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PERMUTATION REPRESENTATIONS AND RATIONAL
IRREDUCIBILITY

JOHN D. DIXON

The natural character n of a finite transitive permutation group G has the form
1G + 0 where 6 is a character which affords a rational representation of G. We call
G a Ql-group if this representation is irreducible over Q. Every 2-transitive group
is a Ql-group, but the latter class of groups is larger. It is shown that every QI-
group is 3/2-transitive and primitive, and that it is either almost simple or of affine
type. Ql-groups of affine type are completely determined relative to the 2-transitive
affine groups, and partial information is obtained about the socles of simply transitive
almost simple Ql-groups. The only known simply transitive almost simple Ql-groups
are of degree 2*~1(2* — 1) with 2* — 1 prime and socle isomorphic to PSL(2,2fc).

1. INTRODUCTION

Let G be a finite transitive permutation group with the natural character 7r. Then IT

can be written in the form 1Q+6 where the character 9 can be afforded by a representation
over the rationals. For the purposes of this paper we shall call G a Ql-group if this
representation is Q-irreducible, and consider the question: which permutation groups are
Ql-groups? (In what follows all groups considered are finite.)

There is a related question: when is the character 9 irreducible over the rationals in
the sense that it cannot be written as a sum of two rational valued characters? Lemma
6(c) below shows that the two problems are identical.

There are two well known classes of Ql-groups. If G is 2-transitive, then the inner
product [n, n] — 2 and so 9 is absolutely irreducible. In this case G is certainly a Ql-
group. On the other hand, if a; is a p-cycle for some prime p, then the rational form of
the corresponding permutation matrix consists of a block of size 1 and a block of size
p - 1 because the cyclotomic polynomial of order p is irreducible over Q. Every transitive
permutation group of degree p contains such an element, and so must be a Ql-group. We
may consider these two classes of groups as "trivial" examples.

EXAMPLE 1. Using GAP [6] and its tables of primitive permutation groups we easily
found two nontrivial examples of affine groups which are Ql-groups: one of degree 33,
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rank 3 and of the form 33 : 13 and a second of degree 72, rank 4 and of the form 72 : 16. Of
course all subgroups of the corresponding symmetric groups which contain these groups
are also Ql-groups.

EXAMPLE 2. Using the ATLAS [3] we found examples of simple groups which are QI-
groups but not 2-transitive. A transitive permutation representation of PSL(2,23) of
degree 28 and rank 4, and a transitive permutation representation of PSL(2,25) of degree
496 and rank 16 are both Ql-groups. Interestingly, G := PSL(2,24) has a permutation
representation w of degree 120 and rank 8 such that ir — 1Q is a sum of 7 distinct absolutely
irreducible characters of the same degrees, but these characters are not Galois conjugates
and so this group does not provide an example of a Ql-group.

Our main results are the following. The first generalises a classical theorem of
Burnside which states that the socle of a 2-transitive group is either a regular elementary
Abelian p-group or is a simple group (see, for example, [4, Theorem 7.2E]). Recall that
a permutation group is 3/2-transitive if it is transitive and the nontrivial orbits of the
point stabilisers all have the same length.

THEOREM 3 . Every Ql-group is 3/2-transitive and primitive. It is either almost
simple or of affine type.

In the case of affine type the groups are closely tied to 2-transitive groups.

THEOREM 4 . A Ql-group G of affine type of degree pd (p prime) is almost 2-
transitive in the sense that it is a subgroup of a 2-transitive group G and contains the
derived subgroup G . Moreover, the index ofG in G divides p — 1 and the rank ofG is
of the form 1 + s where s divides p — 1.

In Section 4 we prove a more precise statement, giving necessary and sufficient
conditions for a subgroup of a 2-transitive group of affine type to be a Ql-group. A
theorem similar to Theorem 4 is false for the class of almost simple Ql-groups. Indeed,
in the example above, there is a Ql-group G of degree 496 isomorphic to PSL(2,25), but
it is easily shown that the normaliser of G in 5496 is not 2-transitive (indeed TT — la is a
sum of 15 absolutely irreducible characters, but G has index only 5 in its automorphism
group).

2. BASIC PROPERTIES OF QI-GROUPS

Let G be a finite transitive permutation group on a set fi of size n and let H := Ga

be a point stabiliser of G for some a G f2. Then the permutation character •n for G is
equal to 1# and (as above) can be written in the form it = 1© -I- 9. We shall frequently
use the following simple observation.

LEMMA 5 . Tie permutation character n of a transitive group G cannot be written
in the form IQ + md' for an integer m > 1 and character &.
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P R O O F : Since G is transitive, it contains an element x, say, which is fixed point free.
The equation 0 = ir(x) = 1 + mO'{x) would contradict the fact that O'(x) is an algebraic
integer. D

The orbitals of G are the orbits A i , A 2 , . . . , A r of G on the set Q x fi, where we may
assume that Ai denotes the diagonal orbital {(a , a ) | a € f i} . The rank r of G is the
number of orbitals and, as is well known,

Using the representation of G in terms o f n x n permutation matrices, the centraliser ring
C consists of the rational n x n matrices which commute with all of these permutation
matrices. The ring C is a Q-algebra of dimension r and has a basis .z(Aj) (i = 1, . . . , r)
where -z(Ai) is a {0, l}-matrix whose (a, /?)th entry is 1 if and only if (a, /3) € Aj (see [12,
Chapter V] or [2, Chapters 2 and 3]). We write Irr(G) to denote the set of irreducible
characters of G.

LEMMA 6 . Using the notation above:

(a) If G is a Ql-group then G is primitive.

(b) A transitive group G is a Ql-group if and only there exists x € Irr(G) such
that 0 — xi + • • • + Xa where xi, • • •> X* are the distinct Galois conjugates
over <Q> of the character x- In particular in this case, the Schur index TTIQ(X)

of x is 1 and the rank r = [it, n] ofG is 1 + s.

(c) A transitive group G is a Ql-group if and only if 0 :— n — 1G is not the
sum of two rational characters of smaller degrees.

(d) G is a Ql-group if and only if the centraliser ring C has the form 1®F where
F is a Geld. Indeed, F must be isomorphic to Q(x) (the Geld generated by
the values ofx) where x is the character referred to in (b).

R E M A R K 7. For computational purposes we should note that the centraliser ring has a
simple representation as a matrix ring of degree r over Q with respect to the basis z(A()

(i — 1 , . . . , r). See, for example, [2, Theorem 3.4].

P R O O F : (a) If G is not primitive, then there exists a subgroup M such that
H < M < G. Now 7r = (1# ) G . However, since M ^ H, iff = 1 M + rj where 77 affords
a rational representation, and n = 1 ^ + r\G• Since M ^ G, the representation for 1^
decomposes into at least two rational representations and rp provides at least one more
rational component. Thus G cannot be a Ql-group.

(b) First, the condition is sufficient, since if 9 = Xi + • • • + X» where the x« are
distinct Galois conjugates, then 9 cannot be written as a sum of two rational valued
characters, and so a rational representation affording 9 cannot be written as sum of
representations of smaller degree. Thus G is a Ql-group.
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Conversely, suppose that G is a Ql-group. Then 6 is the character of a Q-irreducible
rational representation, and as such has the form m(xi + • • • + x») where xt is a full set
of Galois conjugates of some irreducible character x, and m := 771Q(X) is the Schur index
of x (and hence of all Xt) (see [11, Corollary (10.2)]). Now Lemma 5 shows that m = 1.

(c) Follows at once from (b).
(d) The permutation representation for G is equivalent over Q to a linear repre-

sentation T in block diagonal form

r(x) = diag(l,u(x))

where v is a Q-irreducible representation of G affording 6. It follows that the centraliser
ring C in the matrix ring Mat(n, Q) has the form Q© F where F is the centraliser ring of
the matrices v(x) (x € G) in Mat(n — 1,Q) and dimqC = 1 + s by (b) and the remarks at
the beginning of this section. We know that F is a division ring by Schur's lemma. Since
m<j(x) = 1, the character x can be afforded by an absolutely irreducible representation
p over Q(x)- Thus there exists c £ GL(n — l,Q(x)) such that

c~lv{x)c •-> diag(/»i(i),..., p,(x))

where pi(x) is an absolutely irreducible character affording x« obtained by applying a
suitable Galois automorphism to the entries of p{x). (Note that Q(x) is a subfield of
a cyclotomic field and is a Galois extension of Q.) Schur's lemma now shows that the
centraliser of the set of matrices c~1v(x)c (x € G) in the matrix ring Mat(n — l,Q(x))
consists of all block diagonal matrices of the form d i ag^ l , 7 2 1 , . . . , 7al) with 7< € Q(x)
and so has the form Q(x) © Q(x) © • • • © Q(x)- This ring contains c~xFc, so F is
commutative and hence is a field. Projection onto one of the coordinates shows that F
can be embedded into Q(x)-

Finally [Q(x) : Q] = s because % has s Galois conjugates. Thus [F : Q] = dimQ
C-l = s= [Q(x) :Q],andsoFS*Q(x) . D

Let E be the field extension of Q generated by a primitive eth root of 1 in C where e
is the exponent of G. Then E is a Galois extension of Q and the values of the characters of
every subgroup of G lie in E. Put A := Gai(E/Q). Then for any normal subgroup M of G
we have that the group A x G acts on the set of characters of M via <j>^"'x\u) := <j>{xux~xY
(for each character </> with (u,x) £ A xG and u € M).

LEMMA 8 . Let G be a transitive group and let M be a nontrivial normal sub-
group. Suppose that the restriction of the natural character nofGtoM has the form
KM — 1M + (<£i + • • • + 4>t) ^th each fa € Irr(M). Note that (with the notation above)
A x G maps the set {fa,..., 4>t) onto itself since % is invariant under Ax G. Then:

(a) G is a Ql-group if and only if the <j>i are distinct and AxG acts transitively
on {fa,..., 4>t}. In particular, in this case all the fa have the same degree.
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(b) If G is a Ql-group, then each nontrivial normal subgroup M is 3/2-
transitive. Moreover, if M is regular, then M is Abelian.

P R O O F : (a) Write 7r = 1G + (xi + • • • + Xs) where the Xi € Irr(G), and let
T{ C Irr(M) be the set of irreducible constituents of (X»)M- Since the Xi are irreducible,
Clifford's theorem shows that each I \ is an orbit under G.

If the fa are distinct and A x G acts transitively on {<f>i,..., fa}, then the I \ are
distinct and A acts transitively on { F i , . . . , F j } . Thus the Xi aie distinct and A is
transitive on {xi, • • •, Xs}- Hence G is a Ql-group by Lemma 6.

Conversely, suppose that G is a Ql-group. Then A acts transitively on {xi, • • •, X*}
and hence on { F ^ . . . , F 5 } . Thus A x G acts transitively on Fx U • • • U F s = {fa,...,<f>t}.

In particular, the multiplicity [KM, fa] in TTM of each of the fa is the same. Since M is a
nontrivial normal subgroup of a primitive group, M is transitive, and so Lemma 5 shows
that each constituent of nM has multiplicity 1. This shows that the fa are distinct.

(b) We have shown in (a) that for every nontrivial normal subgroup M of G the
nontrivial irreducible constituents of •KM are all of the same degree, say d. Since M is
transitive, a theorem of Frame (see [12, Theorem 30.2]) shows that this condition implies
that all nontrivial suborbits of M also have length d. This shows that M is 3/2-transitive.
Finally, if M is regular, we have d = 1. Then the (faithful) character WM is a sum of
linear characters and so M is Abelian. D

R E M A R K 9. The nontrivial suborbits of M all have the same length if and only if every
2-point stabiliser Ma$ (a ^ j3) has the same size. Criterion (b) can be applied to eliminate
many groups as potential Ql-groups by simply checking the sizes of the orbits of a point
stabiliser for a single normal subgroup M. Programs such as GAP can compute the
orbits of a point stabiliser very efficiently, so the condition is easily proved.

3. P R O O F O F T H E O R E M 3

We have already shown that every Ql-group is primitive (Lemma 6(a)) and 3/2-

transitive (Lemma 8(b)).

According to the O'Nan-Scott theorem, primitive groups fall into five classes: (i)

groups of affine type (where the socle is a regular elementary Abelian group); (ii) groups

with regular nonabelian socles; (iii) groups of almost simple type (where the socle is

simple nonabelian); (iv) groups of diagonal type; and (v) groups of wreath product type

(see, for example, [4, Chapter 4]).

Lemma 8(b) shows that a Ql-group cannot be of type (ii), so to complete the proof of

Theorem 3 it is enough to show that no primitive group of type (iv) or (v) is a Ql-group.

Suppose that a primitive group G is of type (iv) (diagonal type). Then the socle M

of G has the form M = Tm where T is a simple nonabelian group with m > 1, and the
permutation action is equivalent to the following action on Q. Consider the equivalence
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relation ~ on the set T"1 given by ( a i , . . . , am) ~ (a'lt..., a'm) provided there exists t G T

such that a'i = ta,i for each i. Let [a i , . . . ,o m ] denote the equivalence class containing

(ax, . . . ,a , , , ) , and let Q be the set of all equivalence classes (so |Q| = ITf1"1). Then

M = 7™ acts on Q via

, . . . , am\ •— l"i , • • •, am J

The stabiliser M[aii,,..,i] of [a, 1 , . . . , 1] equals { ( a^xa , x , . . . , x) | x G T}, and the two-
point stabiliser M[aiit...ti] C\ M^i,...,!] equals {(x, x, . . . , x ) | x G Cr(a)} and so has size
|Cr(a) | . Since T is a nonabelian simple group, it contains nontrivial elements a,b such
that |Cr(a) | ^ |Cr(&)|. Thus the two-point stabilisers of M are not all of the same size
and so Lemma 8(b) shows that G is not a Ql-group.

Now suppose that we have a primitive group G of type (v) (wreath product type).
In this case the socle M of G has the form U' with s > 1. The group U is a direct
product of one or more isomorphic nonabelian simple groups and acts transitively but
nonregularly on a set A, and M acts on A* with the product action. If a and /? are
distinct points in A, then

^(a,a,...,Q) = Ua X Ua X • • • X Ua

and

...,a) = UpxUax •••xUa.

Thus, since U is not regular, the two-point stabilisers

M(Q,a,...,a) H M(0,0 0) = Uap X Uap X ••• X Ua0

and

3|Q Q) = UapXUaX--xUa

have different sizes for suitable a and 0. Again Lemma 8 shows that G is not a Ql-group.
This completes the proof of the theorem.

R E M A R K 10. More generally, it is shown in [1] that any primitive permutation group

with a multiplicity-free permutation character is of type (i), (ii), (iv) or (v) with further

restrictions in the last two cases.

Using GAP [6] and its library of primitive groups of degree < 1000, a direct search

was made for Ql-groups which have simple socles but are not 2-transitive. GAP's table

COHORTS-PRIMITIVE-GROUPS and the function ONanScottType were used to de-

termine the simple socles which occur for each degree. The lengths of the suborbits of

these simple permutation groups were then computed and Lemma 8(b) applied taking M

as the socle. This criterion eliminated all but four cases of simple socles in this range: Aj

in degree 21 (rank 3), PSL(2,8) in degree 28 (rank 4), PSL(2,16) in degree 120 (rank 8),
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and PSL(2,32) in degree 496 (rank 16). A more careful examination of these four cases
showed that in degrees 21 and 120 there are no Ql-groups which are not 2-transitive. In
degree 28 there is a unique example of a simply transitive Ql-group (PSL(2,8)), and in
degree 496 there are two examples (PSL(2,32) and PSL(2,32).5). These results led us to
conjecture the following theorem.

THEOREM 1 1 .

(a) Every Ql-group with socle isotnorphic to Ad (d ^ b) is 2-transitive.

(b) If a Ql-group of degree n has socle isotnorphic to PSL(2, q) and is not
2-transitive, then q — 2k for some integer k > 2 with 2* — 1 prime and
n = 2*~1(2* — 1). Conversely, in the latter case we always have examples
of simply transitive groups which are Ql-groups.

P R O O F : (a) Suppose that x G irr(Ad) is not rational valued. Since every character
of Sd is rational valued, the induced character xSd is rational and it is easily proved that
Xs<i(u) = x(u) + x l ^ " 1 ) f° r au< u € Ad where t € Sd \ Ad- Hence {x, x '} is a set of
Galois conjugate characters of Ad and xSd IS irreducible.

Now suppose that G is a Ql-group of degree n with socle type Ad and that G is
not 2-transitive (so n > d). Then G = Ad or Sd, and G ^ Sd because all irreducible
characters of Sd are rational. Hence G = Ad and from what we have just shown the
permutation character ir = 1Q + X + X* f°r some x G Irr(-Ad) and t € 5 d \ Ad- Moreover,
this is the restriction of a permutation character n' = lsd + x5<i of Sd of degree n with xSi

irreducible. Hence G is a normal subgroup of a 2-transitive permutation representation
ofS d .

However, when d > 7 it is well known that the only 2-transitive permutation repre-
sentation of Sd is the natural representation of degree d (see, for example, [4, Exercise
7.7.1]). Thus d ^ 7, and a routine examination of the cases d = 5,6,7 completes the
proof.

(b) M := PSL(2, q) is a nonabelian simple group when q > 3 and has order q(q2 — 1)
when q is even and order q(q2 — l ) /2 when q is odd. The number n<* of irreducible
characters of a degree d is given by the following table (see, for example, [5, Section 38]):

9

9

Degree

q even

= 1 (mod 4)

= 3 (mod 4)

1

1

1

1

9

1

1

1

9 + 1

£(9"2)

4
1

9 "

1

1 * '
4

1

1)

3)

£(9 +
0

2

0

1)
1

0

0

2

Suppose that G is a Ql-group of degree n which is not 2-transitive and has M as its socle.
Then Lemma 8 shows that n = I + Id where d is the degree of an irreducible character
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and 1 < / ^ rid. First consider the case where d = (q + e)/2 with e = ±1 (and so q odd).
In this case I = 2 and n = q + 1 + e. Since n | \M\, we conclude that n = q, e = - 1 and
q = 3 (mod 4). But n is the index of a point stabiliser in M and it was already known to
Galois that PSL(2, q) can only have a subgroup of index q when q is a prime less than
or equal to 11 (see [9, p. 214]). It is now easy to check (for example, [3]) that in each of
these cases M is 2-transitive.

Now look at the case where d = q+e with e = ±1 . Since n \ \M\ and GCD(d, n) = 1,
we can write n = rs where

r = GCD(q, n) = GCD(g, l + l(q + e)) = GCD(g, I + e)

and
s = GCD(q - e, n) = GCD(g - e, 2/ + e).

Hence
n = l

and so i ^ (q — e)/2. Since Z ^ nq+e, we conclude that q is even, e = 1 and I = (q — 2)/2.
This implies that n = 1 + Id = q(q - l)/2 and the point stabilisers of M have order
2{q +1). The classification of subgroups of PSL(2, q) (see, for example, [9, p. 213]) shows
that these point stabilisers are dihedral groups and are maximal in M. Consider any
prime p | q + 1. Then p > 2 (because q is even) and every dihedral subgroup of M of
order 2(q + 1) has the form NM(P) where P is a Sylow p-subgroup of M. Thus these
dihedral groups form a single class of conjugates in M. In particular, up to equivalence,
there is a unique primitive permutation representation of M of degree q(q — l)/2.

We have thus reduced to the case where M = PSL(2,2fc) = SL(2,2*) and
n — 2*-1(2* — 1) and have to determine when there is a Ql-group G with M ^ G
< Aut(M) for this degree. We consider more carefully the characters of degree q + 1 for
M. Consider the elements

c : = _, where 7 is a primitive root for GF(2fc)

in M and let p be a primitive (2* — l)th root of 1 in C. It is shown in [5, Section 38]
that characters xi (i = 1, • • •, (2* - 2)/2) of degree 2* + 1 for M take the values:

X,(l) = 2* + 1, xi(c) = 1, Xi(o') = PU + P~U (i = 1, • • •, 2*-1 - 1)

and that xi is 0 o n the other classes.
Since all elements of order 2 in M are conjugate to c, we can choose an element

b in M of order 2* + 1 so that some point stabiliser Ma = (b,c). This dihedral group
has exactly 2* + 1 elements of order 2. Since the natural permutation character of M is
n = (1MO)M, Frobenius reciprocity shows that

https://doi.org/10.1017/S0004972700038508 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038508


[9] Permutation representations 501

for each I. Counting degrees now gives vr = \M + (Xi + • • • + X2*-1-!)-

Finally, the group of outer automorphisms of PSL(2,2*) has order k and we can
choose representatives of the corresponding cosets of the group of inner automorphisms
in Aut(PL(2,2*)) as the group automorphisms induced by the automorphisms of the
field GF(2*) (see [3, p. xvi]). Moreover, each of the latter automorphisms maps a >-> a2'

for some j , and so its action on {xi, • • • , X2*-'-i} is equivalent to the action of a Galois
automorphism which maps p n p 2 ' . Thus any group G of degree 2*~1(2* — 1) with M as
its socle acts on the set of characters of M as a group of Galois automorphisms. Hence
Lemma 8(a) shows that G is a Ql-group if and only if the characters Xii • • • )X2*-1-i
are Galois conjugates. Since the values of these characters all lie in Q(p + p~l) this is
equivalent to the condition that the Galois group B := G&l(Q(p+p~1)/Q) acts transitively
on {xi, • • •, X2*-»-i}- If 2fc — 1 is a prime then, for each I not divisible by 2* — 1, there is
a Galois automorphism which maps

p? + p~* >-> pu + p~il

for i — l , . . . ^ * " 1 — 1 and so B acts transitively on {xi, • • • ,X2*-1-i}- Conversely, if
2* - 1 is not prime, then \B\ = 0(2* — l) /2 < 2*"1 — 1 and so B cannot be transitive.
Hence we conclude that G is a Ql-group if and only if 2* — 1 is a prime. D

4. P R O O F OF T H E O R E M 4

Let G be a transitive group of affine type with socle M (so M is a regular, elementary
Abelian p-group of order pd for some prime p). Then G is of degree n := pd and is a
semidirect product M • H where H (a point stabiliser) is isomorphic to a subgroup of
Aut(M) = GL(d,p) acting on the vector space M by conjugation. The group G is
primitive if and only if H acts irreducibly on M (see, for example, [4, Section 4.7]). The
permutation action of H as a point stabiliser of G is equivalent to its action as a group of
automorphisms of M (fixing the identity element). The set of scalars in GL(d,p) forms
the centre of GL(d,p). This set corresponds (in multiplicative notation) to the subgroup
Z ^ Aut(M) consisting of the automorphisms U H U ' ( U 6 M) for k = 1 , . . . ,p - 1.

THEOREM 1 2 . With the notation above, the transitive group G = M • H is a

Ql-group if and only ifG := M • {HZ) is 2-transitive.

PROOF: Let G = M • H be a transitive group of affine type and let it :— \Q

+ (Xi H *~Xs) D e the permutation character of G where the Xt are irreducible characters

of G. Since M is regular, the restriction nM of the permutation character to M is

the character of the regular representation. Because M is Abelian, this implies that

•KM — Z) ^- Since M acts trivially on Irr(M), Lemma 8 shows that A x H acts
A6lrr(M)

transitively on Irr(M) \ {1M} if and only if G is a Ql-group.
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Let a; be a primitive pth root of 1. The values of all A € Irr(M) lie in Q(w) and each
v in A maps u) onto ujk for some k € {1,2,... ,p — 1}. If w" = w*, then f acts on Irr(M)
via A" = A* for all A € Irr(M) where A*(u) := A(ufc) for all u 6 M. Similarly, we have
an action of A on M defined by u" := uk. Then Ax H acts on both M and Irr(M) such
that A^fal"-*)) = A(u) for all (i/, x) € .4 x H, A e Irr(M) and u 6 M. Therefore, by a
lemma of Brauer (see, for example, [11, (6.32)]), Ax H has the same number of orbits
on the two sets. Since Ax H has two orbits on Irr(M) exactly when G is a Ql-group,
we conclude that this is also true for its action on M. Thus G is a Ql-group if and only
if A x H has two orbits on M (which are necessarily {1} and M \ {1}).

Finally, the image in Aut(M) of the action of A is equal to Z. Hence G is a Ql-group
if and only if HZ has two orbits on M or, equivalently, if and only if G := M • (HZ) is
2-transitive. 0

Since \G : G\ divides \Z\ = p — 1, Clifford's theorem implies the following.

COROLLARY 1 3 . The rank of a Ql-group of affine type and degree pd is of the
form 1 + s where s \ p — 1, so the rank is at most p. In particular a Ql-group of affine
type and degree 2d is necessarily 2-transitive.

A solvable primitive group is necessarily of affine type, and Huppert has given a com-
plete description of all 2-transitive solvable groups. With a small number of exceptions,
a 2-transitive solvable group of degree pd is a subgroup of the extended affine group
ATL(\,pd) (see [10, Chapter XII Theorem 7.3]). Using this fact, it is not difficult to
construct examples of solvable Ql-groups. A description of the nonsolvable 2-transitive
groups of affine type is more complicated but has been determined by Hering in a series
of papers (see [7, 8] and related papers). A summary of Hering's work is given in [10,
Chapter XII p. 386].

Here are two nontrivial examples of nonsolvable Ql-groups of affine type.

EXAMPLE 14. There exist sharply 2-transitive permutation groups of degrees 292 and
592, respectively. In each case the one-point stabiliser has the form SL(2,5) x Z where
the centre Z is cyclic of order 7 and 29, respectively (see [10, Chapter XII, Theorem
9.4]). These two permutation groups contain subgroups of the forms 292 : SL(2,5) and
592 : SL(2,5). The theorem above shows that they are Ql-groups of ranks 7 and 29,
respectively.
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