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Abstract

A semigroup of transformations of an infinite set X is called & x-normal if S is invariant under conjuga-
tions by permutations of X. In this paper we describe injective endomorphisms of & y -normal semigroups
of total one-to-one transformations f such that the range of f has a finite non-empty complement in X.
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Let X be an infinite set and ¢y be the symmetric group on X. A semigroup S of
transformations of X is said to be & x-normal if forevery h € ¥x, hSh™! C S. Fora
transformation f of X the defectof f, def f = |X—R(f)|, where R(f) = f(X)isthe
range of f, and the shift of f, shift f = |S(f)|, where S(f) ={x € X : f(x) # x}.
Let ¥ x denote the semigroup of all one-to-one total transformations of X with finite
non-zero defects. Note that ¥y is a ¥ y-normal semigroup, and if f is in #x then
shift f is always infinite (Lemma 2.2(iv)). Given an infinite cardinal « and a positive
integer n, let S(X, o, n) = {f € ¥ : shift f < «, def f = n}. It was proven in [4,
Proposition 2.16] that if S is a & y-normal subsemigroup of ¥y then for each f € S,
and every integer k > 8, S contains S(X, shift f, k def f). We say that a ¢ x-normal
S is closed if whenever f € S, then S also contains S(X, shift f, def f). It follows
that a given ¥ x-normal subsemigroup S of ¥y there exist closed subsemigroups
H, K of ¥ x which are correspondingly the largest and the smallest with repect to the
property H C S € K. We denote these semigroups by Spi, and Spa, respectively, so
that Syin © S € Smax- Note that a semigroup is closed if and only if Sy = S = Siin.
For example, ¥y and the semigroup of all one-to-one transformations with even
non-zero defects are closed (Lemma 2.2(v)). If a semigroup S is not closed, then
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the sets S \ Spax and Sy, \ S are relatively ‘small’, as demonstrated in the remainder
of this paragraph. Let o-def S = {def f : f € S}, o-shift S = {shift f . f € S}.
Observe that o-def S \ o-def S, = o-def S, \ o-def S, and the difference is finite.
Moreover, o -shift S, € o-shift S = o-shift S;,. Also if |X| € o-shift S then there
is at most a finite number of integers k& such that for some cardinal o,

(1) SX,a,k)NS £ S(X,a,k) = S(X, &, k) N Sqin.

If | X| & o-shift S then for all but a finite number of integers k for which (1) holds we
have that S(X, o, k) NS D S(X, B,k) = S(X, «, k) N Spin» Where 8 < .

This paper is concerned with a description of injective endomorphisms of a closed
¥ y-normal subsemigroup S of ¥ x (Theorem 1.1). There are a number of ingredients
that are involved in our description. Generally, an injective endomorphism ¢ of S
determines a partition of X into sets W and U such that for an f in S, the behaviour
of ¢(f) on W is determined by a finite set of one-to-one functions #;,i = 1,...,n,
from X to W (Theorem 1.1 (iii)), while ¢ (f )y is governed by a homomorphism
£:8 - Y, U9y We also present a (more complicated) result describing injective
endomorphisms of an arbitrary ¢ x-normal semigroup of one-to-one transformations
with finite non-zero defects (Proposition 1.4).

We note that our description of injective endomorphisms relates to Magill’s de-
scription of a-monomorphisms of «-semigroups in [6]. A semigroup S of total
transformations of X is an a-semigroup if S contains the identity transformation of X,
and all the constant transformations of X that map every point of X onto a single fixed
point in X. A monomorphism ¢ from a semigroup § into a semigroup T is called an
«-monomorphism if ¢ (S) is a semigroup with identity e such that if ez = z for any
left zero z of T then z is in ¢ (S).

It was shown in [6] that a mapping ¢ from an a-semigroup § of transformations of
X into an a-semigroup T of transformations of Y is an @-monomorphism if and only if
there exist functions £ : X — Y and &k : Y — X such that kh = iy and ¢ (f) = hfk,
forall f in S. A generalization of the above result to transitive semigroups of (possibly
partial) transformations that for every x € X contain a constant idempotent with range
{x}is given in [7].

We denote the semigroup of all injective endomorphisms of S by Iend §. We note
that if S is ¢ x-normal then Iend S contains an isomorphic copy of ¢ x. Indeed, in this
case every automorphism of S is inner [3] and so the group of all automorphisms of
S is isomorphic to ¥ x.

1. Main Theorem

Let S be a ¥ x-normal subsemigroup of ¥y, the semigroup of all total one-to-one
transformations of X with finite non-zero defects. We start by introducing the notation
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necessary for stating our main theorem.

For f and gin S,let D(f, g) = {x € X : f(x) # g(x)}. Let Ay, be arelation on
S such that (f, g) € Ay, if and only if [D(f, g)! < 8. Then Ay, is a congruence.
Indeed Lemma 2.7 implies that Ay, is compatible. To show that Ay, is transitive,
take (f,g), (g.1) € Ay, Then D(f,1) S D(f,8) U D(g,1), so |D(f,1)| <
ID(f, g)| +|D(g, )| < Ay,. Let /Ay, = {Vo : @ € A}, where A is an index set.
The binary operation on the quotient semigroup S/ Ay, induces a binary operation on A
suchthatfora, B € A,af =y if V,Vy C V,,wherey € Aand V,, V4, V, € S/Ay,.
With the semigroup S we associate a partial function A from o -def S to the set of all
infinite cardinals that do not exceed | X| such that for n € o-def S,

2) An)={a:S 2 SX,a,n)}

Now we are ready to present the main theorem of this paper that describes injective
endomorphisms of an arbitrary closed ¥ x-normal subsemigroup S C ¥ yx.

THEOREM 1.1. Let ¢ be an injective endomorphism of a closed semigroup S. There
exist

(i) a subset W of X with |W| = |X|;

(i) a partition {X; : i = 1,...,n} of W such that |X;| = |X|, for eachi =
1,....,n,neN;

(iii) a set of bijections h; : X —> X;,i=1,...,n;

(iv) aninteger r > n such that def ¢ (f) = r(def f), for each f € S;

(v) a homomorphismé& : S —> Gy U ¥y, where U = X — W such that
(a) the congruence 6(&) induced by & contains Ay,
(b) shift f + shift&(f) € A(r(def f));

(vi) a homomorphism t : A — ¢, such that if 1(a) # 1
A(r(def g)) for each g € V,;

andfor f e V,,x € X,

) then |X| €

.....

hewa fhi(X) ifx € X,
3 x) = @)@ J :
3 $(H) {anu> A
Conversely given (1)—(vi), the mapping defined in (3) is an injective endomorphism
of §.

COROLLARY 1.2. Let S be a closed semigroup in which every element has shift
less than | X|. Given an injective endomorphism ¢ of S, there exist (i)~«(v) (as in
Theorem 1.1) such that for f € V,,x € X,

hifh7'(x) ifx e X,

(3) ¢(fHx) ={ £ ifxel.
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Conversely, given (1)—(v) the mapping defined in (3') is an injective endomorphism
of S.

The next result provides us with additional information on homomorphism &.

PROPOSITION 1.3. Let & be the homomorphism from S to 9, U ¥y associated
with ¢.

(1) Either £(S) C Yy or&(S) C¥y.

(ii) Ifthere exist f, gin Swith def f # defgand£(f) = &(g) then&(S) C Yy.

We deduce Theorem 1.1 from the following result describing injective endomorph-
isms of an arbitrary & y-normal subsemigroup S of ¥ x. We note that the restrictions
(6) and (7) imposed in the ‘converse’ part of the theorem are intrinsically related to
the structure of a & y-normal subsemigroup S of ¥ x. Namely, if it is known that §
contains f with shift f = o and def f = m, then

“) SDS(X,a, km) foreveryk > 8.
However, little can be said about S N S(X, «, km) for 1 < k < 8 (see [4, p. 72-75]).

PROPOSITION 1.4. Let ¢ € Iend S. There exist

(i) asubset W of X with |W| = |X|;

(i) a partition {X; : i = 1,...,n} of W such that |X;| = |X|, for each i =
1,...,n,neN;

(iii) a set of bijections h; : X — X;,i =1,...,n;

(iv) aninteger r > n such that def ¢ (f) = rdef f, foreach f € S;

(v) a homomorphism & : § — VYV, UYy, where U = X — W such that the
congruence 8(£) on S induced by & contains Ay,

(vi) a homomorphism t : A — 9, such that if t(ax) # 1., then
SNSX,|X|,rdefg) # @, foreach g € V,;

andfor f € Vo, x € X,

hewo Fh (x) ifx € X,
§(f)(x) ifxeU.

Conversely, given (1)~(v) such that for every f € S

&) ¢(fHx) = {

©) shift f + shift&(f) € A(r def f),
where A is as defined in (2), and if for @ € A, t(a) # 11, n then
(7 |X] € A(r(def g)),

where g € V,, the mapping defined in (5) is an injective endomorphism of S.
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2. Definitions and Proofs

The foregoing discussion and the results of this section up to Proposition 2.9 are
true for an arbitrary ¥ x-normal semigroup S of total one-to-one transformations
with non-zero defects. The following notion introduced by the author in [3] plays a
very important role in our description of injective endomorphisms of S. Let T be a
subsemigroup of S. For x € X, let

Hx, Ty={reT :xe X\ R}

For f,geT,let
Z(f,g.TY={reT: fr=gr}.

If Z(x,T) and Z(f, g, T) are non-empty they are right ideals of T termed point
right ideal and function right ideal respectively. For briefness we denote Z(x, S) and
Z(f, g,S) by Z(x) and Z(f, g) respectively. It was shown in [3, Corollary 2.10]
that Z(f, g) is a maximal function right ideal of § if and only if Z(f, g) = Z(x),
where {x} = D({, g). This characterization of maximal function right ideals Z2(f, g)
as #(x) depends on S being & x-normal. We show that an injective endomorphism ¢
of S maps a maximal function right ideal of S onto a maximal function right ideal of
¢(S) and the latter can be described in terms of certain point right ideals of ¢(S) that
are associated with subsets of M, of X defined after Proposition 2.9.

A semigroup T of transformations of X is said to be doubly transitive if for all pairs
x,y and u, v of distinct elements in X, there exists an f in T such that f(x) = y,

fw)=v.

LEMMA 2.1. (i) Let g € S with shiftg = «, def g = B. For every integer
k > 8, S contains S(X, a, kB);

(i) S is doubly transitive;

(iii) let u, v, w be distinct points in X, then there exists r € S such that r(u) = v,
we X — R(r);

(iv) forall f € S, shift f is infinite;

(v) forall f,g €S, def fg = def f + defg.

PROOF. (i) This assertion was proved in [4, Theorem 2.7 and Proposition 2.16],
and is stated here for future reference.

(ii) Take pairs x, y and u, v of distinct elements in X. Observe that there exist
cardinals «, y such that § contains S(X, «, y), the set of all total one-to-one trans-
formations ¢ of X having shiftr < o and defr = y. LetY = X \ {x, y,u, v},
se S, a,y), h = (x,y), p = (u,v) be transpositions interchanging x and y, and
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u and v. Let
s(a), ifaey,

f@) =1 h(a), ifaceix,y},
p(a), ifae{u,v}.
Then f(x) =y, f(u) = v, as required.

(iii) Assume that w € R(f), where f is as constructed as above. If def f > 1,
choose z € X \ R(f), z # u,andletq = (w,z),r = qfq”'. If def f =y =1,
then S = ¥y, and the result is clear.

(iv) Let x € X \ R(f). Then S(f) 2 {f"(x) : n = 0,1,2,...}, indeed, if for
some non-negative integer k, f(f*(x)) = f*(x), then f*(f(x)) = f*(x), and since
f is one-to-one, we have that x = f(x) € R(f), a contradiction.

(v) Observe that X\ R(fg) = (X\R(f)Uf(X\R(g))so def fg = | X\R(fg)l =
X\ RO+ X\ R(@)| = def f + defg.

LEMMA 2.2, Let f, g € S with (f, g) € Ag,. Then

(i) Z(f. 8 #9;

(ii) for everyx € X \ D(f, g) there exists anr € Z(f, g) withx € R(r),
(iii) for every x € X there existst € S suchthat x € R(t) and (f, 1) € Ay,.

PROOF. (i) Let D = D(f, g). Then D is a finite set, and by Lemma 2.1(i) there exist
cardinals ¢, ¥ suchthaty > |D|and § D S(X, «, ). Thenforany s € S(X, o, y) C
S with R(s) € X \ D, we have thats € R(f, g).

(i) Given x € X \ D(f, g), choose r € S(X,«a,y) as above having x €
R(r), R(r) C X\ D.

(iii) Fix an x € X, and assume that x ¢ R(f). Choose a y € R(f), and let
h = (x, y) be a transposition interchanging x and y. Let s = hfh™' € S. Then
D(f, 1) C{x,y, f1(y)]} so D(f,t) is finite, and (f, t) € Ag,.

The next proposition connects point right ideals and function right ideals of a
subsemigroup T of S. It is an easy generalization of [3, Result 2.7].

PROPOSITION 2.3, Let f, g € T with Z#(f, g, T) # 0. Then
R(f, 8 T)=N#x,T):x € D(f, &)}

PROPOSITION 2.4. (i) Z(x,T)=Zx)NT foreveryx N X;
() 2(f. g, T)=2(f,g)NT forevery f,geT.

Fix an injective endomorphism ¢ of S.

PROPOSITION 2.5. Let f, g € S with Z(f, g) # 0.
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(1) @(Z(f,8) =R(P(f), d(8), p(5);
(i) Z(f,g) is a maximal function right ideal of S if and only if
Z(D(f), d(g), d(S)) is a maximal function right ideal of $(S).

PROOE. (i)

O£ (f. ) =¢(reS: fr=gr)
={o(r) € ¢(S) : (NP (r) = d(2)p ()}
=Z(@(f), #(8), 9(S)).

(i) Z(f, g) is a maximal function right ideal if and only if for all p,q € S,
Z#(f.g) € Z(p,q) implies Z(f, g) = Z(p,q), and this statement is preserved
under injective endomorphisms.

Let f, g € Swith D(f, g) = {x},forsomex € X. Then Z(f, g) is amaximal func-
tion right ideal of S and so the above proposition ensures that Z(¢ (f), ¢(g), ¢ (S5))
is a maximal function right ideal of ¢ (S). Moreover, by Proposition 2.3 with T = §,

P (Z X)) = ¢(Z(f, 8)) = B@(f), $(8), 9(S))
=MZ(y, ¢(S)) : y € D@(f), ¢(8)N},

by Proposition 2.3 again with T = ¢(§). We show that this determines a function
x — D(@(f), ¢(g)), that does not depend on the choice of f and g. We start with
the following lemma.

LEMMA 2.6. Given distinct f, g and p in S with D(f, g) = {x} = D(g, p), there
exists andt in S such that sf = tp andsg = tg.

PROOE. Observe firstly that D(f, p) = {x}, for f # p and if v # x then f(v) =
g() = p(v). Let f(x) =y, g(x) = z, p(x) = u. Since D(f, g) = {x} = D(g, p),
v, z and u are distinct.

Choose s in S with s(u) = u and y € R(s). To ensure the existence of such
an s, choose distinct v,x € X \ {u,y} and ¢ € S with g(v) = u, q(x) = y
(by Lemma 2.1(ii)). By Lemma 2.1(iii), choose r € S with R(r) C X \ {x},
r(u) = v, and let s = gr. Let h = (u, y), where (u, y) denotes the transposition
interchanging u and y. Let t = hsh™!. We show that s and ¢ are the required
mappings. Firstly, it is easy to check that D(s,t) = {u, y}. Now, if w # x, then
fw) = p(w) # p(x) = u, and f(w) # y = f(x), so f(w) € X\ D(s,¢) and
sf(w) = tf(w) = tp(w). Also sf(x) = s(y) = hs(y), for s(y) # u = s(u)
and y ¢ R(s) and hs(y) = hsh™'(u) = t(u) = tp(x). Thus, sf = tp. To show
that sg = tg it is sufficient to show that u,y & R(g). Now, if w # x, then
g(w) = p(w) # u = p(x), and g(w) = f(w) # f(x) =y. Also, g(x) =z #u, y,
as required.
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LEMMA 2.7. If f, g and l are one-to-one transformations, then

(1) D(f.1g) = D(f, &)
(i) D(f, &) NRI) =UD(f1, gl)).

A semigroup S is called right reversible [1, p. 34] if any two principle left ideals
of S have a non-empty intersection: Sf N Sg # @, forall f,g € S.

PROPOSITION 2.8. A ¥ x-normal semigroup of total one-to-one transformations is
right reversible.

PROOF. Let f, g € S and u = max{shift f, shift g}. We can assume that def f =
def g (else replace f and g with fg and gf respectively and note that def fg =
def f + def g = def gf, by Lemma 2.1(v)). By Lemma 2.1(i) there exists a non-zero
cardinal & such that § O S(X, u, a). Choose p € S(X, u, a). Construct a one-to-one
mapping g satisfying pf = qg as follows. Let g, be a bijection from R(g) onto R(pf)
defined by q,(g(x)) = pf(x), for all x € X. Note that def pf = def p + def f,
so |X \ R(pf)| > def f = def g, and partition X \ R(pf) into disjoint sets A and
B with |A| = defg. Let ¢, be a bijection from X \ R(g) onto A, and let g be a
transformation of X such that

qi(x),  ifx € R(g),
X) = .
g(0) { @), ifx e X\ R().

Then defg = |B| = def pf — def g = def p + def f — def f = def p. Also
shiftg < [{x € X : g(x) # pf(x)}| + def g < shiftg + shift pf + defg < pu,
since shift g, shift p, and shift f are at most i, and def g < shiftg < u (for any

x e X\ R(g),g(x) #x). Thusq € S(X, u, ) C S.
PROPOSITION 2.9. Let f,g,p.q € S with D(f,g) = {x} = D(p,q). Then
D@ (f), #(g)) = D(p(p), #(q)).

PROOF. Assume firstly that ¢ = g. By Lemma 2.6. there exist ¢,5 € § with
sf =tpandsg =tg. Thus

D@(f), #(g)) = D(¢p()9(f), ¢(s)9(g)), by Lemma2.7

= D@ )¢ (p), p(1)(g)) = D(@(p), #(8)).
Now assume that g # g. Since S is right reversible (Proposition 2.8), there exist
k,l € S such that kf = Ip. Now, D(f, g) = D(kf,kg) = D(p,kg), D(p,q) \

D(lp,1q), and the result follows from the previous argument and the fact that the
above equalities are preserved under injective endomorphisms.

https://doi.org/10.1017/5144678870003754X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003754X

[91 Injective endomorphisms of & x -normal semigroups: finite defects 269

Note that for each x € X, Z(x) # @ (Lemma 2.1(iii)), and there exist f,g € S
with D(f, g) = {x} [3, Result 2.8]. Given x € X define

M, = D(@(f), ¢(2)),

where f, g € S with D(f, g) = {x}. The above result ensures that M, does not
depend on the choice of f and g (as long as D(f, g) = {x]).

Starting from now assume that S is a ¥ y-normal semigroup of total one-to-one
transformations with finite non-zero defects.

PROPOSITION 2.10. (i) ¢(Zx)) =0N{Z(y,d(S)):ye M}
(i) M, is finite for every x € X;

(i) |M,|=|M,|forallx,y € X;

(iv) M, NM, =49 foralldistinctx,y € X;

V) f@x) =y ifandonly if p(f)(M,) = M,.

PROOF. Statement (i) follows from Proposition 2.3 and the definition of M,. Sets
M, are finite because of (i) and an observation that ¢ (S) consists of transformations
with finite defects. To show (iii) let x, y € X and choose f,¢,s € S such that
fx) =y, D(,s) ={y}[3,Result2.8]. Then D(¢f, sf) = {x} and by Lemma 2.7(ii)

¢ (IM) = (N (D@ WO)S(f), d()P(f)))
®) = D@, ¢(s)) N R(@(f)) = M, N R($(f)).

Since ¢(f) is one-to-one, |[M,| < |M,|. Because of arbitrariness of our choice of
f.t, s we conclude that |M.| = |M,|. Note that this together with (ii) and (8) proves
the ‘only if” part of v), so that now

€)) f(x) =y implies ¢ (f)(M.) = M,.

To show (iv) take distinct x, y € X and assume z € M, N M,. Choose g € Z(y)
with g(v) = x, for some v € X. Then ¢(g)(M,) = M, > z, by (9), while (i) implies
that M, C X \ R(¢(g)), a contradiction, since z € M,,.

Finally, assume ¢ (f)(M,) = M,, while f(x) = z, for some z € X. Then by (9),
¢(f)(M,) =M, andbyiv)z = y.

Let W =U{M, : x € X}, U = X \ W. Note that U can be empty.

COROLLARY 2.11. Given ¢ € lend S there exists a partition of X into sets U
and W such that W is a disjoint union of sets M, x € X, and for every F € S,

d(HW) S W, o(fHU) CU.
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PROOF. Proposition 2.10(v) implies that ¢ (f)(W) € W. Also, if u € U and
¢(f)wu) = v € W, then there exists y € X such that v ¢ M,. If y € R(f),
say f(x) =y, then ¢(f)(M,) = M, (Proposition 2.10(v)), and since ¢(f) is one-
to-one, u € M, C W, a contradiction. Assume y & R(f), so f € Z(y), then
o(f) € N{R(z, $(S)) : z € M,} (Proposition 2.10(i)), that is R(¢(f)) € X \ M,,a
contradiction since v € R(¢(f)) N M,.

It follows from the above result that ¢ induces a homomorphism & : § — Y, U¥,
given by £(f) = ¢(f)|y. The next Lemma shows that the natural congruence 6(§)
on S induced by & contains Ay,.

LEMMA 2.12. Let (f, g) € Ay,. Then

@ ¢()u, = ¢@)\m, forallx € X\ D(f, g);
(i) ¢ (Nlv =¢@)lv-

PROOF. (i) By Lemma 2.2, if x € X \ D(f, g), we can choose s € Z(f, g) with
s(y) = x, for some y € X. Then ¢(s)(M,) = M, and

(), = ¢(Olsrm,y = ()P () u, = $(Q)D (), = &(&)Im,-

(ii) Define a relation A on S such that (f,g) € X if and only if there exist
Piy--.»DPs € Ssuchthat py = f, p, =gand |D(p;, pi+)| < 1, i=1,...,n—1.
Clearly A is an equivalence. Moreover, Lemma 2.7 implies that X is a congruence.

Now, let (f,g) € A, p1,...,p, beasaboveand u € U. Thenfori =1,...,n—
1, ¢(p))u) = ¢(pi;1)(u) (by the definition of M,’s and W), so that ¢ (f)(u) =
o(p1) ) =--- = d(p,) () = ¢(g)(u). Hence we have shown that

(10) (f, &) € A implies ¢ (v = ¢ (lv-

Assume finally that (f, g) € Ay,. Then def f = defg = n, say. Leta =
max(shift f, shift g), and recall that S contains S(X, «, kn), forallk >8(Lemma?2.1).
Let T = U{S(X,a,kn) : k = 8}. Then Ay,|lrxr € Alrxr- Indeed, let (s, ¢) €
(T x T) N Ay,- It was shown in [5, Lemma 8] that there exist one-to-one total
transformations s, = s,5,...,5, = t such that |D(s;,s;.,) = 1, for all i =
1,...,m—1. Butthen def s; = def s and shifts; = shifts,foralli =1,2,...,m,s0
that s; € T. Therefore (s, ¢) € A. Now choose ¢ € T with shiftqg = «, defg = 8n,
and note that (qf, qg) € Ay, lrxr. Hence (gf,qg) € A so that ¢(@)¢(f)(u) =
¢ (q)o(g)(u) by (10). But this implies ¢ ( f)(u) = ¢ (g)(u), as required.

Next we show that every homomorphism from S to ¥y, Ay, < |Y| < |X|, preserves

the natural order relationship between the defects of transformations in §. This will
enable us to describe def ¢ (f) for f € S.

https://doi.org/10.1017/5144678870003754X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003754X

(11} Injective endomorphisms of 4 y-normal semigroups: finite defects 271

LEMMA 2.13. Let &' : S — ¥’y be a homomorphism f, g € S. Then,

(1) def f > defg implies def&'(f) > def&'(g), and def = defg implies
def§'(f) = def&'(g),

(i) def@p(f) = rdef f, for a fixed integer r > |M,|.

PROOF. Our proof goes via the following four steps.

Step 1. def f > def g if and only if there exist m € N, t € § with f™ =tg™.
Note that it suffices to show that def f > def g implies the right hand side of the
above equivalence. Let shift f = «, shiftg = 8, and

[ 8(def ), ifa> B,
T\ 8(defg), ife <§p.

Observe thatif p, g € S with def p > def g then |[D(p, ¢)| is infinite and a one-to-
one ¢ can be constructed so that p = tq, defr = def p— def ¢ and shiftt = |D(p, q)|

which is at most max{ shift p, shiftg}, since D(p, q) € S(p) U S(q). In particular,
there exists a one-to-one mapping ¢t with f™ = tg™, shiftt < max{«, B}, and

8(def f)(def f — defg), ifa > B,
8(def f)(def f — defg), ifa <§B.
If « > B, then shiftr < «, defr = 8(def f)(def f — defg) and sot € § by
Lemma 2.1(i). Similarly, ¢t € Sifa < B.
Step 2. def f > def g implies def &'(f) > def &'(g).
Follows from Step 1 and the fact that the equality &'(f)” = §'(1)&'(g)", m = 1,
implies that def &'(f) > def &'(g) since &'(f), £'(¢), &'(g) € V.
Step 3. def f = def g if and only if

defr = def f™ \ def g™ =[

(11 forallk,/ € N, [ > 9, there exist 5, € § satisfying
sf =gt tgh = f*, defs < def f'*', defr < def g'*'.

Let def f = def g = a. For all positive integers &, !, / > 9, there exist one-to-
one transformations s, ¢ satisfying the two equations in (11). Then shifts, shifts <
max{shift £, shift g}. Also, by Lemma 2.1, defs = def g**' \ def f* = (k + Da —
ka =la < la + a = def f'*'. Similarly, deft = la < def g'*!. By Lemma 2.1(j),
s,tes.

For the converse we show that (11) implies def f = def g in any subsemigroup §
of ¥x. Let def f = a, def g = b, def s = ¢, defr = d. Then (11) implies that

(12) ak +c =k +Db;
(13) bk +d = (k + Da,
(14) ¢ < {4+ Da;
(15) d < ({+Db.
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We show that (12)—(15) imply a = b. Letk + ! = n, thenn > 1 4+ 9 = 10. Note that
(12) and (14) together imply that

(16) (n+ Da > nb
while (13) and (15) imply
a7 (n+ )b > na.

It is easy to verify that if @ and b satisfy (16) and (17) with n > 10, thena = b.
Step 4. def f = def g implies def &'(f) = def &'(g).

This result follows from Steps 2 and 3 (recall that the proof of ‘(11) implies
def f = defg’ in Step 3 is given for an arbitrary semigroup of total one-to-one
transformations with finite defects).

Observe that Steps 1-4 above are applicable to ¢, a particular homomorphism from
S into ¥ x. Therefore, we may define a mapping n : o-def S — o-def S such that for
a €o-def S, f € Swith def f = a,n(a) = def ¢(f). It follows from Corollary 2.11
that def (¢(f)) = IW \ R(@(S)Iw)l +1U \ R(¢(f)lv)]. By Proposition 2.10, iii),
iv), v), [W — R(¢(f)lw)| = n def f, where n = |M,|, for some x € X. Recall that ¢
induces a homomorphism & : § — ¥ U¥ (the remark following Corollary 2.11)
given by §(f) = ¢(f)ly and |[U — R(E(F))| = n(def f) \ n def f. Therefore &
induces a mapping from o -def § to N U {0} such that def f +»> def&(f), for f € S.
Leto-def S = (m;, m,, ..., my), where m; < m;,,and my, m,, ..., m, is a minimal
set of generators of o-def S (see [4]).

Step 5. n(a) = (n(m;)/my)a, for an a € o-def S.

Observe that 5 is a homomorphism since for a, b € o-def S and f, g € S such
that def f = a, def g = b we have that n(a + b) = def p(fg) = def (¢(f)e(g)) =
def o(f) + defp(g) = n(a) + n(b).

Now given a € o-def S, an(m;) = nlam,;) = mn(a), since n is a homo-
morphism. Thus n(@) = (n(m,)/m)a. Let r = n(m;)/m,;; we show that r
is an integer. Let d = gcd(m;, my,...,m;), and observe that there exists an
integer ¢ such that o-def S contains all integers s > ¢ divisible by d [4, The-
orem 2.17]). Choose a € o-def § with @ > ¢ and a = bd, gcd(b, m;) = 1. Then
n(a) =ra = (n(m)/my)a(n(m,)/m)bd = (bdn(m,))/m. Since n(a) € o-def S,
n(a) is divisible by d, so (bn(m,)/m, is an integer. Therefore r = n(m;)/m, is an
integer (since gcd (b, m;) = 1). Next we shall define the partition {X; : i = 1, ..., n}
of W (Theorem 1.1(ii) and Propositon 1.4(ii). We need the following preliminaries.

LEMMA 2.14. For every @ € A and distinct x,y € X, there exists f € V, such
that f(x) = y. If « is such that v, contains a transformation g with g(u) = u for
some u € X then for every x € X there exists p € V, for which p(x) = x.
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PROOF. Foreacht € V,, S(¢) is infinite and so there exist distincta, b € X \ {x, y}
such that ¢ (@) = b. Let f = (a, x)}(b, y)t(a, x)(b, y). Note thatif z # a, b, x, y and
t(z) #a,b, x, ythen f(z) =t(z) and hence f € V,, f(x) = y. To prove the second
statement let g € V, with g(u) = u. Then p = gif x = u, and p = (x, u)g(x, u)
otherwise, is the required transformation.

We call a Ay, -class V, containing a transformation with a fixed point an f-set.
LEMMA 2.15. Let o, B € A. Then Vg is an f-set.

PROOF. By the first part of Lemma 2.14, we can choose f € V,, g € V; such that
for some distinct u, v € X, f(u) = v, g(v) = u. Then fg(v) =v, fg € V.

LEMMA 2.16. Letax € A. Then

(i) forall f,g €V,, def f = def g and shift f = shiftg;
(i) iffeVywithdef f =m,then{R(g):geV,}=(BCS X :|X\B|=m}.

PROOF. While (i) follows easily from the definition of Ay, to show (ii) let R(f) =
A and B C X with | X \ B] = m. Choose a permutation # of X such that h(X \ A) =
X\ B,h(X \ B) = X\ A and & is the identity of A N B. We show that Aifh~! € V.
Indeed if hf h~'(x) # f(x) then either f(x) € AN (X \ B) or f(x) € AN B. There
are only finitely many x in the first cases since X \ B is finite and f is one-to-one,
and in the second case fh~'(x) # h7l'f(x) = f(x), and so h(x) # x. Hence,
since & shifts only a finite number of points we conclude that Afh~! € V, with
R(hfh™") = h(R(f)) = h(A) = B. Finally, note that the reverse containment
follows from (1).

LEMMA 2.17. Let o and B be in A. Put u = shift p + shiftq and a = 8def p +
9defq, for some p € V,andq € Vg. Thenforallx € X,m > 1, thereexist§,y € A
such that for any k € S(X, w, ma) N Vs and for an f € V, with fk(x) # x if Vg is
not an f-set, we have fk = gl, for some g € Vg and!l € V, such thatl(x) = x.

PROOF. Note that by Lemma 2.16(i), 4 = max{ shift p, shiftqg : p € V,,q € V;}
and either p or ¢ in the definition of a will have shift x. Hence by Lemma 2.13),
S(X, u,ma) C § and so there is kK € S(X, u, ma) such that fk(x) = u with u # x
when V; is not a f-set. Let fk(x) = u and assume that there exists g € V5 with
g(x) = u and R(g) 2 R(fk). Then there exists a one-to-one total transformation
! such that fk = gl. It then follows that S(!) = D(g, fk) and therefore shift/ =
|IS()| < u, while def! = def f + defk — defg = (8m + 1) def f + (9Im — 1) def g,
so by Lemma 2.1(1) / € S with /(x) = g7'(fk(x)) = g7 ' (1) = x.
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To show the existence of g € Vg as above note that by Lemmas 2.16(i) and 2.1(v) for
any t € Vg, deft = def g > def g + def! = def g/ = def fk. By Lemma 2.16(ii)
we may choose ¢ in Vg such that R(t) 2 R(fk). If t(x) = u,let g =¢. If
t(x) =v # u,x and u # x, let g = (u, v)t(u, v) (note that R(g) = R(¢) since
v=1t(x) e Rt)and u = fk(x) € R(fk) C R(z)). If t(x) = x and u # x, then
since R(t) is infinite it contains some z # u, x suchthat(z) = w # u, x,z. Let g =
(x, 2)(u, w)t (x, z)(u, w) then D(g, t) C {u, w, x,z, 7 (), t " "(w), t ' (x), t7(2)},
a finite set, and so g € Vp. Finally let v # x while # = x. Then Vj is an f-set,
so that V; contains a transformation s with a fixed point. Choose a permutation s of
X such that £(X \ R(s)) = X \ R(¢), h(X \ R(t)) = X \ R(s) and h is the identity
otherwise. Replace ¢ with Ath~!. Then t(y) = y for some y € X, R(t) 2 R(fk).
If y =xlet g =t. Otherwise let g = (x, y)t(x, y) (note that R(g) = R(¢) since
x =u € R(fk) C R@)).

Now let V; and V, be the classes of Ay, containing k and / respectively. Then for any
f € Veand k' € V; with f'k'(x) # x if Vg is not an f-set, as above we can find g’ €
Vg, I’ € Swith!'(x) = xand f'k’ = g'l'. Weshow that!’ € V,. Indeed, (f, f') € Ay,
and (k'k’) € Ay, imply (fk, f'k’) € Ay,,sothat(gl, g'l') € Ay or|D(gl, g’} < Ro.
We show that D(l, ') is finite. Indeed, if a € D(l, !’) then either gl(a) # g'l'(a),
soa € D(gl,g'l'), a finite set, or gi(a) = g'l'(a), and [(a) € D(g, g'), again a
finite set, since g, g’ € Vy. Therefore, D(I,1') € D(gl, g'l') UI~'(D(g, g')), hence
IDU, 1| < Vg,s0(,l') € Ay and ' € V.

Fix an x in X and write M, = {x,, ..., x,} (M, is defined after Proposition 2.9).
Foreveryi € {1,...,n}and @ € A let

Yi,a = {¢(f)(-x1) : f € Vu} .

Partitions & and & of a set Z are said to be orthogonal if forall A € &/, B € A,
|[AN B} = 1. Asubset C of Z is a transversal of the partition & if for all A € &,
I[CNA|l=1.

LEMMA 2.18.

W) Ifi#jthenY,,NY;, =0

(ii) IfV,isan f-setthen{Y,, :i =1,...,n}forms a partition of W orthogonal
to{M, :y € X}. Otherwise, (Y;, : i = 1,...,n} is a partition of W \ M,
orthogonal to {M, : y € X \ {x}}.

PROOF. (i) Assume that z € Y;, NY;,, so that there exist f, g, € V, such that

o(f)x) = z = e(f)(x;). Recall that x; € M, and let f(x) = y, gx) = a.
Then by Proposition 2.10(v), ¢(f)(M,) = M,, ¢(g)(M,) = M,, and by 2.10(v),
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z € My N M, implies y = a. Therefore x ¢ D(f, g), and so 2.12(i) implies that
e(f)(x) = p(g)(x;). Hence, i = j.

(ii) We start by showing that [M, NY,,| = 1 forevery y € X for which there exist
f €V, with f(x) = y. We have that o(f)(M,) = M, sothat o(f)(x;) € M, N Y,
thatis, |[M NY,,| > 1. Now assume @, b € M, NY,,, then there exist ¢, 5, € V, with
e(1)(x;) = a, p(s)(x;) = bandsot(x) = y = s(x). Hencea = band [M,NY,,| = 1.

For every y € X such that there exists f € V, with f(x) =y, M, CU{Y;, 1 i =
1,..., n}. This follows from (i} and the above. This and Lemma 2.14 together with an
observation that if V,, does not contain mappings with fixed points then M, NY; , = ¥,
for every i completes the proof.

Our aim now is to associate with every @ € A a partition 2, of W orthogonal
to {M, : y € X}. If o is such that V,, contains a mapping with a fixed point let
Z.={Y,:i=1,...,n}. Otherwise we use the following construction. Choose
ue X,u#xandlet M, = {u,,...,u,}. Let

Uia ={o(f)(u) : f € Vo).

LEMMA 2.19. Given i € {1,..., n} there exists unique j € {1, ..., n} such that
Ua=Y,ifVyisan f-setand U; s \ M, = Y; , \ M, otherwise.

PROOF. Choose y € X depending on whether V, is an f-set as follows. If V, is an
f-set let y be an arbitrary element of X. If V, is not an f-set let y be an arbitrary
element of X \ {x}. By Lemma 2.18(ii) applied to U, there is z € U;, N M,, with
z = ¢(f)w;), for some f € V,. Then ¢(f)(M,) = M, by Proposition 2.10(v) and
(iv), and so by Proposition 2.10(v), f(u) = y. We use Lemma 2.17 with 8 = « and
a = 8def f +9def f = 17def f, and u = shift f. Choose k € S(X,u,a) € §
with k(x) = u (Lemma 2.14). Then fk(x) = f(u) = y, and if V, is not an f-set we
have y # x. By Lemma 2.17 there exist /, g in § with g € V,, and

z=¢(HHu) = d(fHok)(x,), forsomet € {1,...,n}
=¢(fh)(x) = ¢(gD)(x) = ¢()p () (x:)
= ¢(g)(x;) € Y;,, forsome j € {1,...,n}.
If vis alsoan element of U; o, v = ¢ (f')(u;) and f’ € V,, let k be chosen as before, so
thatu;, = ¢(k)(x,). By Lemma 2.17 again choose I', g’ such that!'(x) = x, f'k = g'l’,
g € V,. Then

v=¢(f ) = ¢ (&) (x) = ¢ (fb)(x)
= ¢ (g1 (x) = ¢ (8NP () (x) = ¢(8)(x;) € Yo,
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since (I,1') € Ay,, and so by 2.12, ¢ (I)(x,) = ¢ (I')(x,). Therefore we have shown
that U;, € Y;, if V, is an f-set, and U;, \ M, C Y;,, if V, is not an f-set. If
Vo is an f-set, ¥;, and U;, are transversals of the partition {M, : y € X} of W
(Lemma 2.18(ii)), and so ¥;, = U;,. If V, is not an f-set ¥, is a transversal of
{M, :y € X\{x}}, Ui isatransversal of {M, : y € X \ {u}} (Lemma 2.18(ii) again),
$0 U;o \ M, and Y;, \ M, are transversals of {M, : y € X \ {u, x}}. Therefore the
inclusion U; o \ M, C Y,, impliesthat U; o \ M, =Y, , \ M,.

If V, is not an f-set, the above lemma determines a permutation p of {1,...,n}
suchthatY;, \ M, = U, \ M,. Withevery @ € A we associate a partition 2, of
W such that

..%/‘,:{Yi,aUUp(i),uIl.:1,...,”}.

In view of the above lemma this is a natural extension of the definition of 2, given
after Lemma 2.18 for these « for which V, is an f-set. Observe that for evey a € A,
the partition 2, of W is orthogonal to {M, : y € X}. Indeed, let z € X \ {x, u},
and note that since Y;, and U, are transversals of {M, : y € X \ {x}} and
{M, :y € X\ {u}} respectively (Lemma 2.18), then |Y; , " M,| = 1 = U, N M,|.
Since Y; o \ M, = U,o \ M, wehavethat Y, , N M, = U, o N M, = {a}, for some
a € M,. Therefore

[Yi,a U Up(i),a] N Mz = (Yi,a N Mz) U (Up(i),a N Mz) = {a} U {a} = {(1}

so that |[Y; o U Uyi)..] N M;| = 1. The next result follows.

LEMMA 2.20. Foreverya € A, & , is a partition of W orthogonalto{M, : y € X}
that does not depend on the choice of initial point (x) or points (x and y).

We write &, = {X;o:{ =1,...,n},sothat X;, = Y;, if V, is an f-set, and
Xia = Yiq U Uyp.« otherwise.

LEMMA 2.21. There exists a function o : A X A — 4, such that for a, § € A,
i,j€{1,...,11},0'((1,,3)(i)=jiin,a= 5B’

PROOF. Let o, B € A, v € X;, N M, for some y € X with y # x if Vj is not an
f-set, for which there exists f € V, with f(x) = y. Letk, g,/ be as in Lemma 2.17
with & chosen such that k(x) = x. Then x; = ¢ (k)(x,,) for some m and

v=¢(f)(x) = ¢ (oK) (xn) = ¢ (fh)(Xn)
=g (xn) = @(@)P (D (x) = ¢()(x)) € X5,

’

for some j € {l,...,n}. fv = ¢(f)(x:), f' € V,, choose k as above and /', g
such that (I,1), (g, £') € Ay, I'(x) = x, f'k = g'l’ (Lemma 2.17 again). Using

https://doi.org/10.1017/5144678870003754X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003754X

[17] Injective endomorphisms of ¢ -normal semigroups: finite defects 277

the above argument we can show that v = ¢(g)o () (x,) = ¢(g)(x;) € X;p.
If V, and Vj; are f-sets, then X;, = Y,, € Y; 5 = X,;, and since X;,, X, 5 are
transversals of {M, : y € X}, we have X;, = X4 If either V, or V; are not
f-sets, then X;, \ M, =Y, CY,;. Inthis case we repeat the argument starting
with u to deduce that U, € Uy p (note the same 8 as before). Hence, using 2.19,
Usine \ M, =Yiu NU 4 a € Y; 5N Uy g. Thatis X; g N X, g is non-empty and so, by
2.20, j = k. Hence X;, C X, 4, and the equality follows.

Using Lemma 2.20, for every ¢ € A define bijections
hio : X > Xiabyy> M, NXo, i=1,...,n
LEMMA 2.22. Given f € V,,y € X;, and B € A such that Vg is an f-set,

SO = Fopyiras Fhia (D).

PROOF. Let {y} = M. N X;, = {hio(2)}. Then ¢(f)(y) € ¢(fYM,) = My,.
Observe that Lemma 2.14 implies that Vj contains k with k(x) = z (in particular if
x = z the required k exists by 2.14 since V; is an f-set). Then ¢ (k)(M,) = M,, so
that ¢(k)(x;) =y, j € {1,...,n}. Therefore y € X; s N X;,, and by Lemma 2.21,
Xio=Xipforsomek € {l,...,n}. ButthenX; sNX; g #0,50X; 3 = Xop = Xi o
by Lemma 2.18(i). Hence X,z = X, p).p Lemma 2.21), so that j = o (e, B)(i),
and

() =d(fHok) (%) = ¢(f)(X) € Xjap = Xowp)i).ap-
Thus,

o(Hy) = Mf(z) N Xa(a,ﬂ)(i),aﬁ = ha(a.ﬁ)(i),aﬂf(z) = ha(a,ﬂ)(i).aﬂfhi_,; .

LEMMA 2.23. Foralla, B,y € A,

@ o B)=0""(8 a)
(i) o, B)=0(y,B)ola,y);
(iii) o(aB,ay) =o0(B,y), forall B,y for which Vg and V,, are f-sets.

PROOF. (l) X,',a = Xa(a,ﬂ)(i),ﬂ = Xa(ﬂ,a)a(u.ﬂ)(i),a’ SOO’(ﬂ, (1)0' (a, ,8)(1) =i for cvery
iefl,...,n}

i) Xie = Xowspirs = Xoyoenor = XowwoBroapira SO
o(y,a)yo(B,y)o(a,B)(i) = i for every i € {1,...,n}. Hence o(, 8) =
oy, a)a (B, ] =07'(B.y)o (v, ) = a(y, B)o(a, ¥), by i).

(iii) By Lemma 2.22, we have ¢ (f) (y) = ha(a,ﬂ)(;),aﬁfh;;(y),forf € Vey € Xig.
Also, ¢(f)(y) = ha(a.y)(i).ayfh;;()’) = ha(ay.aﬂ)a(a,y)(z’),uﬂfhi_,; (y), sothato(, B) =
o(ay,af)o(a, y),oro(@y,af) =o(a, Blo~ (o, y) =o(a, B)o(y,a) =a(y, B),
by (ii).

https://doi.org/10.1017/5144678870003754X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870003754X

278 Inessa Levi [18]

Fix u € A with V, being an f-set. Let X, , = X;, h;, = h;. Definet : A > ¥,
viag — o(au, @).

LEMMA 2.24. t is a homomorphism.

PROOF. Let &, 8 € A. Then, by Lemma 2.23(iii) and Lemma 2.15, t(x)t(8) =
olau, WoBu,u) = olau, p)o(@Bu,apn). Now, using Lemma 2.23(ii),
o(ap, o (apu, ap) =o(@fu, u) = t(ap).

LEMMA 2.25. Given'y € X;, f € Va, 9(F)) = hewyr f 17 (D).

PROOF. Observe that X; = X; , = X, (,.0)0).« and by Lemma 2.22 with 8 = p,

¢(f) (}’) = hu(a.u)a(u.a)(i),aufh;(lu,a)(i),a()’) = hi,aufh;(la,u)aw.a)(w,u(y)
= ha(au.u)(i).ufhi_,;(y) = hr(a)(i)fh[_l(y)-

Recall that there exists an integer » > |M,| such that def¢(f) = rdef f, for
f € § (Lemma 2.13(ii)).

COROLLARY 2.26. (l) For everyi € {1, N "l}, ¢(f)(X,) - Xr(a)(i)-

) Ift(a) # 1y, 0 then SNS(X, |X|, r(def f)) # O where f € V,.

(iii) If shift f < |X|forall f in S then T(w) is the identity on {1, . .., n} for every
a € A.

PROOF. (i) The statement follows directly from Lemma 2.25 and the fact that the
image of N i) 18 Xr@)@)-

(i) Let « € A be such that t(a)(i) = j # i, for some i, j € {1,...,n}. Then,
by part i), ¢(f)(X:) € X; € X \ X;. Therefore shift¢(f) > |X;| = |X|. The
result now follows from the fact that def ¢(f) = rdef f (Lemma 2.13(ii)), and
¢(f) e SNS(X,|X]|, rdef f).

(iii) This statement is an immediate consequence of (ii).

PROOF OF PROPOSITION 1.4. The set W is defined prior to Corollary 2.11. The
existence of the partition {X; : i/ = 1, ..., n} in (ii) is established in Lemma 2.20.
Bijections #; in (iii) are defined prior to Lemma 2.24, while (iv) and (v) are shown in
Lemmas 2.13 and 2.12 respectively. The homomorphism 7 in (vi) is established in
Lemma 2.24 and Corollary 2.26(ii). Finally, (5) is proven in Lemma 2.25.

Conversely, assume (i)—(vi) are given and satisfy (6) and (7). Let f € S. Clearly
¢ (f) is one-to-one, and if f € V, with t(«) = 1}, , then shift¢(f) = nshift f +
shift £(f) = shift f + shift £(f), and (6) implies that ¢(f) € S. If f € V, with
(@) # Ly....) then (f) € S by (7).
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To show that ¢ is a morphism take f € V,, g € Vyandy € X;, fora, B € A,
ief(l,...,n}. Then fg € Vyg and

o(f(y) = hr(aﬂ)(i)fghi_l(y)y
while

(PR = ¢(Hhepinghi (V) = hewrmo F g mhemnghi ),
since k.50 807 (¥) € Xepyiy
= hewepyin F8HT (V) = heepyi f8HT' (),

since 7 is a homomorphism. To show that ¢ is one-to-one, let f € V,, g € V; with
¢(f) = ¢(g). Thenforevery y € X;,i € {1,...,n}, ¢(/)(¥) = heep fh' (¥) =

ht(ﬂ)(i)ghi—](y) = ¢ (g)(y),sothat by f (1) = h: &), foreveryu € hi-l(Xi) =
X. Moreover, t(¢)(i) = 7(b)(i),and so f = g.

PROOF OF THEOREM 1.1. Suppose S is closed. Then Proposition 1.4 gives (i)-
(iv), v(a) and (3) in Theorem 1.1. To show v(b), let f € S, then shift¢(f) >
shift f + shift&(f), defo(f) = rdef f, so S 2 S(X, shift¢p(f), r(def f)) 2
S(X, shift f + shiftE(f), r(def f)), and the statement v(b) holds. If g € V, such
that 7(a) # 1y, then shift¢(g) = [X|, and so § 2 S(X, |X|, r(def g)), and
(vi) holds. Conversely, given (i)-(vi), the mapping defined in (3) is an injective
endomorphism provided it satisfies (6) and (7) of Proposition 1.4. This follows from
(v) and (vi) of the statement of Theorem 1.1

PROOF OF COROLLARY 1.2. Follows from Corollary 2.26(iii).

PROOF OF PROPOSITION 1.3. (i) Let f € S with £(f) € Yy and let g € 5. We
show that £(g) € ¥y. Let def f = m, defg = I. Since 9Im? > Im there exists a
one-to-one mapping p such that f*™ = pg™. Then def p = def fo™ — defg™ =
9Im? —Im = Ilm(9m — 1) > 9m, shift p < max{shift f, shift g}, and so p € S. But
then £(p)&(g)" = §(f)*™ € Gy, sothat£(g) € Y.

(ii) It suffices to show that if f, g € S with def f # defg and &(f) = &(g),
then £(S) N ¥y # . Assume firstly that there exists ¢ € S such that ¢f = g. Then
EME(S) = &(g) = &(f), £(2) is the identity on the range of £(f) and since def £(f)
is finite, £(t) € ¥;. Therefore, it suffices to show that there exist f', g’,¢t' € S with
def f' 5 defg', t'f' = g’ and E(f') = £(g’). Let def f = n, def g = m, where
m>n, f/ = f8m g’ = g®m™ Lett be a one-to-one mapping such that ¢’ f’ = g’.
Then deft’ = 8nm(m — n), shiftt’ < max{shift f', shift ¢’}, and so t' € §, as
required.

We conclude by presenting an example of an injective endomorphism with non-
trivial £ and 1.
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EXAMPLE. Let S be such that o-def S = {2k: k >1}and § D {S(X, [X|,2k) : k >
2}. Partition X into sets W and U with (W| = |U| = |X|. Let n = 2 and partition
W into X; and X,, |X,| = |X,| = |X|. Choose arbitrary bijections #; : X — X;,

i =1, 2. Choose an infinite cycle 4 of U and let
£:8 —> Yy besuchthat f — A", if def f = 2m.
Lett : A — %, be given by
r(a) = { 1oy, if deff =0(mod4), feV,,
(12)  otherwise.
Let ¢ : § — S be defined by

hifh7'(y), if def f =0 (mod4), y € X,,
¢ =1 hisifhi'(y), if def f # 0 (mod4), y € X;,
()M, ifyeU,

where f € S and the addition of the indices is done modulo 2.
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