [Q(Pn) ∶ Q] → +∞ (see [20, Lemma 5.2.1]).

The arguments presented by Bilu in [6] are quite general and can easily be adapted
to produce other equidistribution results. We see an example of this below.

Proposition 6.1 Let (ζ k1,n
mn , . . . , ζ kM ,n

mn ) be a strict sequence with mn ∈ N and
k1,n , . . . , kM ,n ∈ Z for all n. Then μEn

w�→ νM , where

En = {(ζ sk1,n
mn

, . . . , ζ skM ,n
mn

), s = 1, . . . , mn}.

Proof First of all, we alert the reader on the fact that the hypothesis “Fn are pairwise
distinct” made in [10, Théorème 2] can be weakened in #Fn → +∞, the former
assumption being only used to get the latter one (see [10, Sous-section 5.4]).

Let n = (n1 , . . . , nM) ∈ ZM/{(0, . . . , 0)}, and set χn ∶ S → C to be the function
defined by χn(z1 , . . . , zM) = ∏M

i=1 zn i
i . We clearly have

χn(En) = {ζ s∑M
i=1 n i k i ,n

mn , s = 1, . . . , mn} .

The sequence (ζ∑
M
i=1 n i k i ,n

mn ) is strict since ((ζ k1,n
mn , . . . , ζ kM ,n

mn )) is by hypothesis. Thus

#χn(En) ≥ [Q(ζ∑
M
i=1 n i k i ,n

mn ) ∶ Q] → +∞.

Thanks to [10, Théorème 2], we get μχn(En)
w�→ ν1. From this observation, and following

the lines of the proof of [6, Proposition 4.1], we conclude that [6, Proposition 4.1] also
holds for the sequence (μEn).

For z = (z1 , . . . , zM) ∈ S, put ∣z∣∞ = max{∣z1∣, . . . , ∣zM ∣}. Let ε > 0 and write

Kε = {z ∈ S , max{∣z∣∞, ∣z∣−1
∞} ≤ e2/ε}.

Let A be the family of sets E ⊂ (Q∗)M that are finite, Gal(Q/Q)-invariant and such
that h(β), h(β−1) ≤ 1 for all β ∈ E. We clearly have En ∈ A for all n.

Choose E ∈ A. As E is both finite and Gal(Q/Q)-invariant, we can decompose it
as a finite disjoint union of Galois orbits Gal(Q/Q).β1 , . . . , Gal(Q/Q).βk for some
β1 , . . . , βk ∈ E. For each i ∈ {1, . . . , k}, Bilu proved in [6, Section 4] that σ β i ∉ Kε
for at most ε[Q(β i) ∶ Q] field embeddings σ ∶ Q(β i) → C. Thus, E/Kε has at most
ε∑k

i=1[Q(β i) ∶ Q] = ε#E elements, i.e., μE(Kε) ≥ 1 − ε. It remains to mimic the proof
of [6, Theorem 1.1] made in [6, Section 4] to deduce the proposition. ∎

For ζ , ζ′ belonging to the unit circle in C, we denote by [ζ , ζ′] the arc of this unit
circle connecting ζ and ζ′ anticlockwise.

Corollary 6.2 Let (ζ k1,n
mn , . . . , ζ kM ,n

mn ) be a strict sequence, with mn ∈ N and
k1,n , . . . , kM ,n ∈ Z for all n. Let ε > 0, and let x1 , . . . , xM ∈ [0; 2π]. Write
V = ∏M

j=1[eζ4(x j−ε); eζ4(x j+ε)] and denote by Kn(V), the set of r ∈ Z/mnZ such
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that (ζ rk1,n
mn , . . . , ζ rkM ,n

mn ) ∈ V. Then, for all n large enough, we have

#Kn(V)
mn

≥ (1 − ε) ( ε
2π
)

M
.

Proof Let f ∶ CM → [0; 1] be any continuous function that is identically zero outside
V and taking the value 1 on

W =
M
∏
j=1
[eζ4(x j−ε/2); eζ4(x j+ε/2)] ⊊ V .

Let n ∈ N. For r ∈ Z, we set

Pr ,n = (ζ rk1,n
mn

, . . . , ζ rkM ,n
mn

) and En = {Pr ,n , r = 1, . . . , mn}.

Let rn be the smallest divisor of mn such that rn k j,n ≡ 0 (mn) for all j ∈ {1, . . . , M}.
Thanks to the equality Pr+rn ,n = Pr ,n , valid for all r ∈ Z, we infer that En = {Pr ,n , r =
1, . . . , rn}. Furthermore, the minimality of rn gives #En = rn . Thus

1
mn

mn

∑
r=1

δPr ,n =
1

rn

rn

∑
r=1

δPr ,n = μEn .

Combining this equality with Proposition 6.1 provides the limit

un =
1

mn

mn

∑
r=1

f (Pr ,n) =
1

#En
∑

α∈En

f (α) → ∫ f dνM ,

since the sequence (P1,n) is strict by assumption. Thus, un ≥ (1 − ε) ∫ f dνM for all n
large enough. The lemma follows by noticing that the construction of f implies the
inequalities un ≤ 1

mn
#Kn(V) and ∫ f dνM ≥ νM(W) = (ε/2π)M . ∎

7 A crucial subsequence

To prove our Theorem 1.7, we need to extract from (xn) a “good” subsequence whose
construction is the aim of this section.

Recall that we fixed an integer N ∈ N and a generating set {α1 , . . . , αb} of the
torsion-free part of Γ. Let (xn) be a sequence of lN(Γ) (see the introduction for a
definition). Each term can express as

xn =
N
∑
j=1

x j,n
b
∏
l=1

αk j, l ,n/mn

l

with x j,n ∈ KΓ = Q(μ∞, Γ), mn ∈ N and k j, l ,n ∈ Z.
By convention, a sum indexed by the empty set is always 0.

Lemma 7.1 There exists a subsequence (xψ(n)) of (xn) satisfying the following: for all
l ∈ {1, . . . , b}, there is a set J l ⊂ {1, . . . , N} such that:
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(a) the sequence of terms (ζ k j, l ,ψ(n)
mψ(n) ) j∈J l is strict unless J l is empty;

(b) for all j ∈ {1, . . . , N}, there are an integer λ( j, l) ∈ Z/{0} and a tuple (λ( j, l)
m )m∈J l ∈

Z#J l such that for all n,

λ( j, l)k j, l ,ψ(n) + ∑
m∈J l

λ( j, l)
m km , l ,ψ(n) ≡ 0 (mψ(n)).

Proof We compare the elements in R2 with the lexicographic order ⪯.
Construct recursively sets J l ,t ⊂ {1, . . . , N} and functions ψ l ,t ∶ N→ N, where

(l , t) ranges over all elements of I = {1, . . . , b} × {0, . . . , N}, as follows: If t = 0, then
J l ,0 is empty and ψ l ,0 is either the identity if l = 1 or ψ l−1,N if l > 1. Assume that t ≥ 1.
If the sequence of terms (ζ

k j, l ,ψl ,t−1(n)
mψl ,t−1(n) )

j∈J l ,t−1∪{t}
is strict, then we put J l ,t = J l ,t−1 ∪ {t}

and ψ l ,t = ψ l ,t−1. If not, then put J l ,t = J l ,t−1. By definition of a strict sequence, there
are a proper algebraic subgroup Tl ,t of Q

∗
and a subsequence (xψ l ,t(n)) of (xψ l ,t−1(n))

such that u l ,t ,n = (ζ
k j, l ,ψl ,t(n)
mψl ,t(n) )

j∈J l ,t∪{t}
∈ Tl ,t for all n.

From this construction, we easily check by induction that for all (l , t) ∈ I, either
J l ,t is empty or the sequence of terms v l ,t ,n = (ζ

k j, l ,ψl ,t(n)
mψl ,t(n) )

j∈J l ,t

is strict.

Let (i , j) ∈ I. Note that (xψ l ,t′(n)) is a subsequence of (xψ l ,t(n)) if t′ ≥ t. As ψ l ,0 =
ψ l−1,N if l > 1, an easy induction proves that (xψ l′ ,t′(n)) is a subsequence of (xψ l ,t(n))
for all (l ′ , t′) ⪰ (l , t). In particular, (xψb ,N(n)) is a subsequence of (xψ l ,t(n)).

Let l ∈ {1, . . . , b} and show that the lemma holds with J l = J l ,N and ψ = ψb ,N .
(a): By the foregoing, either J l is empty or (v l ,N ,n) is strict. Item (a) follows since

(xψ(n)) is a subsequence of (xψ l ,N(n)).
(b): If j ∈ J l , then we get (b) by taking λ( j, l) = 1, λ( j, l)

j = −1 and λ( j, l)
m = 0 if m ≠ j.

If j ∉ J l , then j ∉ J l , j since J l , j ⊂ J l . By construction of J l , j , it means that u l , j,n ∈ Tl , j
for all n. Consequently, [17, Chapter 3, §3, Theorem 5] says us that there exists a tuple
λ = (λ( j, l)

m )m∈J l , j∪{ j} ∈ Z1+#J l , j/{(0, . . . , 0)} such that for all n,

λ( j, l)
j k j, l ,ψ l , j(n) + ∑

m∈J l , j

λ( j, l)
m km , l ,ψ l , j(n) ≡ 0 (mψ l , j(n)).(8)

To get (b), it remains to prove that λ( j, l)
j ≠ 0, which is clear if J l , j is empty since

λ ≠ 0. If not, then the sequence (v l , j,n) is strict. In particular, v l , j,n ∈ Tl , j for only
finitely many n. Once again, [17, Chapter 3, §3, Theorem 5] tells us that the congruence
∑m∈J l , j

λ( j, l)
m km , l ,ψ l , j(n) ≡ 0 (mψ l , j(n)) holds for only finitely many n, and (8) proves

that λ( j, l)
j ≠ 0. This completes the proof. ∎

Put O = (0, 0). For a point P ∈ R2 with affix z, we set �⃗z = ���⃗OP. Next define (�⃗z1 , ��⃗z2) to
be the angle formed by nonzero vectors �⃗z1 and ��⃗z2. If z1 = 0 or z2 = 0, we write (�⃗z1 , ��⃗z2) =
0. We can now construct our sequence (xΦ(n)).

Lemma 7.2 We keep the notation of Lemma 7.1. Put θ = ∏N
j=1 ∏b

l=1 ∣λ( j, l)∣ ∈
N, Λ( j, l)

m = −θλ( j, l)
m /λ( j, l) ∈ Z and K j, l ,ψ(n) = ∑m∈J l

Λ( j, l)
m km , l ,ψ(n). Then there exist a
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subsequence (xΦ(n)) of (xψ(n)) and a subset I ⊂ {1, . . . , N} such that:
(a) for all n, we have

xΦ(n) = ∑
j∈I

a j,Φ(n)
b
∏
l=1

αK j, l ,Φ(n)/(θmΦ(n))
l = ∑

j∈I
z j,Φ(n) ,

where a j,Φ(n) ∈ KΓ(F1/θ) and z j,Φ(n) = a j,Φ(n)∏b
l=1 αK j, l ,Φ(n)/(θmΦ(n))

l ;
(b) the tuples (K j,1,Φ(n) , . . . , K j,b ,Φ(n)) are pairwise distinct when j ranges over all

elements of I;
(c) the sequence (((�������⃗z i ,Φ(n),

�������⃗z j,Φ(n)))i , j∈I) converges as n → +∞.
Proof Let l ∈ {1, . . . , b}, and let j ∈ {1, . . . , N}. A small calculation involving Lemma
7.1(b) gives k j, l ,ψ(n) = (v j, l ,ψ(n)mψ(n) + K j, l ,ψ(n))/θ for some v j, l ,ψ(n) ∈ Z. Thus

xψ(n) =
N
∑
j=1

x j,ψ(n)
b
∏
l=1

αk j, l ,ψ(n)/mψ(n)

l

=
N
∑
j=1
(x j,ψ(n)

b
∏
l=1

αv j, l ,ψ(n)/θ
l )

b
∏
l=1

αK j, l ,ψ(n)/(θmψ(n))
l .

Note that x j,ψ(n)∏b
l=1 αv j, l ,ψ(n)/θ

l ∈ KΓ(F1/θ). If two tuples (K i ,1,ψ(n) , . . . , K i ,b ,ψ(n))
and (K j,1,ψ(n) , . . . , K j,b ,ψ(n)) are equal, we can then group the ith and the jth term
in the last sum above into a single. By repeating this process as much as possible, we
construct a set Iψ(n) ⊂ {1, . . . , N} such that

xψ(n) = ∑
j∈Iψ(n)

a j,ψ(n)
b
∏
l=1

αK j, l ,ψ(n)/(θmψ(n))
l ,

where a j,ψ(n) ∈ KΓ(F1/θ) and the tuples (K j,1,ψ(n), . . . , K j,b ,ψ(n)) are pairwise distinct
when j runs over all elements of Iψ(n). As Iψ(n) ⊂ {1, . . . , N}, there is a subsequence
(xϕ(n)) of (xψ(n)) for which the sequence (Iϕ(n)) is constant, say to I.

By definition, (������⃗z i ,ϕ(n),
������⃗z j,ϕ(n)) ∈ [0, 2π[ for all i , j ∈ I and all n. Hence, Bolzano–

Weierstrass theorem ensures us the existence of a subsequence (xΦ(n)) of (xϕ(n))
such that the sequence (((�������⃗z i ,Φ(n),

�������⃗z j,Φ(n)))i , j∈I) converges as n → +∞. This proves
(c). Finally, we directly get (a) and (b) from the construction of IΦ(n) = I. ∎

8 Proof of Theorem 1.7

Recall that lN(Γ) is the set of x ∈ Q(Γdiv) that can express as x = ∑N
j=1 x jγ j with

x j ∈ KΓ = Q(μ∞, Γ) and γ j ∈ Γdiv. Clearly, τx ∈ lN(Γ) for all τ ∈ Gal(Q/KΓ) since any
conjugate of γ j over KΓ is equal to γ j up to root of unity.

Recall that OΓ(α) and dΓ,ε(α) have been defined in Section 1.2. Note that dΓ,ε(α) =
dΓ,ε(β) if α and β are conjugates over KΓ , that is if β ∈ OΓ(α).

The goal of this section is to prove the following.
Theorem 8.1 Let (xn) be a sequence of lN(Γ) such that dΓ,ε(xn) �→

n→+∞
1 for all ε > 0.

Let (xΦ(n)) be the sequence constructed in Lemma 7.2 from which we keep the notation.
Then:
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(a) ∑ j∈I ∣z j,Φ(n)∣2 → 1;
(b) there exist #I − 1 elements j ∈ I such that z j,Φ(n) → 0.

Proof of Theorem 1.7 by assuming Theorem 8.1 Set vn = maxx∈OΓ(yn){∣∣x∣2 − 1∣}.
Let l ∈ R ∪ {+∞} be an accumulation point of (vn) and show that l = 0, which will
finish the proof of our theorem. Without loss of generality, assume that vn → l .

Pick xn ∈ OΓ(yn) such that vn = ∣∣xn ∣2 − 1∣. By the preamble of this section, we
easily infer that xn ∈ lN(Γ) for all n and dΓ,ε(xn) = dΓ,ε(yn) → 1 for all ε > 0. Thanks
to Lemma 7.2(a), we have xΦ(n) = ∑ j∈I z j,Φ(n). As a direct consequence of Theorem
8.1, we get ∣xΦ(n)∣2 → 1. But then vΦ(n) → 0; whence l = 0. ∎

For the rest of this section, we keep (and fix) the same notation as Theorem 8.1.
In order to simplify our explanation, we assume that Φ is the identity. Set Gn =
Gal(KΓ(F1/(θmn))/KΓ) and Hn = Gal(KΓ(F1/(θmn))/KΓ(F1/θ)). Lemma 2.1 applied
to m = ∞, d1 = ⋅ ⋅ ⋅ = db = θmn and L = Q(F1/θ) gives

Hn =
b
∏
l=1

Z/(mn/c l ,n)Z,(9)

where c1,n , . . . , cb ,n ∈ N are bounded from above by a constant depending only on Γ
and θ. Next, for all m ∈ N, set . ∶ Rm ×Rm → R to be the dot product on Rm . Finally,
put K j,n = (K j,1,n , . . . , K j,b ,n) and for any r = (r1 , . . . , rb) ∈ Rb , we set

Br, i , j,n = (���⃗z i ,n , ���⃗z j,n) +
2π rcn .(K j,n −Ki ,n)

mn
,

where rcn = (r1c1,n , . . . , rb cb ,n).

8.1 Proof of Theorem 8.1(a)

We will deduce the limit of Theorem 8.1(a) thanks to the following equality. Recall
that xn ∈ KΓ(F1/(θmn)) by Lemma 7.2(a).

Lemma 8.2 Let n ∈ N, and let σ = r ∈ Hn . Then

∣σxn ∣2 = ∑
j∈I
∣z j,n ∣2 + ∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ cos (Br, i , j,n) .

Proof As σ ∈ Hn , it therefore fixes the elements of KΓ(F1/θ). Let j ∈ I. By Lemma
7.2(a), we have z j,n = a j,n ∏b

l=1 αK j, l ,n/mn

l with a j,n ∈ KΓ(F1/θ). A small calculation
involving (9) shows that σz j,n = z j,n ζrcn .K j,n

mn . From Lemma 7.2(a) and from the cosine
rule, we get

∣σxn ∣2 =
###########
∑
j∈I

σz j,n

###########
2 =

###########
∑
j∈I

z j,n ζrcn .K j,n
mn

###########
2

= ∑
j∈I
∣z j,n ∣2 + ∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ cos((

�����������⃗
z i ,n ζrcn .Ki ,n

mn ,
�����������⃗
z j,n ζrcn .K j,n

mn )) .
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To conclude, it remains to show the equality

∣z i ,n ∣∣z j,n ∣ cos((
�����������⃗
z i ,n ζrcn .Ki ,n

mn ,
�����������⃗
z j,n ζrcn .K j,n

mn )) = ∣z i ,n ∣∣z j,n ∣ cos (Br, i , j,n) ,(10)

which is obvious if either z i ,n = 0 or z j,n = 0. If these complex numbers are nonzero,
then (10) arises from the chain of equalities modulo 2π below

(
�����⃗
αζ λ

mn
,
�����⃗
βζη

mn) ≡ (
�⃗α,

������⃗
βζη−λ

mn ) ≡ (
�⃗α,

�⃗
β) + (�⃗β,

������⃗
βζη−λ

mn ) ≡ (
�⃗α,

�⃗
β) + 2π(η − λ)

mn
(2π),

which is valid for all α, β ∈ C∗ and all η, λ ∈ R. ∎
Fix from now ε > 0. Let Fn be the set of elements σ ∈ Gn satisfying 1 − ε ≤ ∣σxn ∣2 ≤

1 + ε. It is easy to check that dΓ,ε(xn) = #Fn/#Gn .

Proof of Theorem 8.1 when I has cardinality 1 Clearly (b) arises from (a). Let j
be the unique element of I. Lemma 8.2 tells us that ∣σxn ∣2 = ∣z j,n ∣2 for all σ ∈ Hn . The
fact that dΓ,ε(xn) → 1 by assumption and that Hn has index [KΓ(F1/θ) ∶ KΓ] in Gn
provides for all n large enough an element σn ∈ Hn belonging to Fn . In particular,
1 − ε ≤ ∣σn xn ∣2 = ∣z j,n ∣2 ≤ 1 + ε, and so ∣z j,n ∣2 → 1 proving what we desire. ∎

We now focus on the case where I has at least two elements.
Lemma 8.2 suggests us to construct for all n large enough a “good” σn = rn ∈ Hn for

which we can estimate as precisely as possible the quantities ∣σn xn ∣ and cos(Brn , i , j,n).
Its construction is the purpose of the next proposition.

Recall that J l is defined in Lemma 7.1. Let Y be the set of pairs (l , m) such that
l ∈ {1, . . . , b} and m ∈ J l . It is a non-empty set. Indeed, otherwise J l would be empty
for all l. Lemma 7.2 then implies K j, l ,n = 0 for all j, l , n. But this is possible only if I
has cardinality 1 by Lemma 7.2(b), a contradiction by the foregoing.

Recall that the integer Λ(i , l)
m is defined in Lemma 7.2. Then put

γ = max
i , j∈I , i≠ j

⎧⎪⎪⎨⎪⎪⎩
∑

(l ,m)∈Y
∣Λ( j, l)

m − Λ(i , l)
m ∣

⎫⎪⎪⎬⎪⎪⎭
+ 1.

Let i , j ∈ I. Write Λ i , j = (Λ( j, l)
m − Λ(i , l)

m )(l ,m)∈Y . Recall that the sequence ((���⃗z i ,n , ���⃗z j,n))
converges by Lemma 7.2(c); denote by L i , j its limit. Finally, for x ∈ R#Y , we write

I i , j(x) = [eζ4(L i , j+Λ i , j .x−γε); eζ4(L i , j+Λ i , j .x+γε)] .

Proposition 8.3 Let x ∈ R#Y . Then, for all n large enough, there exists σx,n = rx,n ∈ Hn
such that 1 − ε ≤ ∣σx,n xn ∣2 ≤ 1 + ε. Furthermore, for each i , j ∈ I distinct such that ±1 ∉
I i , j(x), we have

cos(γε) cos(L i , j + Λ i , j .x) + sin(γε) ≥
cos(Brx,n , i , j,n) ≥ cos(γε) cos(L i , j + Λ i , j .x) − sin(γε).

Proof First part: As dΓ,ε(xn) → 1, we deduce that for all n large enough,

dΓ,ε(xn) =
#Fn

#Gn
> 1 − (1 − ε)b

2[KΓ(F1/θ) ∶ KΓ]
( ε

2π
)
∑b

l=1 #J l

.(11)
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Put x = (x l ,m)(l ,m)∈Y . For l ∈ {1, . . . , b}, define Kl ,n(x) to be the set Z/(mn/c l ,n)Z if
J l is empty and the set of r ∈ Z/(mn/c l ,n)Z such that

(ζ rkm , l ,n
mn/c l ,n

)m∈J l ∈ ∏
m∈J l

[eζ4(x l ,m−ε); eζ4(x l ,m+ε)]

if J l is non-empty. We have

#Kl ,n(x)
mn/c l ,n

≥ (1 − ε) ( ε
2π
)

#J l

for all n large enough. It is clear if J l is empty. If not, then by Lemma 7.1(a), the
sequence of terms (ζ km , l ,n

mn )m∈J l is strict. As c l ,n is bounded from above by a constant
depending only on Γ and θ, we deduce that the sequence of terms (ζ km , l ,n

mn/c l ,n
)m∈J l is also

strict. The desired inequality now arises from Corollary 6.2 applied to this sequence,
M = #J l and (x1 , . . . , xM) = (x l ,m)m∈J l .

Clearly, ∏b
l=1 Kl ,n(x) is a subset of Hn by (9). Moreover, Hn has cardinality

∏b
l=1 mn/c l ,n and has index [KΓ(F1/θ) ∶ KΓ] in Gn . Thus

#∏b
l=1 Kl ,n(x)

#Gn
= 1
[KΓ(F1/θ) ∶ KΓ]

b
∏
l=1

#Kl ,n(x)
mn/c l ,n

≥ (1 − ε)b

[KΓ(F1/θ) ∶ KΓ]
( ε

2π
)
∑b

l=1 #J l

for all n large enough. Combining this inequality and (11) provides an element σn =
r = (r1 , . . . , rb) ∈ Fn ∩∏b

l=1 Kl ,n(x). This ends the first part.
Second part: Let i , j ∈ I be as in the statement. A small calculation gives

ζrcn .(K j,n−Ki ,n)
mn = ζ∑

b
l=1 r l c l ,n(K j, l ,n−K i , l ,n)

mn = ζ∑
b
l=1∑m∈J l

r l c l ,n(Λ( j, l)
m −Λ(i , l)

m )km , l ,n
mn

= ∏
(l ,m)∈Y

(ζ r l c l ,n km , l ,n
mn )Δ(i , j, l)

m ,

where Δ(i , j, l)
m = Λ( j, l)

m − Λ(i , l)
m ∈ Z. Let (l , m) ∈ Y . In particular, J l is non-empty.

Recall that r l ∈Kl ,n(x). By definition of Kl ,n(x), we have

ζ r l c l ,n km , l ,n
mn = ζ r l km , l ,n

mn/c l ,n
∈ [eζ4(x l ,m−ε); eζ4(x l ,m+ε)]

for all m ∈ J l . Thus

ζrcn .(K j,n−Ki ,n)
mn ∈
⎡⎢⎢⎢⎢⎣

∏
(l ,m)∈Y

eζ4(Δ(i , j, l)
m x l ,m−ε∣Δ(i , j, l)

m ∣); ∏
(l ,m)∈Y

eζ4(Δ(i , j, l)
m x l ,m+ε∣Δ(i , j, l)

m ∣)
⎤⎥⎥⎥⎥⎦

.

We clearly have

∑
(l ,m)∈Y

Δ(i , j, l)
m x l ,m = ∑

(l ,m)∈Y
(Λ( j, l)

m − Λ(i , l)
m )x l ,m = Λ i , j .x,

and we finally conclude from the definition of γ that

ζrcn .(K j,n−Ki ,n)
mn ∈ [eζ4(Λ i , j .x−(γ−1)ε); eζ4(Λ i , j .x+(γ−1)ε)].
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On the other hand, eζ4(��⃗z i ,n ,��⃗z j,n) ∈ [eζ4(L i , j−ε), eζ4(L i , j+ε)] for all n large enough since
(���⃗z i ,n , ���⃗z j,n) → L i , j . From all this, we conclude that for all n large enough,

eζ4 Br, i , j,n = eζ4(��⃗z i ,n ,��⃗z j,n)ζrcn .(K j,n−Ki ,n)
mn ∈ I i , j(x).

By assumption, ±1 ∉ I i , j(x). The real part function is therefore monotone on I i , j(x).
In particular, it reaches its extrema to the two endpoints of I i , j(x). If it is decreasing,
then

cos(L i , j + Λ i , j .x − γε) ≥ cos(Br, i , j,n) ≥ cos(L i , j + Λ i , j .x + γε).

We deduce the desired inequality thanks to the relations cos(x − y) = cos(x) cos(y) +
sin(x) sin(y), cos(x + y) = cos(x) cos(y) − sin(x) sin(y), and ∣ sin(x)∣ ≤ 1. The
increasing case is similar, which proves the second part of the statement. ∎

The key to get Theorem 8.1(a) is to apply the previous proposition to a finite
number of well-chosen x. But before constructing them, we need some preliminary
results.

Lemma 8.4 Let i , j ∈ I be distinct. Then Λ i , j is nonzero.

Proof If Λ i , j is zero, then Λ( j, l)
m = Λ(i , l)

m for all (l , m) ∈ Y , i.e., for all l ∈ {1, . . . , b}
and all m ∈ J l . But then, Lemma 7.2 implies K i , l ,n = K j, l ,n for all l ∈ {1, . . . , b} and all
n, i.e., (K i ,1,n , . . . , K i ,b ,n) = (K j,1,n , . . . , K j,b ,n) for all n. This is possible only if i = j
according to Lemma 7.2(b), a contradiction. The lemma follows. ∎

We can thus fix an integer d ∈ N such that for all i , j ∈ I distinct, d does not divide
at least one of the coordinates of Λ i , j . Put

Z = {0; 2π/d; . . . ; 2π(d − 1)/d}#Y .

Lemma 8.5 Let i , j ∈ I be distinct. Then ∑z∈Z eζ4 Λ i , j .z = 0.
Proof For brevity, write Λ i , j = (λ1 , . . . , λ#Y). Thus

∑
z∈Z

eζ4 Λ i , j .z = ∑
0≤k1 , . . . ,k#Y≤d−1

eζ4∑#Y
t=1 λ t 2πk t/d = ∑

0≤k1 , . . . ,k#Y≤d−1
ζ∑

#Y
t=1 λ t k t

d .

By definition of d, there is u ∈ {1, . . . , #Y} such that d does not divide λu . So

∑
z∈Z

eζ4 Λ i , j .z = ∑
0≤k1 , . . . ,ku−1 ,ku+1 , . . . ,k#Y≤d−1

ζ
∑#Y

t=1
t≠u

λ t k t

d

d−1
∑

ku=0
ζ λu ku

d .

Finally, ∑d−1
k=0 ζ λu k

d = 0 since d does not divide λu . The lemma follows. ∎
We would like to apply Proposition 8.3 for all x ∈ Z. However, there is no guarantee

that the condition ±1 ∉ I i , j(x) holds for all i , j ∈ I distinct and all x ∈ Z. We see below
how to circumvent this difficulty.

We define H to be the set of X ∈ [0; 2π]#Y satisfying

∃t ∈ Z, ∃i ≠ j ∈ I, ∃z ∈ Z such that L i , j + Λ i , j .(X + z) − tπ = 0.

As Λ i , j is nonzero for all i , j ∈ I distinct, we infer that H lies in a finite union of
hyperplanes in R#Y (the equation above having no solution if ∣t∣ is large enough
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since the quantity X is bounded). Hence, there exists a simply-connected compact
K ⊂ [0; 2π]#Y such that K ∩H is empty. The distance δ from K to H is a positive real
since both K and H are compact. For x0 ∈ K, the distance from x0 to H is

min
t∈Z, i≠ j∈I ,z∈Z

⎧⎪⎪⎨⎪⎪⎩

∣L i , j + Λ i , j .(x0 + z) − tπ∣
√

Λ i , j .Λ i , j

⎫⎪⎪⎬⎪⎪⎭
≥ δ.

As Λ i , j ∈ Z#Y is nonzero, we conclude
√

Λ i , j .Λ i , j ≥ 1, and so

∣L i , j + Λ i , j .x − tπ∣ ≥ δ

for all t ∈ Z, all i , j ∈ I distinct and all x ∈ K + Z = {X + z, X ∈ K , z ∈ Z}.
Recall that ε is as small as possible. So we can take it such that γε < δ. Thus

tπ ∉ [L i , j + Λ i , j .x − γε; L i , j + Λ i , j .x + γε]

for all t ∈ Z, all i , j ∈ I distinct and all x ∈ K + Z. In conclusion, ±1 ∉ I i , j(x) for all
i , j ∈ I distinct and all x ∈ K + Z.

Here is the last calculation before starting the proof of Theorem 8.1(a).

Lemma 8.6 Let η, x j ∈ C be complex numbers with j ∈ I. Then

∑
j∈I

x2
j + η ∑

i , j∈I , i≠ j
x i x j = −

η
2 ∑

i , j∈I , i≠ j
(x i − x j)2 + (1 + η(#I − 1))∑

j∈I
x2

j .

Proof For brevity, put η1 = −η/2 and η2 = 1 + η(#I − 1). Then

η1 ∑
i , j∈I , i≠ j

(x i − x j)2 + η2 ∑
j∈I

x2
j = η1 ∑

i , j∈I , i≠ j
(x2

i + x2
j − 2x i x j) + η2 ∑

j∈I
x2

j

= 2(#I − 1)η1 ∑
i∈I

x2
i − 2η1 ∑

i , j∈I , i≠ j
x i x j + η2 ∑

j∈I
x2

j

= (η2 + 2(#I − 1)η1)∑
j∈I

x2
j − 2η1 ∑

i , j∈I , i≠ j
x i x j ,

and the lemma follows since −2η1 = η and η2 + 2(#I − 1)η1 = 1. ∎
Proof of Theorem 8.1(a) Let y ∈ K. Recall that±1 ∉ I i , j(x) for all i , j ∈ I distinct and
all x ∈ y + Z. The set y + Z being finite, we infer that for all n large enough, Proposition
8.3 holds for all elements x ∈ y + Z. Choose such a n.

Lemma 8.5 easily implies∑x∈y+Z cos(L i , j + Λ i . j .x) = 0 for all i , j ∈ I distinct. Sum-
ming over y + Z the chain of inequalities in Proposition 8.3 leads to

sin(γε)#Z ≥ ∑
x∈y+Z

cos(Brx,n , i , j,n) ≥ − sin(γε)#Z .

Proposition 8.3 gives 1 + ε ≥ ∣σx,n xn ∣2 ≥ 1 − ε for all x ∈ y + Z. By Lemma 8.2,

1 + ε ≥ ∑
j∈I
∣z j,n ∣2 + ∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ cos(Brx,n , i , j,n) ≥ 1 − ε.

By summing these inequalities over y + Z, we conclude

(1 + ε)#Z ≥ #Z∑
j∈I
∣z j,n ∣2 − sin(γε)#Z ∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣
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and

#Z∑
j∈I
∣z j,n ∣2 + sin(γε)#Z ∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ ≥ (1 − ε)#Z .

Finally, Lemma 8.6 applied to x j = ∣z j,n ∣ and η = ± sin(γε) gives us

1 + ε ≥ sin(γε)
2 ∑

i , j∈I , i≠ j
(∣z i ,n ∣ − ∣z j,n ∣)2 + (1 − (#I − 1) sin(γε))∑

j∈I
∣z j,n ∣2

≥ (1 − (#I − 1) sin(γε))∑
j∈I
∣z j,n ∣2

and

1 − ε ≤ − sin(γε)
2 ∑

i , j∈I , i≠ j
(∣z i ,n ∣ − ∣z j,n ∣)2 + (1 + (#I − 1) sin(γε))∑

j∈I
∣z j,n ∣2

≤ (1 + (#I − 1) sin(γε))∑
j∈I
∣z j,n ∣2 .

In conclusion, for all n large enough, we have

1 − ε
1 + (#I − 1) sin(γε) ≤ ∑j∈I

∣z j,n ∣2 ≤
1 + ε

1 − (#I − 1) sin(γε) ,

i.e., ∑ j∈I ∣z j,n ∣2 → 1, which proves Theorem 8.1(a). ∎

8.2 Proof of Theorem 8.1(b)

Recall that ±1 ∉ I i , j(x) for all i , j ∈ I distinct and all x ∈ K ⊂ K + Z. We can now show
the pointwise limit below.

Lemma 8.7 Pick x ∈ K. Then ∑i , j∈I , i≠ j ∣z i ,n ∣∣z j,n ∣ cos (L i , j + Λ i , j .x) → 0.

Proof Thanks to Theorem 8.1(a), we have 1 − ε ≤ ∑ j∈I ∣z j,n ∣2 ≤ 1 + ε for all n large
enough. Furthermore, for all n large enough, there is σx,n ∈ Hn as in Proposition 8.3.
Choose n large enough so that the facts above hold.

Using the triangle inequality, then Proposition 8.3, we get
###########
∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ (cos(Brx,n , i , j,n) − cos(γε) cos (L i , j + Λ i , j .x))

###########
≤(12)

∑
i , j∈I , i≠ j

∣z i ,n ∣∣z j,n ∣ sin(γε) ≤ γε ∑
i , j∈I , i≠ j

∣z i ,n ∣∣z j,n ∣.

We also have 1 − ε ≤ ∣σx,n xn ∣2 ≤ 1 + ε by Proposition 8.3. Recall that we have the chain
of inequalities 1 − ε ≤ ∑ j∈I ∣z j,n ∣2 ≤ 1 + ε. Thanks to Lemma 8.2, we obtain

###########
∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ cos(Brx,n , i , j,n)

###########
≤ 2ε.(13)
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Applying the reverse triangle inequality to (12), it follows from (13) that

cos(γε)
###########
∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ cos (L i , j + Λ i , j .x)

###########
≤ ε

⎛
⎝

γ ∑
i , j∈I , i≠ j

∣z i ,n ∣∣z j,n ∣ + 2
⎞
⎠

.

As ∣z j,n ∣2 ≤ 1 + ε for all j ∈ I, we finally conclude that for all n large enough,
###########
∑

i , j∈I , i≠ j
∣z i ,n ∣∣z j,n ∣ cos (L i , j + Λ i , j .x)

###########
≤ ε

cos(γε)(2 + γ(1 + ε)(#I)2),

which ends the proof of the lemma. ∎

Let {c1 , . . . , cM} = {Λ i , j , i , j ∈ I, i ≠ j} be with c1 , . . . , cM pairwise distinct. For k ∈
{1, . . . , M}, put Ek the set of i , j ∈ I distinct such that ck = Λ i , j . Clearly, E1 , . . . , Ek is
a partition of I2/⊔l∈I(l , l).

We now state a much more precise result than Lemma 8.7.

Lemma 8.8 We have ∑(i , j)∈Ek
∣z i ,n ∣∣z j,n ∣eζ4 L i , j → 0 for all k ∈ {1, . . . , M}.

Proof Write

Ck ,n = ∑
(i , j)∈Ek

∣z i ,n ∣∣z j,n ∣ cos(L i , j) and Sk ,n = − ∑
(i , j)∈Ek

∣z i ,n ∣∣z j,n ∣ sin(L i , j).

The sequence of terms (Ck ,n , Sk ,n)M
k=1 has an accumulation point in R2M since it is

bounded by Theorem 8.1(a). Let (Ck , Sk)M
k=1 be such a point. To show our lemma, it

is sufficient to get Ck = Sk = 0 for all k ∈ {1, . . . , M}. Without loss of generality, assume
that (Ck ,n , Sk ,n)M

k=1 → (Ck , Sk)M
k=1.

Let x ∈ K. A short calculation gives

∑
i , j∈I , i≠ j

∣z i ,n ∣∣z j,n ∣ cos (L i , j + Λ i , j .x) =
M
∑
k=1

∑
(i , j)∈Ek

∣z i ,n ∣∣z j,n ∣ cos (L i , j + ck .x)

=
M
∑
k=1

Ck ,n cos (ck .x) + Sk ,n sin (ck .x) .

We deduce from Lemma 8.7 that ∑M
k=1 Ck ,n cos (ck .x) + Sk ,n sin (ck .x) → 0 and the

uniqueness of the limit gives
M
∑
k=1

Ck cos (ck .x) + Sk sin (ck .x) = 0.

As K is a simply-connected compact, the Monodromy Theorem claims that this
equality holds for all x ∈ C#Y . Thus, for such a x, we have

M
∑
k=1

Ck cos (ck .x) =
M
∑
k=1

Sk sin (ck .x) = 0,

since the functions x ↦∑M
k=1 Ck cos (ck .x) and x ↦∑M

k=1 Sk sin (ck .x) are both even
and odd. The tuples c1 , . . . , cM being pairwise distinct by construction, we get Ck =
Sk = 0 for all k ∈ {1, . . . , M}. The lemma follows. ∎
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For all i , j ∈ I, put Λ j = (Λ( j, l)
m )(l ,m)∈Y and note that Λ i , j = Λ j − Λ i . Thanks to

Lemma 8.4, it follows that Λ j are pairwise distinct when j runs over all elements of
I. We now compare these tuples as follows: We say that Λ i is less than Λ j if and only if
Λ(i , l)

m < Λ( j, l)
m , where (l , m) is the smallest element of Y (for the usual lexicographic

order in R2) for which Λ(i , l)
m and Λ( j, l)

m differ.

Proof of Theorem 8.1(b) Write E for the set of elements j ∈ I such that the sequence
(z j,n) does not go to 0. Theorem 8.1(a) claims that E is non-empty. To get (b), it
suffices to prove that #E = 1. Assume by contradiction that #E > 1. Let i0 , j0 ∈ E be
distinct such that Λ j0 = maxh∈E Λh and Λ i0 = minh∈E Λh .

Let k ∈ {1, . . . , M} be the unique integer such that (i0 , j0) ∈ Ek . Lemma 8.8 gives
∑(i , j)∈Ek

∣z i ,n ∣∣z j,n ∣eζ4 L i , j → 0. As the sequence of terms (z j,n) j∈I is bounded by The-
orem 8.1(a), we get ∣z i ,n ∣∣z j,n ∣ → 0 if either i ∉ E or j ∉ E. From the equality

Ek = (Ek ∩ E2) ⊔ {(i , j) ∈ Ek , i ∉ E or j ∉ E},

we infer that ∑(i , j)∈Ek∩E2 ∣z i ,n ∣∣z j,n ∣eζ4 L i , j → 0.
Let (i , j) ∈ Ek ∩ E2. As (i0 , j0) ∈ Ek ∩ E2, we have Λ i0 , j0 = ck = Λ i , j ; whence

Λ j − Λ i = Λ i , j = Λ i0 , j0 = Λ j0 − Λ i0 .

The maximality of Λ j0 , together with the minimality of Λ i0 , shows that Λ j = Λ j0 and
Λ i = Λ i0 . Since Λ j are pairwise distinct when j ranges over all elements of I, we deduce
that (i , j) = (i0 , j0), and so Ek ∩ E2 = {(i0 , j0)}. But then, ∣z i0 ,n ∣∣z j0 ,n ∣eζ4 L i0 , j0 → 0,
i.e., either z i0 ,n → 0 or z j0 ,n → 0, contradicting the definition of E. Theorem 8.1(b)
follows. ∎
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