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Abstract

Robotics have important applications in the field of disaster medical rescue. The deployment of
urban rescue robots at the earthquake site can help shorten response time, improve rescue effi-
ciency and keep rescue personnel away from danger. This discussion introduces the perfor-
mance of some robots in actual rescue scenarios, focuses on the current research status of
robots that can provide medical assistance, and analyzes the merits and shortcomings of each
system. Based on existing studies, the limitations and development directions of urban rescue
robots are also discussed.

An earthquake disaster is destructive and will cause a large number of casualties. Secondary
disasters such as aftershocks and mudslides are often caused by earthquakes, making it difficult
to deploy disaster medical assistance teams (DMATs).1 The main challenges of rescuing survi-
vors after an earthquake include the following: (1) time-consuming survivor location; (2) con-
strained manpower; and (3) unsafe evacuation of victims.2

To solve these problems, the concept of robotic urban search and rescue (USAR) has been
put forward in the past century. A variety of dexterous mobile robots can be deployed to locate
victims and transfer them to a safe place in dangerous environments. Theoretical research has
been mature in the field of search robotics, including robot motion control systems and path
planning algorithms, etc.3,4 Over the years, different types of USAR robots have been developed
and applied in many real disaster sites. After the 2001World Trade Center attack, USAR robots
participated in rescue tasks.5 During the 2011 earthquake in Japan, mobile robots carried out the
inspection task in damaged buildings.6 In contrast, there are few cases of robots used for medical
rescue after finding survivors. It seems that directly providing medical assistance or autono-
mously evacuating the wounded is beyond state-of-the-art robotics. This discussion reviews
cases where rescue robots have been used and novel studies on robot systems that directly con-
tact the wounded. The purpose is to analyze limitations and discuss future developments.

Urban Search Robots

As a scout for postdisaster rescue work, urban search robots usually perform simple and crucial
tasks, including obtaining terrain information and locating survivors in confined spaces and
collapsed buildings that are not possible or safe for people to access. It is applicable for search
robots to collect dangerousmaterial samples during investigations in chemical factories or ware-
houses. Although most of the robots discussed below are also called “search-and-rescue robots”
in many studies, they do not provide medical assistance to the wounded. In general, search
robots do not make physical contact with survivors.7–22

The common robotic platform Quince has a deformable crawler structure, which can
autonomously adjust to unstructured terrains with the application of semi-autonomous control
algorithms.7 Due to the modular interoperability and extensive hardware and software archi-
tecture, the robot is versatile. After the Eastern Japan earthquake in 2011, Quince was modified
and deployed to collect information, including radiation levels in the damaged buildings of the
Fukushima nuclear power plant.8,9 NIFTi (Natural Human-Robot Cooperation in Dynamic
Environments) deployed multiple types of robots to assess damage to local historical buildings
and cultural artifacts in the red area of Mirandola of the Emilia-Romagna region after 2 major
earthquakes and several severe aftershocks in northern Italy in 2012.10 Subsequently, the Long-
Term Human-Robot Teaming for Disaster Response (TRAD) project inherited the develop-
ment of the NIFTi project and continued to develop the USAR robot.11 In 2016, a TRAD project
deployed search robots to provide 3-dimensional textured models of the interior and exterior of
2 severely damaged medieval churches after the 6.2-magnitude earthquake in Amatrice, Italy.12

A hyper-redundant serial-linkage snake robot called the Unified Snake was designed by a team
at the Carnegie Mellon University Biorobotics Laboratory (Pittsburgh, PA) in 2012.13 The robot
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consisted of multiple sturdy, closed modules. Each module
weighed approximately 0.16 kg and produced a torque output of
1.3 Nm. The team improved the gait control of the robot and added
new functions in different modules in further research.14,15 In the
wake of the 2017 earthquake, the Biorobotics team assisted Red
Cross rescue workers in the USAR efforts in collapsed buildings
in Mexico City.16 A timeline of the implementation of these urban
search robots is shown in Figure 1. Some other robotic platform
studies have made progress, but they have no field application
experience.17–20 In addition to ground robots, unmanned aerial
vehicles based on robot vision have provided better options for
improving disaster response efficiency, and amphibious robots
for amphibious and aerial environments have also had good appli-
cation prospects over the past few years.21,22

Field Diagnosis Robots

Once a survivor has been found, the next step is usually to deter-
mine their vital signs, and assess to determine if life-saving inter-
ventions are indicated and then to extract the patient to begin the
safe evacuation and transportation process.23 The robot system can
be used to assist medical personnel in the initial diagnosis of sur-
vivors efficiently at the scene of the injury. The development direc-
tion of field diagnosis robots is to integrate them with urban search
robots or evacuation robots that will be introduced later. This area
is less mature than urban search robots.

For patients with internal hemorrhage, a common injury after
an earthquake, rapid screening/triage should be prioritized.24,25

FASTele, a wearable tele-echography robot system developed by
Ito et al. in 2010, was a solution.26 The system enabled focused
assessment with sonography for trauma (FAST) at the injury site.
The robot was attached to the patient’s body, and an echo probe of
the robot was placed in a rough position of the FAST area by a
bystander. Then, the position was fine-tuned by a doctor remotely.
In the experiments with some examinees and doctors, the mecha-
nism was confirmed to be effective. There was no deterioration in
the echo images, and a diagnosis was possible even with body
movement. The doctor could complete the remote FAST in
approximately 6 min. This new diagnosis flow using the robot sys-
tem did not delay transportation. As a result, the robot system has
the potential to improve the survival rate of traumatic shock
patients. In addition, it is indicated that FASTele still has FAST
performance under vehicle vibration conditions.27 An automatic
internal bleeding detection robot system based on ultrasound
(US) image processing was constructed to improve the sensitiv-
ity.28,29 The boundary of the organ (liver and kidney) and internal
bleeding were determined using low-brightness set analysis.
However, failure of segmentation and detection might occur when
the extracted organ area is too small in the image. In the future, the
team will improve some methods to enhance the performance of

the system and enable the robot to be extended to the diagnosis of
all FAST areas. Although FASTele is not a mobile robot, and it
takes much more time to attach the robot to the overweight, this
robot system is still a notable attempt.

A semiautonomous rough terrain rescue robot named Tehzeeb
was presented by Suthakorn et al.30 Subsequently, based on the pre-
vious research foundation, the team added a victim detection sys-
tem to the mobile robot platform and proposed a rescue robot
named Tele-Operation that can identify victims through heat sen-
sors.31 In 2014, the upgraded robot Tele-Operation IV (Fourth
Generation) was deployed to participate in the rescue operation
of collapsed buildings in the Pathumthani Province, Thailand.32

The robot system was equipped with a camera, microphone, non-
contact temperature sensor, and carbon dioxide sensor to analyze
victims information.

Evacuation Robots

Generally, DMATs deploy evacuation robots to extricate victims
because of the shortage of manpower and the complex situation
at earthquake sites. Sometimes 2 different robots are deployed
to perform extraction and evacuation tasks. Using robots to extract
the wounded involves a complex human-computer interaction
process. The most important problem is maintaining the stability
of the robot system during rescue and avoiding causing secondary
injuries to survivors who were injured.

The Battlefield Extraction Assist Robot (BEAR) manufactured
by Vecna® Robotics Inc. (Waltham, MA) is a typical kind of evac-
uation robot.33 The mobile robotic platform has an anthropomor-
phic torso and leg-like deformable track structure. The injured
person can be easily lifted from the ground and safely transported
through a hydraulically powered articulated arm. The robot evac-
uation process is effective. The hydraulic system with pressure sen-
sors prevents the extracted patient from secondary injury. As a 2-
armed robot, it is suitable for extracting conscious people whose
limbs are not severely damaged. However, the neck of the injured
person is not supported, and the head is naturally drooping during
transportation. Therefore, it is unreliable for BEAR to rescue a sur-
vivor who suffers from head trauma.

For fracture injuries, which are the most common in urban
earthquakes,34–38 immobilization or fracture support is necessary
in the field. The novel tracked rescue robot Semi-Autonomous
Victim Extraction Robot (SAVER), designed by a team at the
Robotics and Mechatronics Lab at Virginia Tech (Blacksburg,
VA), uses a tilted stretcher to load the wounded in the cabin of
the robot.39 After locating and driving up to the survivor autono-
mously,40 the SAVER can estimate and adjust his posture through
the Highly Dexterous Manipulation System (HDMS) manipulator
system (developed by RE2® Inc.) to make extraction easier. Next,
the support system slides down the stretcher and stabilizes the head
and neck of the survivor.41 The injured person is slowly pulled onto
the declined stretcher by the shoulder grip system and evacuated to
the casualty collection area. SAVER can protect the head and neck
of the wounded when handling them, thereby avoiding secondary
injuries. Because the remote operator controls the robotic arm to
manipulate the injured person, the robot system requires a more
intuitive robot-operator interface and lower communication
delays to provide real-time feedback.

Crush syndrome (CS) is another leading cause of death for
patients in earthquakes.42 DMATs may treat CS but cannot per-
form dialysis because of the aftershocks.43 To solve the safety prob-
lem, a rescue robot for evacuating patients with CS has been

Figure 1. Timeline of implementation of robots.
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presented.44 The robot can proceed through narrow spaces and
work under rubble with the dual-tiered crawler that runs in adverse
directions. Figure 2 shows the crawler system. In addition to the
vital sign sensor probe, including a near-infrared camera, infrared
LED (light-emitting diode) light, and microphone, the robot is
equipped with a crush syndrome prevention system. After the
robot removes the rubble, affected parts of survivors are tightened
smoothly by a pressure cuff to prevent reperfusion injury. Notably,
this method is only a first aid treatment. Then, the victim is picked
up in the container inside the robot body and returned to the
ground for meticulous treatment. This robot still leaves some
drawbacks. First, the robot cannot communicate wirelessly. The
robot and the terminal control panel are connected by a 10-
meter-long cable wire to transmit data and provide power, which
limits the range of movement. Second, the robot needs a cable
management assistant while it is working. Beyond the initial
report, no further work was performed.

Limitations of Deploying Robots for Urban Search and
Rescue

The main problems for urban search robots are insufficient infor-
mation processing capabilities and complex robot operations. The
robot operator suffered from cognitive overload in the rescue case
of Italy.10 The data given by the robot were not intuitive, which
means that much information still needs to be handled by people.
A similar problem also appeared in the robot-assisted rescue case
in Mexico City in 2017.16 As a consequence, the rescue personnel
with minimal training could not replace the researcher to control
the robot effectively on site. The nonsharing of data between robots
is another problem. When multiple robots were working simulta-
neously, their collaboration performance did not meet
expectations.

The most serious challenge for field diagnosis robots and evac-
uation robots is the safety of the injured in the human-robot inter-
action.45 The robot can easily cause bruising (internal bleeding) on
the contact parts of the human body, especially the extremities.46

Almost all evacuation robots mentioned above have only been
tested in a simulated environment, but the real postearthquake
environment will be much worse. It is still impossible for these
robots to ensure absolute safety in tests. According to the results
of some studies, victims are more willing to believe in the actions
of a robot than a human in an emergency scenario.47,48 However, it
was proposed that once robot errors occurred, they would lead to
the destruction of the human-robot trust relationship, which is dis-
astrous for the rescue robot.49 Similarly, robot ethics and opera-
tional liability also need to be addressed. According to the

current law, when rescue robots participate in operations, it is dif-
ficult to clarify the responsibilities of all relevant personnel, includ-
ing technicians, decision-makers, operators, and doctors.44 These
factors limit the experiments of evacuation robots in real post-
earthquake environments.

Determining an appropriate benchmark for urban rescue
robots is another issue. The development teams from different
countries test their robot systems in different environments, which
makes it impossible to compare the results based on their reports.
Robot competitions, including the European Land Robot Trail
(ELROB), euRathlon, RoboCup Rescue, etc., seem to be the bench-
mark for robot systems.50–53 There are still problems with this kind
of competition for USAR robots. The participating teams mainly
focus on the following tasks: (1) exploring buildings and map-
ping51; (2) interacting with facilities in the environment (such as
valves)52; (3) finding and transporting trapped people (dum-
mies).53 In other words, these competitions focus more on
“Search” but not “Rescue.” Most of the participants used the
manipulator to grab the dummy and even dragged it with a hook,53

which would not be acceptable in a real-life scenario.

Future Directions

The development of emerging technology provides the probability
of improving urban rescue robots. Based on deep learning, big data,
and the latest fifth-generation (5G) wireless systems, remote com-
puter-aided diagnosis (CAD) has become a novel direction. In
theory, CAD systems will play a significant role in assisting physi-
cians inmaking objective and effective diagnostic decisions.54 After
dealing with massive clinical data, CAD systems can emulate the
diagnostic decision-making process of medical experts in the
experiment.55 Benefitting from a variety of deep learning models,
CAD systems use feedback mechanisms to continuously improve
their performance. Furthermore, the application of the 5G tech-
nique dramatically improves the data transmission rate and
reduces the communication delay, which is an important guaran-
tee for real-time telediagnosis. Current practices of telemedicine
have been carried out in the clinical environment, including sur-
gical consultations and multidisciplinary trauma care.56

However, this field is still in its infancy, and the lack of objective
and comprehensive results in the reviewed trials makes it difficult
to draw conclusions related to effectiveness. Figure 3 shows a sim-
ple conceptual architecture of a rescue robot with a CAD system.

A brain computer interface (BCI) is an innovative form of inter-
action between humans and machines. In general, BCI takes an
electroencephalogram (EEG) signal as input and controls external
devices directly.57 BCI does not rely on any muscle or

Figure 2. The crawler system of the rescue robot. Figure 3. Conceptual architecture of rescue robot with CAD system.
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neuromuscular pathway in communication. Thus, this technology
was first used in assistive devices to help paralyzed but conscious
patients recover and improve their quality of life.58 The latest stud-
ies show that BCI also has promising prospects in nonmedical
applications, such as user-state monitoring and collaborative
robots at construction sites.59,60 The currently tested BCI-based
system can control robots with high accuracy. By enhancing robot
control and improving safety, BCI-based systems are expected to
become a new solution in human-dominated environments.

Conclusions

Reasonable deployment of urban rescue robots in earthquake sce-
narios can help shorten response-time and transportation-time,
thereby decreasing the odds of mortality. Owing to all-terrain
adaptability and environmental interaction capabilities, search
robots have become an important part of DMATs. Studies of field
diagnosis robots and evacuation robots have also shown promising
results. Different robots are designed according to medical meth-
ods to deal with different injuries, including internal hemorrhage,
fractures, CS, etc. However, robot systems that have direct contact
with the wounded face the challenge of human-robot interaction
security, and their performance in real-life scenarios is unknown.
It is still necessary to test rescue robots in amore realistic simulated
disaster environment. To meet the requirements of collaboration
between multiple robots and human-robot cooperation, improv-
ing data sharing capabilities and machine intelligence is 1 of the
focuses of future research. Artificial intelligence-based CAD sys-
tems and BCI-based control systems are also promising develop-
ment directions.
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