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A BALL QUOTIENT PARAMETRIZING TRIGONAL GENUS 4
CURVES

EDUARD LOOIJENGA

Abstract. We consider the moduli space of genus 4 curves endowed with a

g13 (which maps with degree 2 onto the moduli space of genus 4 curves). We

prove that it defines a degree 1
2
(310−1) cover of the nine-dimensional Deligne–

Mostow ball quotient such that the natural divisors that live on that moduli

space become totally geodesic (their normalizations are eight-dimensional ball

quotients). This isomorphism differs from the one considered by S. Kondō, and

its construction is perhaps more elementary, as it does not involve K3 surfaces

and their Torelli theorem: the Deligne–Mostow ball quotient parametrizes

certain cyclic covers of degree 6 of a projective line and we show how a level

structure on such a cover produces a degree 3 cover of that line with the same

discriminant, yielding a genus 4 curve endowed with a g13 .

§1. Introduction

Kondō constructed in [5] an isomorphism from a Zariski open subset of the moduli space

of nonsingular complex genus 4 curves M4 onto a Zariski open subset of a ball quotient,

where the latter covers the nine-dimensional ball quotient that appears in the Deligne–

Mostow list. He also noted that this cannot be extended to the full M4, but that this is

possible if we blow up the hyperelliptic locus H4 (which is of codimension 2 in M4). The

exceptional divisor then maps to a hyperball quotient, a property that also holds for the

generic point of the Theta-null locus. His approach is based on the fact that the generic

point ofM4 is represented by a curve X of bidegree (3,3) on P1×P1. The μ3-cover of P
1×P1

that totally ramifies along X is a K3 surface with μ3-action, and the Torelli theorem for

such surfaces implies that its μ3-Hodge structure is a complete invariant of that μ3-surface

and hence also of X (as the fixed point set of the μ3-action). Such μ3-Hodge structures are

parametrized by a ball quotient of the above type.

The goal of this note is twofold. First, to observe that there is a modular interpretation

of the hyperelliptic blowup as the moduli space of pairs consisting of a nonsingular complex

genus 4 curve and a g13 on that curve, where we note that a generic genus 4 curve has two

g13’s and that this moduli space comes with an involution that exchanges them.

And second, to give this moduli space a complex hyperbolic structure without resorting to

K3 surfaces and their Torelli theorem. For this, we start from the fact that the generic point

of the Deligne–Mostow ball quotient parametrizes μ6-covers C → P1 totally ramified over

a 12-element subset D ⊂ P1 and nowhere else. We then show how a certain level structure

on C gives rise to a genus 4 curve X lying with degree 3 over P1 with discriminant D (so X

comes with a g13) and a correspondence between C and X.
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Our approach is in the same spirit as our paper with Heckman [4] on the moduli space of

rational elliptic surfaces (which here appears in the guise of the Theta-null locus). Most of

that paper was concerned with the construction and comparison of certain compactifications

of that moduli space (which accounts for its length), and it is likely that a similar program

could be pursued here, where, of course, a compactification that parametrizes curves of

arithmetic genus 4 endowed with a g13 would be best.

Let us finally point out that our period map is quite different from the one introduced by

Kondō, as the two discriminants that we associate with the two g13’s on a generic genus 4

curve will not lie in the same PGL2(C)-orbit and hence have different image in the Deligne–

Mostow ball quotient.

After we posted the first version, Hang Xue drew my attention to his thesis [8] and a

related publication [7] in which the difference of the two g13’s of a nonhyperelliptic genus 4

curve (regarded as an element of its Jacobian) is investigated in a universal manner.

I thank Gert Heckman for comments on that same version.

§2. The nine-dimensional Deligne–Mostow ball quotient

This section is mostly a review of known results. Its main purpose is to recall them in a

way that suits our purpose and to establish notation.

2.1 μ6-covers of P1

Let C be a nonsingular complex-projective curve endowed with a μ6-action that has

12 fixed points, is free elsewhere, and is such that its orbit space P is a copy of P1.

The discriminant of C → P is then of the form 5DC , with DC a 12-element subset of P,

considered as a reduced divisor and Riemann–Hurwitz shows that C will have genus 25.

Note that the pair (P,DC) determines C up to a covering transformation (in μ6). We recall

how this gives rise to a point in a nine-dimensional ball quotient, which happens to be the

one of highest dimension that appears in the Deligne–Mostow list.

Since we find it convenient to make a distinction between what depends on the complex

structure and what only depends on the underlying topology, we also fix a closed oriented

surface Σ for of genus 25 endowed with a μ6-action of the type above, so with 12 fixed points

and acting freely elsewhere. We denote by π : Σ→ S the formation of its μ6-orbit space (a

smooth 2-sphere), and by D ⊂ S its set of critical values. Then any complex structure on S

(which will make it a copy of the Riemann sphere) determines a unique one on Σ for which

the μ6-action and π are holomorphic, yielding a μ6-curve as above with discriminant 5D.

We also note that a diffeomorphism of S which preserves D lifts to S and does so almost

uniquely: two such lifts will lie in the same μ6-orbit.

2.2 Hodge structure of a μ6-cover of P1

We first note that the standard embedding χ : μ6 ⊂ C× and its complex conjugate are

the only two primitive characters of μ6. The group μ6 acts on H1(Σ;C) and decomposes

the latter into its character spaces: H1(Σ;C) =⊕i∈Z/6H
1(Σ;C)χi . The intersection pairing

gives rise to a nondegenerate Hermitian form on H1(Σ;C) defined by (α,β) �→
√
−1

∫
Σ
α∧β.

It has signature (25,25), and for this form, the above decomposition into character spaces is

perpendicular. In the presence of a complex structure, it is also compatible with the Hodge

structure. For example, the decomposition

H1(C;C)χ =H1(C,ΩC)χ⊕H1(C,ΩC)χ (2.1)
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is perpendicular with respect to this Hermitian form with the first summand being positive

definite of dimension 1 and the second summand negative definite of dimension 9. The

group of covering transformations μ6 acts trivially on P(H1(Σ;C)χ) and so this projective

space only depends on the pair (S,D); we therefore denote it by P(S,D). Its group

PU(H1(Σ;C)χ) of projective unitary transformations, which we denote for a similar reason

by PU(S,D), is isomorphic to PU(1,9). The positive definite complex lines in H1(Σ;C)χ
make up an open complex ball B(S,D)⊂ P(S,D) on which PU(S,D) acts transitively with

compact stabilizers; indeed, this ball is the symmetric domain associated with PU(S,D). If

there is no risk of confusion, we simply write B for B(S,D).

As we observed above, a complex structure on S determines one on Σ, turning it into a

compact Riemann surface C with μ6-action. The Hodge decomposition (2.1) then defines

an element, the Hodge point, of B. The main result of Deligne and Mostow [3], [6] implies

that this Hodge point is a complete invariant of the relative isotopy class of this complex

structure.

2.3 Action of a mapping class group

To make this last assertion precise, let Diff+(S,D) denote the group of orientation-

preserving diffeomorphisms of S which preserve D. Since this group Diff+(S,D) acts on Σ

up to covering transformations, it gives rise to a well-defined action on P(S,D) via PU(S,D)

(and so preserves B). This action factors through its connected component group that we

shall denote Mod(S,D) and which we readily recognize as the spherical braid group on 12

strands. That group has as a distinguished conjugacy class the set of simple braids. We

recall that a simple braid is given by an (unoriented) arc δ in S which connects two points

of D and has no points of D in its interior: the associated simple braid Tδ ∈Mod(S,D) has

its support in a regular neighborhood of δ and lets δ make a half-turn in a counterclockwise

direction. These simple braids generate Mod(S,D). In fact, if we enumerate the points of

D by {pi}i∈Z/12 and let δi connect pi with pi+1 in such a way as that their juxtaposition

produces an embedded circle in S, then Tδ1 , . . . ,Tδ10 already generate Mod(S,D). It follows

from the work of Deligne–Mostow that the image of Mod(S,D) in PU(S,D) is an arithmetic

group, which therefore acts properly discretely on B with finite covolume. We denote this

image group by Γ⊂ PU(S,D).

2.4 A lattice over the Eisenstein ring

In order to make the action of a simple braid on B somewhat more explicit, we make

some general observations first. Write τ for the primitive sixth root of unity with a positive

imaginary part, eπ
√
−1/3, and regard it as a generator of μ6. As a complex number, it

satisfies τ2 = τ − 1, but this identity is of course not valid in the group ring Z[μ6]. Given

a Z[μ6]-module V, let us denote by V ◦ (resp. V◦) the maximal submodule (resp. quotient

module) on which τ satisfies the identity τ2 = τ −1. For example, V◦ is the quotient of V

by the subgroup of v ∈ V with nontrivial μ6-stabilizer. Then V ◦ and V◦ become modules

over the ring of Eisenstein integers E := Z+Zτ ⊂ C, the ring of integers the cyclotomic

field Q( 3
√
1). Note that R⊗V ◦ →R⊗V◦ is an isomorphism and the latter can be identified

with the quotient of R⊗V by the sum of the fixed point subspaces of τ2 and τ3.

Since E is a principal ideal domain, any finitely generated torsion-free E-module is in

fact free. So, if V is a finitely generated free Z-module, then both V◦ and V ◦ are finitely
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generated free E-modules. If we are in addition given a μ6-invariant antisymmetric pairing

a : V ×V → Z, then this gives rise to the 1
2E-valued Hermitian form on V ◦ defined by

ha(x,y) :=
1
2τa(x,y)−

1
2a(x,τy)

(the justification for the perhaps somewhat unexpected normalization factor 1
2 will be given

below). Note that ha(x,x) =−1
2a(x,τx) and ha(x,y)−ha(x,y) =

1
2(τ−τ)a(x,y) = 1

2θa(x,y),

where

θ := τ − τ =−1+2τ =
√
−3

is the first purely imaginary number in E . We apply this to the Z[μ6]-module H1(Σ). We

find that H1(Σ)
◦ and H1(Σ)◦ are free E-modules of rank 10. The intersection pairing on

H1(Σ) is nondegenerate on H1(Σ)
◦ and defines via the above prescription on this lattice

the E-valued Hermitian form

h(x,y) := 1
2τ(x ·y)−

1
2(x · τy).

We will write L for H1(Σ)
◦ endowed with this form.

Let us see what this induces on the preimage π−1δ of an arc δ as above. We now assume

δ oriented and let δ̃ be a lift of δ over π. Then cδ := (1−τ3)δ̃ is an embedded oriented circle

(hence a 1-cycle) and meets its τ -translate in two points, each with multiplicity 1. In other

words, cδ · τcδ = 2. Now, H1(π
−1δ)◦ has the E-generator aδ := (1+ τ)(1− τ3)δ̃ = (1+ τ)cδ

(which is unique up multiplication by an element of μ6), and the above formula shows that

h(aδ,aδ) =
1
2 .− 6 = −3. A similar computation shows that h(aδi ,aδi+1) ∈ μ6θ. So h|L×L

takes values in θE , so that θ−1h defines a skew-Hermitian form

h′ := θ−1h : L×L→E .

Since we have the freedom of multiplying each aδ with an element of μ6, we can choose

aδ1 , . . . ,aδ10 in such a manner that it is an E-basis of L with

h(aδi ,aδj ) =

⎧⎪⎨
⎪⎩

−3, when j = i,

±θ, when j = i±1,

0, otherwise.

This also shows that L is isomorphic to the lattice thus denoted in [2] (this explains the

coefficient 1
2 in our definition of h) and if we replace h by −h, it becomes isomorphic

to the lattice denoted Λ in [4]. In [2], L is in fact constructed from the even Z-lattice

E8 ⊥E8 ⊥U⊥U. Going in the opposite direction, this amounts to the statement that we

recover this lattice if we take the underlying abelian group and the even symmetric pairing

on it defined by the real part of h multiplied with −2
3 .

2.5 Mirror hyperballs

The simple braid Tδ acts in L as the unitary transformation sδ defined by

sδ(x) = x+ 1
3(1− τ2)h(x,aδ)aδ = x+ τh′(x,aδ)aδ.

It is what is called in [2] a triflection in Eaδ: it multiplies aδ with the third root of unity

τ2 and is the identity on the orthogonal complement of aδ. It indeed preserves L, as follows

from the fact that h′ takes its values in E .
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Poincaré duality identifies H1(Σ)◦ with H1(Σ)
◦ = L, and we use this to identify P(S,D)

with P(C⊗E L). In particular, Tδ acts on B as a triflection. So its fixed point set BTδ

is a hyperball (to which we shall also refer as a mirror in B). Since the Tδ make up a

single conjugacy class in Mod(S,D), the group Mod(S,D) permutes the mirror hyperballs

transitively.

The group of unitary transformations of the Hermitian E-module L acts properly

discretely on B with kernel its center μ6. The group Γ is a priori contained in the quotient

of this group by its center (which is an arithmetic subgroup of PU(S,D)), but, as Allcock

has shown (see [2, Th. 5.1]), is in fact equal to it. So Γ acts properly discontinuously on B

and the Baily–Borel theory asserts that BΓ := Γ\B has the structure of a quasi-projective

orbifold that can be completed to a normal projective variety by adding a finite set of cusps

(in this case, just one, see below). The image of the Hodge point in this ball quotient BΓ

is a complete invariant of the isomorphism type of the μ6-curve C, or equivalently, of the

pair (S,D) with the given complex structure.

The Mod(S,D)-centralizer of Tδ acts on the mirror BTδ with image an arithmetic

subgroup and the resulting ball quotient of BTδ appears in the Deligne–Mostow list as

the one defined by the sequence ( 2
12 ,

1
12 ,

1
12 , . . . ,

1
12).

The group Γ is as a quotient of Mod(S,D) obtained by imposing the relation T 3
δ = 1. The

mirrors are locally finite on B, and since they are transitively permuted by Γ, they define

an irreducible totally geodesic hypersurface D in BΓ that we shall call the confluence locus.

We write B◦ for the complement of the union of the mirrors (an open subset of B). So this

is the preimage of B◦
Γ \D.

2.6 The Deligne–Mostow isomorphism

Let M(12) denote the PGL(2,C)-orbit space of the configuration space of 12-element

subsets of P1 (this is also equal to the S12-orbit space of M0,12). The above construction

defines a homomorphic map

M(12)→ BΓ.

If we think of a 12-element subset of P1 as a reduced degree 12-divisor, then the above map

extends to the locus M(12)st of Hilbert–Mumford stable positive degree 12-divisors, that

is, divisors for which the multiplicities are at most 5. The Deligne–Mostow theory asserts

that this extension is in fact an isomorphism

M(12)st
∼=−→ BΓ

that takes M(12) onto B◦
Γ. It even extends to an isomorphism of their natural compact-

ifications: the GIT compactification on the left and the Baily–Borel compactification on

the right. Both are one-point compactifications, with the added point on the left being

represented by a 6-divisible divisor on P1 whose support consists of two points. In particular,

there is just one cusp.

§3. Trigonal structures on a genus 4 curve

3.1 g1
3’s on a genus 4 curve

Let X be a smooth connected complex-projective curve of genus 4, and let P be a pencil

of degree 3 on X (in other words, a g13). If P has no base point, then the pencil defines a

morphism X → P of degree 3 and by Riemann–Hurwitz, the discriminant divisor D(X,P )
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of this morphism is of degree 12. Note that its multiplicities will be ≤ 2. In case P has a

base point, then the residual base-point-free pencil P ′ will have degree 2 and this makes X

hyperelliptic with P ′ being the hyperelliptic pencil. We will see that it is then natural to

define the discriminant divisor of P to be the degree 12-divisor D(X,P ), that is (via the

identification of P with P ′), the sum of the discriminant divisor of X → P ′ (the image of

the Weierstraß points, so of degree 10) plus twice the image in P ′ of the fixed point P. So

its multiplicities are then ≤ 3.

Recall that if X is nonhyperelliptic, then a canonical image of X in P3 is the transversal

intersection of a cubic surface with a quadric Q surface, the latter being unique and either

smooth (so isomorphic to P1×P1) or a quadric cone. In the first case, the projections on

the two factors give us two pencils of degree 3. In the second case, projection away from

the vertex of the cone also yields a pencil of degree 3; the line bundle in question is then

an effective (even) theta characteristic. It is well known that this exhausts all the g13’s in

genus 4. For future reference, we state this as a lemma (and only sketch the proof).

Lemma 3.1. Let X be a smooth connected complex-projective curve of genus 4. If X is

nonhyperelliptic, then any g13 on X is as above: it comes with a residual g13 (in the sense

that its members supplement the members of the given g13 to a canonical divisor) and there

are no others (so the two being equal if and only if the g13 is a theta characteristic). If X

is hyperelliptic, then any g13 on X is the sum of an x ∈X and its hyperelliptic g12; in that

case, the pencil is a theta characteristic if and only if x is a Weierstraß point.

Proof. This is well known, as it is in a sense a geometric formulation of Clifford’s theorem

in genus 4. The proof runs as follows. If P is a g13 on X, then Clifford’s theorem implies

that P is a complete linear system. By Riemann–Roch, we have a supplementary g13 on X,

denoted P ′, whose members supplement the members of P to a canonical divisor. So each

member of P (resp. P ′) defines a line in P̌(H0(X,ΩX)) ∼= P3 which meets the canonical

image of X in at most three points and P ′ (resp. P) is realized by the pencil of planes

through that line. We have P = P ′ if and only if P is a theta characteristic. The rest of the

argument is left to the reader.

3.2 A moduli stack of genus 4 curves with a g1
3

We interpret this in terms of moduli spaces. Pairs (X,P ) as above define a Deligne–

Mumford stack that we shall denote by M4(g
1
3). It comes with an involution which assigns

to (X,P ) the residual pair (X,P ′) that is characterized by the property that P +P ′ lies

in the canonical system. The forgetful morphism M4(g
1
3)→M4 evidently factors through

the orbit space of this involution. Recall that the moduli space M4 contains the Theta-null

locus MΘ
4 (the locus for which the curve admits an even effective theta characteristic) as a

substack of codimension one and that this substack MΘ
4 in turn contains the hyperelliptic

locus H4 as a substack of codimension one.

It follows from Lemma 3.1 that M4(g
1
3)→M4 is over M4 \H4 a double covering with

the covering transformation being induced by the residual involution (and so ramifies over

MΘ
4 \H4). This lemma also shows that the preimage H4(g

1
3) of H4 in M4(g

1
3) is the

universal hyperelliptic curve of genus 4 (so that will be a divisor). The strict transform

of MΘ
4 in M4(g

1
3) is another divisor M4(g

1
3)

Θ on M4(g
1
3) which meets H4(g

1
3) in the

locus parametrizing the Weierstraß points (this locus is geometrically connected, since the

monodromy is transitive on the Weierstrass points).
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Our goal is to realize M4(g
1
3) as an open subset of a quotient of B relative some finite

index subgroup of Γ. We determine this subgroup in two ways: first in a purely topological

manner and subsequently more in the spirit of algebraic geometry as a level structure on

the μ6-curve Σ.

3.3 The approach via a classification of coverings

This begins with addressing the question of how many topological types of smooth

connected degree three coverings of the 2-sphere S exist that have the 12-element subset

D ⊂ S as reduced discriminant. Such a covering is given by its restriction to S \D (which

is then unramified). So if we choose a base point o ∈ S \D, then it can be given by a group

homomorphism ρ : π1(S \D,o)→S3 which assigns to a simple loop around a point of D a

transposition. The image of ρ must be a transitive subgroup of S3 and hence must be all

of S3. Two such epimorphisms define isomorphic coverings if and only if they differ by an

inner automorphism of S3. So if we let Epi′(π1(S \D,o),S3) stand for the set of group of

surjective homomorphisms π1(S \D,o)→S3 that take simple loops to transpositions, then

the set of topological types is naturally identified with

R(S,D) :=S3\Epi′(π1(S \D,o),S3).

We determine its number of elements. We choose smooth arcs {γi}i∈Z/12 from o to the

distinct points of D that only meet at o and depart from there along rays in ToS in

a counterclockwise order. This means that the associated simple loop associated with γi
defines a ci ∈ π1(S \D,o) so that c11 · · ·c0 = 1 (we read composition of loops from right

to left) and c1, . . . , c11 are free generators. Then a ρ as above is given by its values on

c1, . . . , c11. Note that ρ(c1), . . . ,ρ(c11) is a sequence in the 3-element set of transpositions

{(12),(23),(31)} of S3 that cannot be nonconstant, but can otherwise be arbitrary. So there

are 311−3 such ρ. The action of S3 on this set by conjugation is free and so

#R(S,D) = (311−3)/6 = (310−1)/2 = 39+38+ · · ·+1.

This number is also equal to #P9(F3). We shall see that this is not a coincidence.

Evidently, the group of automorphisms of π1(S \D,o) which preserves the simple

loops acts on R(S,D). The group Mod(S,D) maps to the outer automorphism group of

π1(S \D,o). Since we have divided out by S3-conjugation, this gives us a genuine action of

Mod(S,D) on R(S,D).

Lemma 3.2. The action of Mod(S,D) on R(S,D) is through Γ and is transitive.

Proof. Recall that an (unoriented) arc δ in S connecting two distinct points of D whose

relative interior does not meet any point of D represents a simple braid in Mod(S,D).

If we choose an interior point of δ as our base point o, then this yields two simple loops

and hence two transpositions of the fiber over o. Then Tδ acts trivially on ρ if these two

transpositions are equal and, as a straightforward verification shows, is of order 3 otherwise.

It follows that this action of Mod(S,D) on R(S,D) factors through Γ.

For the transitivity property, it is enough to show that for a given degree 3 covering

Σ′ → S as above, there exists a standard generating set (c0, . . . , c11) of π1(S \D,o) as above

and a numbering of the fiber over o such that ρΣ′(ci) equals (12) for i even and (23) for

i odd. Since Mod(S,D) acts transitively on the collection of standard generating sets, this

will indeed suffice.
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Suppose that for i≤ 10, we have constructed arcs γ1, . . . ,γi that depart at o along tangent

rays in a counterclockwise order, are otherwise disjoint and are such that ρ(c1), . . .ρ(ci) are

as desired, and with the property that the preimage in Σ′ over Δi := S \ {γ1 ∪ · · · ∪ γi}
(a copy of an open disk) is connected. This means that the monodromy over Δi \D is still

the full S3. The reader will then have no trouble finding an arc γi+1 which departs along a

ray in the sector spanned by the rays of departure of γi and γ1 and which stays in {0}∪Δ

and whose associated monodromy is the prescribed transposition. If i ≤ 9, extra care is

needed to ensure that the preimage in Σ′ over Δi+1 := S \{γ1∪· · ·∪γi+1} is still connected.

That this is indeed possible follows from the fact that the preimage over Δi is connected

and has at least three points of simple ramification.

On the other hand, if i= 10, we are done, for then the value of ρ on c0 := c−1
1 · · ·c−1

11 will

be
(
(23)(12)

)5
(23) = (12). This completes the proof.

Fix a degree 3 covering Σ′ → S as above and denote by r = r(Σ′/S) ∈ R(S,D) the

associated element and denote by Γ′ ⊂ Γ its Γ-stabilizer. It follows from Lemma 3.2 that Γ′

is a subgroup Γ of index (310−1)/2. By construction, the isomorphism type of a connected

smooth degree 3 covering of a copy of P1 with reduced discriminant of degree 12 determines

a Γ′-orbit in B◦. So, if M4(g
1
3)

◦ stands for the open subset of M4(g
1
3) that parametrizes

pairs (X,P ) for which P has precisely 12 nonreduced members (in other words, for which

X is nonhyperelliptic and for which X → P has reduced discrimininant), then we find the

following corollary.

Corollary 3.3. The open subset M4(g
1
3)

◦ is naturally isomorphic to the ball quo-

tient B◦
Γ′ .

In order to get all of M4(g
1
3), we must allow the discriminant divisor D to become

nonreduced by letting two of its points coalesce. If we let this happen in the interior of a

closed disk Δ⊂ P which contains no other points of D, then the covering over its boundary

∂Δ is connected (the monodromy is of order 3) or is trivial. In the first case, this confluence

creates a point of total ramification and we still have defined a genus 4 covering of S. In the

last case, the confluence creates an ordinary double point of the covering. This we will

therefore not allow, except for one particular situation that we should not throw out: if the

covering has in addition a section over P \Δ, then the degeneration will be the union of a

smooth double covering X ′ → P (whose discriminant is D∩ (P \Δ)) and a component P̃

which maps isomorphically onto P and meets X ′ transversally over z. So this amounts to

specifying a hyperelliptic curve of genus 4 and a point on that curve; in other words, an

element of H4(g
1
3). This happens, for example, when ρ(c0) = ρ(c1) �= ρ(c3) = · · · = ρ(c11),

and we take for Δ a thin regular neighborhood γ0∪γ1.

We can state this in terms of the Γ-action on R(S,D). The confluence of two points along

an arc δ as above represents a triflection in Γ. It may or may not act trivially on R(S,D).

If the action is nontrivial, then this confluence creates a point of total ramification and

we still have defined a genus 4 covering of S. Otherwise, this creates an ordinary double

point. These three cases translate into saying that the stabilizer Γ′ has three orbits in the

collection of mirrors. Equivalently, the preimage of the confluence divisor D in BΓ under

the natural map

BΓ′ → BΓ
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has three irreducible components Drm,Dsg,DH whose generic points are characterized

topologically by the degree 3 covering acquiring, respectively, (rm) a point of total

ramification, (sg) an ordinary double point whose complement is connected, and (H) an

ordinary double point which disconnects. We can now improve upon Corollary 3.3 as follows.

Theorem 3.4. The above construction gives an identification

M4(g
1
3)

∼= BΓ′ \Dsg,

thus endowing the left-hand side with an (incomplete) complex-hyperbolic metric. This

identifies the preimage of DH with the universal hyperelliptic curve of genus 4.

For a different approach to this theorem (that ultimately yields a more precise statement),

we first need to discuss level 3 structures for the Eisenstein lattice L.

3.4 The approach via a level structure

We begin with the observation that E/θE is an F3-vector space of dimension one on which

τ ∈μ6 acts as minus the identity (because τ+1= τ−1θ ∈ θE). It follows that F3⊗EL=L/θL

is an F3-vector space of rank 10 on which the skew-Hermitian form h′ induces a symplectic

form h′
F3

:= F3⊗h′. The following lemma generalizes an argument of Allcock (appearing in

the proof of Theorem 5.2 of [2]).

Lemma 3.5. The symplectic form h′
F3

is nondegenerate on F3 ⊗E L (so that it is

isomorphic to F10
3 equipped with its standard symplectic form), and Γ acts on F3 ⊗E L

with image its full symplectic group (a copy of Sp10(F3)). The image of a triflection is a

symplectic transvection.

Proof. The basis aδ1 , . . . ,aδ10 of Lmaps to a basis α1, . . . ,α10 of F3⊗EL with the property

that h′
F3
(αi,αj) is ±1 if j = i±1 and is zero otherwise. The triflection defined by aδi becomes

x �→ x+τh′
F3
(x,αi)αi = x−h′

F3
(x,αi)αi, which is indeed a symplectic transvection. Let V be

the free abelian group with basis α̃1, . . . , α̃10 endowed with the symplectic form that assigns

to the pair (α̃i, α̃j) the value ±1 if j = i±1 and is zero otherwise, so that its reduction mod 3

gives h′
F3
. This lattice is well known in singularity theory (it is the one for the Milnor fiber

of a plane curve singularity of type A10, defined by z21+z112 = 0 as given on a standard basis

of vanishing cycles). It was proved by A’Campo [1] that the subgroup of Sp(V ) generated

by these symplectic transvections contains the principal congruence level 2 subgroup. This

implies that it maps onto the full symplectic group of its mod 3 reduction.

The covering group μ6 acts on the 10-dimensional F3-vector space F3 ⊗E L by scalars

and so the nine-dimensional projective space P(F3⊗E L) only depends on the pair (S,D).

We regard L as a primitive subgroup of H1(Σ), so that a one-dimensional subspace

�⊂F3⊗EL defines (by restriction) a surjection H1(Σ)∼=Hom(H1(Σ),Z)→Hom(�,F3) = �∨.

This surjection is μ6-equivariant if we let μ6 act on �∨ via the obvious character μ6 �μ2 =

{±1}. This also yields an unramified �∨-covering Σ� → Σ.

Lemma 3.6. The μ6-action on Σ lifts to Σ�. If Σ
′
� denotes the orbit space of this lift,

then Σ′
� is an oriented surface of genus 4 such that the obvious map Σ′

� → S is orientation

preserving of degree 3 with discriminant D (in other words, defines an element of R(S,D)).

Moreover, this degree 3 cover is independent of the lift of the μ6-action, in the sense that

for any two lifts, the two degree 3 covers of S are isomorphic by a unique isomorphism.
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Proof. We first show that the μ6-action on Σ lifts to Σ�. Recall that if we choose a base

point x ∈ Σ, then Σ� can be obtained as a quotient of the space of paths in Σ that begin

at x : two such paths α,β define the same point of Σ� if and only if α and β have the same

endpoint and the class of the loop β−1α in π1(Σ,x) has zero image in �∨. If we choose the

base point x to be a fixed point of the μ6-action, then μ6 will act on the space of such of

paths. The homomorphism π1(Σ,x)→ �∨ is μ6-equivariant, in particular, the μ6-action on

π1(Σ,x) preserves its kernel. This implies that we have lifted the μ6-action on Σ to Σ�.

This lift is not canonical, but two such lifts differ by an �∨-covering transformation.

Hence, the isomorphism type of the μ6-orbit space Σ′
� of Σ�, now viewed as a degree 3

cover of S, is independent of the lift. Note that Σ′
� is a connected oriented surface, not

ramified over S \D. To see what happens over z ∈ D, we observe that the fiber Σ�(z) of

Σ� → S over z has the structure of an affine line over �∨ on which μ6 also acts and in such

a manner that the induced action on �∨ is minus the identity. This means that μ6 acts as

transposition on Σ�(z): it fixes a point and exchanges the remaining two. It follows that

Σ′
� → S has no ramification at the image of the fixed point of the lifted μ6-action, whereas

the common image of the remaining pair is a point of simple ramification. It follows that

D is the discriminant of Σ′
� → S and that Σ′

� has genus 4. This also shows that Σ′
� has no

covering transformations. So Σ′
� is unique up to unique isomorphism.

Theorem 3.7. The map which assigns to [�] ∈ P(F3⊗E L) the cover Σ′
� → S defines a

Mod(S,D)-equivariant bijection

[�] ∈ P(F3⊗E L) �→ r(Σ′
�/S) ∈R(S,D).

In particular, R(S,D) thus acquires the structure of the projective space of a 10-dimensional

symplectic space over F3 on which Γ acts through a copy of Sp10(F3)/{±1}.
Proof. The Mod(S,D)-equivariance of this assignment is clear from the construction.

The theorem then follows from the fact that the two sets have the same cardinality and

that Mod(S,D) acts transitively on the target. The rest follows from Lemma 3.5.

3.5 The confluence divisors

Theorem 3.7 also explains why the preimage of D ⊂ BΓ in BΓ′ has three irreducible

components, namely the confluence divisors DH, Drm, and Dsg. Let us first observe that

a mirror is given by the E-span of (−3)-vector of L and that the mod θ-reduction of the

latter determines a line in F3⊗E L and hence a point in P(F3⊗E L).

Proposition 3.8. Let � be a line in F3⊗E L. Then the three orbits of Γ� in P(F3⊗E L)

are [�], P(�⊥) \ {[�]}, and P(F3 ⊗E L) \ P(�⊥) and represent, respectively, the irreducible

components DH, Dsg, and Drm of the preimage of the confluence divisor D of BΓ in BΓ�
.

Proof. By Lemma 3.2, we can choose a standard set of arcs {γi}i∈Z/12 connecting the

base point o with the points of D such that the associated collection {ci ∈ π1(S \D,o)}i∈Z/12

is a standard set of generators of π1(S \D,o) (as in the proof of Lemma 3.2) for which the

covering Σ′ →S has the property that ρ(c0) = ρ(c1) �= ρ(c2) = · · ·= ρ(c11) (so this is different

than in the proof of Lemma 3.2). The juxtaposition of γi+1 and the inverse of γi is isotopic

to an arc δi as in §2, and, as explained there, determines a (−3)-vector aδi ∈ L up to a

μ6-multiple and hence a line �i in F3⊗E L.

Let � be the line in F3⊗E L for which Σ′ ∼=Σ′
�. We claim that �= �0. Indeed, the covering

Σ′
� → S is disconnected over S \δ0. It is then not hard to see that Σ� →Σ must be a trivial
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�∨-covering over the preimage of δ0. This implies that � has its support over δ0, so that

�= �0.

It remains to observe that for i = 0,1,2, the mirror BTγi parametrizes the points where

the covering Σ′
� → P , acquires, after shrinking δi, respectively, a separating double point, a

point of ramification of order 2, and a nonseparating double point. So �0, �1, �2 represent,

respectively, DH, Drm, and Dsg. We note that �2 is perpendicular to �0, but �1 is not.

3.6 The strict transform of the Theta-null locus

The goal of this section is to show that the strict transform M4(g
1
3)

Θ of MΘ
4 in M4(g

1
3)

is also locally a ball quotient in BΓ′ . This was actually established in the paper with

Heckman [4], and the goal of this section is to show how. The generic point of that

locus parametrizes the canonical genus 4 curves X that lie on a quadric cone Q0 in a

three-dimensional complex projective space and are transversally cut out on Q0 by a cubic

hypersurface (so not containing the vertex). The base of the cone Q0 (in other words, the

set of rays in Q0, lines on Q0 that pass through its vertex) is a conic. We denote it by P,

because the projection X → P gives us the unique g13 on X. We assume for now that the

discriminant divisor D of this projection is reduced.

The vertex of Q0 is the unique singular point of Q0 and is resolved by a single blowup:

Q̂0 → Q0. Its exceptional set, which we can identify with P, has self-intersection −2.

It defines a section of the evident morphism Q̂0 →P whose fibers are the rays of Q0. In other

words, Q̂0 is a Hirzebruch surface whose exceptional section is P. Its Picard group is freely

generated by P and the class f of fiber. The curve X on Q̂0 has class 3(P +2f) and hence

the class of X+P is 3(P +2f)+P =4P +6f . Since this is 2-divisible, it determines a double

covering EX → Q̂0 with ramification divisor X+P (1). The composite with the projection

Q̂0 →P defines an elliptic fibration for which the preimage of P ⊂ Q̂0 in EX defines the zero

section (with self-intersection number −1). The covering transformation of the double cover

EX → Q̂0 is the fiberwise natural involution with respect to the zero section. Note that D

now also appears as the discriminant of the fibration EX →P . Indeed, all fibers are smooth,

except those over D : over each point of D, we find a nodal curve (a Kodaira fiber of type

I1) whose double point lies over the singular point of the projection X → P .

By taking the j -invariant of the fibers, we obtain a morphism

j : P → PSL2(Z)\H∗ =
(
PSL2(Z)\H

)
∪{∞}=M1,1,

where H∗ :=H∪P1(Q) is endowed with the horocyclic topology. This morphism has degree

12 and D= j∗(∞). In [4], it was observed that the D that thus appear can be characterized

in BΓ as hyperball quotient as follows. The abelianization of PSL2(Z) is naturally isomorphic

with μ6 and hence defines a ramified μ6-cover PSL2(Z)
′\H→ PSL2(Z)\H. This morphism

extends across the cusp ∞ with total ramification, so that we get a μ6-cover

M′
1,1 := PSL2(Z)

′\H∗ → PSL2(Z)\H∗ =M1,1.

The left-hand side can be identified with the (Eisenstein) elliptic curve C/E whose origin

is the unique point over ∞ and on which μ6 acts in the standard manner. The differential

1 Kondō [5] considers instead the μ3-cover of Q̂0 ramified along X, which produces a K3-surface with
μ3-action.
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on C/E defined by dz transforms under the μ6-action via the character χ−1 and hence dz

transforms with the character χ. So H1(M′
1,1;C)χ is of Hodge type (0,1).

The μ6-cover C → P with discriminant D is then the pullback of the above μ6-cover

under the j -morphism:

C
j′−−−−→ M′

1,1

μ6

⏐⏐
 μ6

⏐⏐

P

j−−−−→ M1,1

Since j is of degree 12, so is j′.

Proposition 3.9. The map j′∗ embeds H1(M′
1,1) in H1(C)◦ as a primitive rank one

E-submodule that is generated by a vector ε with h(ε,ε) =−6.

Proof. This is proved in [4], but let us give here a simpler argument. First, note that

since H1(M′
1,1) = H1(M′

1,1)
◦, j′∗ takes values in H1(C)◦. If a ∈ H1(M′

1,1) is primitive,

then a · τa= 1 and hence if we put ε := j′∗a, then

h(ε,ε) =−1
2(ε,τε) =−1

2 .12(a · τa) =−6,

where we used that j′ is of degree 12. This also implies that ε is primitive: if it is divisible

by λ ∈ E : ε= λε′ with ε′ ∈H1(C)◦, then λλh(ε′, ε′) =−6. But λλ is a positive integer that

cannot take the value 2 and h(ε′, ε′) ∈ Eθ∩Q= 3Z. This implies that λλ= 1, meaning that

λ is a unit.

Assertions A4 and A6 of [4] state that any (−6)-vector in L can be written as the

sum of two (−3)-vectors with inner product θ and that the (−6)-vectors make up a single

Γ-orbit. In particular, the hyperballs in B defined by such vectors define an irreducible

totally geodesic divisor DΘ in BΓ. We can therefore complete Theorem 3.4 as follows (see

also [4, Th. 8.2]).

Theorem 3.10. The isomorphism in Theorem 3.4 takes the Theta-null locus M4(g
1
3)

Θ

onto DΘ \Dsg. In particular, M4(g
1
3)

Θ is a totally geodesic hypersurface in M4(g
1
3).

Remark 3.11. One would expect a stronger assertion, namely that the involution of

M4(g
1
3) that assigns to (X,P ) the residual pair (X,P ′) lifts to a reflection in Γ in a (−6)-

vector ε, in other words, is given by x ∈ L �→ x+ 1
3h(x,ε)ε. But such a reflection will not

preserve L, as we must then have h(x,ε) ∈ 3E . Indeed, since the (−6)-vectors lie in a single

Aut(L)-orbit, it suffices to check this for one such vector, say ε := aδ0+aδ1 . But h(ε,aδ2) = θ,

which in E is not divisible by 3. It is surprising (and still a bit mystifying to us) that BΓ′ \Dsg

comes with an involution whose fixed point set is DΘ \Dsg, but that is not obtained from

an index two subgroup of Γ′.
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