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Nonselective cation channels are ubiquitous in a variety of
tissues including the central nervous system (CNS),1 and their
activation can lead to cell death.2 Overactivation of these
channels may play a role in pathological processes related to
intracellular calcium accumulation.3 Ischemic cell death in
stroke is believed in part to involve influx of calcium into
neurons.4 Although blockade of agonist-gated and voltage gated
L-type calcium channels has been studied in models of cerebral
ischemia, with some therapeutic successes,5 blockade of
nonselective cation channels has not been evaluated. 

Mefenamic acid (N-(2-3,xylyl)-anthranilic acid) is a CNS-
penetrating nonsteroidal anti-inflammatory drug possessing
analgesic/antipyretic actions, that also blocks calcium-activated
nonselective cation (CAN) channels.6 These CAN channels have
the ability to maintain a depolarized state for extended periods of
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EXPERIMENTAL
NEUROSCIENCES

time, possibly because these channels do not inactivate, and are
voltage independent.7 Experiments studying potential epileptic
mechanisms in the hippocampal slice suggest that CAN channels
may be linked to N and L-type calcium channels in neurons,8

producing a positive feedback loop which allows continued
calcium influx into a cell. The resulting depolarized state would
cause the voltage sensitive calcium channels to remain activated.
The occurrence of spreading depression may be the result of
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these mechanisms. In cerebral ischemia, spreading depression-
like depolarization waves occur.9 These considerations suggest
CAN channels as attractive potential therapeutic targets in
cerebral ischemia.

A second possible target for intervention in the treatment of
stroke is the potentially damaging inflammatory response.10-12

Since mefenamic acid is anti-inflammatory,13 this further
suggested to us that this agent should have potential as a
neuroprotectant in cerebral ischemia. 

A third mechanism of ischemic damage that is potentially
affected is free radical production, by scavenging of nitric oxide
radicals by mefenamic acid.14 With three separate modes of
potentially beneficial action, we deemed mefenamic acid worthy
of examination for neuroprotective effects in a temperature-
controlled ischemia model that mimicks ischemic stroke.

MATERIALS AND METHODS

Fed male Wistar rats (320-390 g; n=30) were subjected to
focal ischemia using a modified version of the intraluminal
filament model for 100 minutes, at a blood pressure of 80 mm
Hg.15 Mefenamic acid was prepared by dissolving 1.1 mg in 1 ml
of a balanced physiologic 5-ion solution containing 140 mM
Na+, 4 mM K+, 2.1 mM Mg++, 1.44 mM Ca++, 141.3 mM Cl- and
9.54 mM HEPES buffer. NaOH was added for dissolution of the
drug and to adjust the pH to 7.8. The solution was run through a
bacterial filter and stored at 4°C. Mefenamic acid (30 mg/kg) or
saline was given by intraperitoneal injection, either 45 minutes
prior to ischemia or 20 minutes after ischemia, and was
continued for three days at eight hour intervals until nine
intraperitoneal injections had been given. Each of the three
groups (control (untreated), pretreatment, posttreatment)
contained ten animals, and mortality was zero in all three groups. 

To induce focal brain ischemia, rats were initially
anesthetized under 4% halothane for intubation and were then
ventilated on a 7:3 N2O:O2 mixture with 1% halothane (range:
0.5 - 2%), during which a catheter was inserted into the tail artery
to measure blood pressure. A lateral neck incision was made and
the right common carotid artery was located at the bifurcation
into the internal and external carotid arteries. The external
carotid artery was dissected free, clamped at the bifurcation of
the common carotid and then ligated, leaving a stump. Into this
external carotid artery stump, a 25 mm length of 3-0 suture was
inserted and guided up the internal branch of the carotid artery
until a feeling of faint resistance was encountered, usually at 21-
22 mm. Occlusion duration was 100 minutes during which time
blood pressure was regulated to 80 mmHg by varying the
halothane concentration. Halothane may not affect ischemic
damage in the absence of hypothermia.16,17

Head temperature was monitored using a tympanic
membrane probe inserted into the middle ear. Body temperature
was monitored using a rectal probe. Both head and body
temperatures were regulated to 37°C using a heating blanket
underneath the animal and by varying the distance of an
overhead lamp. Blood gases, pH, glucose and hematocrit were
measured pre-ischemia, during ischemia and postischemia.
Blood glucose was measured, but not regulated with insulin, in
order to avoid an effect of insulin itself in ischemia.18,19

After one week survival the animals were injected with
pentobarbital (0.5 ml/100 g) and transthoracic perfusion fixation
was carried out through the ascending aorta via the left ventricle.
After a brief rinse of the cerebral circulation with normal saline,
4% phosphate buffered formaldehyde was perfused and the brain
was removed the next day and placed in fixative. Coronal brain
slices 3 mm thick were then cut, and dehydrated in graded
ethanols. After clearing in xylol, embedding in paraffin, and 6 µm
thick sectioning at 500 µm intervals, 26 equispaced sections
were chosen for quantitation from bregma -2.2 to -14.7 mm.
Sections were stained with hematoxylin and eosin, and damage
was quantitated using a microscope connected to a computerized
image analysis system. Four polygons were traced: cortical and
subcortical pan-necrosis (infarction), and both ipsilateral and
contralateral hemisphere. Atrophy, the difference between the
two hemispheres, was calculated by subtracting ipsilateral from
contralateral area. Total damage (tissue lost) was calculated by
summating cortical necrosis, subcortical infarction, plus atrophy.
Total damage was then graphed as percent of the opposite
hemisphere, thus giving damage volumes normalized for the size
of that hemisphere, obviating variation due to tissue shrinkage
and different animal size. Power analysis (SigmaStat, SPSS Inc.)
showed that with our sample size (n=10) and standard deviation
(see Figure 1) we would be able to detect a 16% difference in
infarct size at α=0.05 and ß=0.80 probability levels. Cerebral
blood flow measurements have previously been made in this
model and validate the degree of ischemia20 and the consistency
of the resulting infarcts.15 The protocol was reviewed and
approved by the local Animal Care Committee.

RESULTS

Physiological parameters, including animal weight, blood
glucose, pO2, pCO2, pH, hematocrit, head temperature and body
temperature, from pre, during and postischemia are displayed in
the Table. No significant differences exist between the three
groups in any of the parameters. However, a number (n=7) of
animals in the treated groups demonstrated minor, self-limiting
seizures throughout the three day period of administration of
mefenamic acid. These were characterized by whisker twitching

Table: Physiologic parameters

Weight Glucose MABP Temp Temp pH pCO2 pO2 Hematocrit 
(grams) (mM) (mm Hg) (tympanic) (rectal) (%)

Untreated 358±7 6.4±0.2 80.1±0.8 37.02±0.01 37.07±0.04 7.40±0.01 37.8±1.4 112.7±2.7 44.3±0.7
Pretreated 356±5 6.2±0.3 78.1±1.3 37.03±0.01 37.08±0.04 7.39±0.01 37.3±1.5 117.1±3.4 43.4±0.7
Posttreated 351±5 6.4±0.3 79.6±0.6 37.03±0.01 37.00±0.04 7.40±0.01 37.1±1.2 117.6±3.8 44.3±0.7
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and minor, nonviolent, involuntary limb movements, lasting a
maximum of a few seconds. No animals receiving saline had
seizures. 

The Figure presents the infarct data as percent of the
hemisphere. Cortical necrosis, subcortical necrosis, atrophy and
total damage were not significantly different in the three groups. 

DISCUSSION

Mefenamic acid is marketed by Parke-Davis as Ponstan®, and
has been used in the treatment of dysmenorrhea, menorrhagia
and migraine.21 There are a number of positive effects of
mefenamate which would be expected to ameliorate ischemic
brain damage. Mefenamate penetrates the CNS and blocks non-
selective cation channels.6-8 Mefenamate is also a nonsteroidal
anti-inflammatory agent which blocks cycloxygenase, the
enzyme which catalyzes the first reaction on the pathway of
oxidative arachidonic acid metabolism to thromboxane A2 and
prostacyclin.22 We obviated hypothermia, but anti-inflammatory
drugs have been reported to be neuroprotective, when
hypothermia is allowed to occur.23

In addition to channel blockade and anti-inflammatory action,
free radical scavenging provides a third potential mechanism of
neuroprotective action. Mefenamate is neuroprotective in vitro
by directly scavenging potentially damaging NO radicals.14

The negative results warrant explanation in light of multiple
potentially protective mechanisms of action of this drug.
Mefenamate has been shown to lower seizure threshold,24

accounting for the minor seizures we observed in the treated
animals. Seizures of a global type are detrimental in ischemia25 but

here were very mild and self-limiting. Their occurrence in the
present study parenthetically indicates CNS penetration of the drug.
Although seizures might have cancelled other, neuroprotective
actions of the drug, our chosen dose was near the ED50
neuroprotective dose against neuronal necrosis from pilocarpine-
induced status epilepticus.26 No trend toward any effect was seen,
and this was deemed not to warrant dose-response sudies.

Mefenamate has also been shown to cause calcium release
from intracellular stores27 and affects calcium-activated large
conductance potassium (KCa) channels,28 both of which might be
detrimental in ischemia. 

Following ischemia, cortical spreading depression (CSD)
occurs.9,29 By itself, spreading depression does not cause
neuronal injury30 in normal brain but it may render neurons more
vulnerable31 in ischemic brain, and may contribute to neuronal
damage in tissue surrounding the infarct, or distantly.32

Prevention of CSD has been deemed essential if adequate
recovery of the neurons is to occur following ischemia.33 In this
study, it is not possible to determine whether mefenamic acid had
any effect on CSD, although nonselective cation channels may
be involved in CSD.8

We here report negative findings to avoid strategies that
duplicate those already attempted in ischemic neuroprotection.
Also, importantly, we wish to obviate negative, costly clinical
trials34,35 based on a small number of selectively positive results
in the experimental literature.36 Single drug therapy, even with a
molecule having multiple beneficial actions, may have an
inherent disadvantage. A given drug may not affect the multiple
other mechanisms in the ischemic cascade.4 Such mechanisms
may be overwhelming and could be unaffected by a single drug.
These considerations make it necessary to consider multi-drug
therapy, or a combination of pharmacologic and effective non-
pharmacologic measures37,38 in treating brain ischemia.
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