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General Introduction

Turbulence is often defined as the chaotic state of a fluid. The example that imme-
diately comes to mind is that of water: turbulence in water takes the form of eddies
whose size, location, and orientation are constantly changing. Such a flow is char-
acterized by a very disordered behavior difficult to predict and by the existence
of multiple spatial and temporal scales. There are many experiments of everyday
life where the presence of turbulence can be verified: the agitated motions of a
river downstream of an obstacle, those of smoke escaping from a chimney, or the
turbulence zones that one sometimes crosses in an airplane.

Experiencing turbulence at our scale seems easy since it is not necessary to use
powerful microscopes or telescopes. A detailed analytical understanding of tur-
bulence remains, however, limited because of the intrinsic difficulty of nonlinear
physics. As a result, we often read that turbulence is one of the last great unre-
solved problems of classical physics. This long-held message, found, for example,
in Feynman et al. (1964), no longer corresponds to the modern vision. Indeed, even
if turbulence remains a very active research topic, we have to date many theoreti-
cal, numerical, experimental, and observational results that allow us to understand
in detail a part of the physics of turbulence.

This book deals mainly with wave turbulence. However, wave turbulence is not
totally disconnected from eddy turbulence, from which the main concepts have
been borrowed (e.g. inertial range, cascade, two-point correlation function, spec-
tral approach). Moreover, very often, wave turbulence and eddy turbulence can
coexist as in rotating hydrodynamics. This is why a broad introduction to eddy tur-
bulence is given (Part I) before moving on to wave turbulence (Part II), giving this
book, for the first time, a unified view on turbulence. We will see that many results
have been obtained since the first steps taken by Richardson (1922), a century ago.
The many examples discussed in this book reveal that the classical presentation of
turbulence, based on the Navier–Stokes equations (Frisch, 1995; Pope, 2000), is
somewhat too simplistic because turbulence is found in various environments, in
various forms. If we restrict ourselves to the standard example of incompressible
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2 1 General Introduction

hydrodynamics, the simple introduction of a uniform rotation for describing geo-
physical fluids drastically changes the physics of turbulence by adding anisotropy.
In astrophysics, 99 percent of the visible matter of the Universe is in the form of
plasma, which is generally very turbulent, but plasma turbulence mixes waves and
eddies. The regime of wave turbulence, described in Part II, can emerge from a
vibrating steel plate; here, we are far from the classical image of eddies in water.
Finally, recent studies reveal that the cosmological inflation that followed the Big
Bang could have its origin in strong gravitational wave turbulence.

The objective of Part I, which follows this first chapter, is to present the funda-
mentals of turbulence. We will start with eddy turbulence, where the first concepts
and laws have emerged. We will limit ourselves to the most important physical
laws. The theoretical framework will be that of a statistically homogeneous turbu-
lence for which a universal behavior is expected. The problems of inhomogeneity
inherent to laboratory experiments will therefore not be dealt with. Through the
examples discussed, we will gradually reveal the state of knowledge in turbulence.
To help us in this task, we begin with a brief historical presentation.

1.1 Brief History

1.1.1 First Cognitive Advances

Leonardo da Vinci was probably the first to introduce the word turbulence (tur-
bulenza) at the beginning of the sixteenth century to describe the tumultuous
movements of water. However, the word was not commonly used by scientists
until much later.1

The first notable scientific breakthrough in the field of turbulence can be
attributed to Reynolds (1883): he showed experimentally that the transition
between the laminar and turbulent regimes was linked to a dimensionless num-
ber – the Reynolds number.2 The experiment, which can be easily reproduced in
a laboratory, consists of introducing a colored stream of the same liquid as cir-
culating in a straight transparent tube (see Figure 1.1). It can be shown that the
transition to turbulence occurs when the Reynolds number becomes greater than
a critical value. An important step in this discovery is the observation that the ten-
dency to form eddies increases with the temperature of the water, and Reynolds
knew that in this case the viscosity decreases. He also showed the important role
played by the development of instabilities in this transition to turbulence.

World War I was a time of further important advances. The war efforts in
Germany and, in particular, under the influence of Prandt in Göttingen, directed

1 For example, the book of Boussinesq (1897) still bears the evocative title: “Theory of the Swirling and
Tumultuous Flow of Liquids in Straight Beds with a Large Section.”

2 The Reynolds number measures the ratio between the inertial force and the viscous force. We will come back
to this definition in Section 1.3.
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1.1 Brief History 3

Figure 1.1 Historical experiment of Reynolds (1883) (top) and his observations (bottom).
The original device is kept at the University of Manchester.

the research in the field of aerodynamics to the study of the fall of bombs in
air or water. It is a question here of studying, for example, the drag of a sphere;
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4 1 General Introduction

this work was then used for the design of airplanes. After the war, research in
turbulence increased: for example, we can mention the results on the inhomoge-
neous effects due to walls in wind tunnel experiments (Burgers, 1925). But it is
with Richardson (1922) that a second major breakthrough in turbulence arrives:
in his book on weather predictions and numerical calculation.3 Richardson intro-
duced the fundamental concept of energy cascade. Inspired by the Irish writer J.
Swift, Richardson wrote “Big whirls have little whirls that feed on their velocity.
Little whirls have lesser whirls and so on to viscosity – in the molecular sense”
(page 66). We find here the idea of a cascade of eddies from large to small spatial
scales.

It is probably with this idea in mind that Richardson (1926) formulated the
empirical 4/3 law4 to describe the turbulent diffusion process. This law differs
from the one proposed by Einstein in 1905 on the diffusion of small particles
in a liquid (Brownian motion), which was in clear disagreement with turbulence
experiments where a much higher diffusion was found.5 The proposed new law
is characterized by a nonconstant diffusion coefficient D`, which depends on the
scale being considered, such that:

D` ∼ `
4/3 . (1.1)

This relationship reflects the fact that in a turbulent liquid the diffusivity increases
with the mean separation between pairs of particles. This scaling law is fundamen-
tal because we find there the premises of the exact four-fifths law of Kolmogorov
(1941a), with which it is in agreement dimensionally.

It was during this interwar period that the first works based on two-point
correlations emerged (Taylor, 1935),6 as well as works on the spectral anal-
ysis of fluctuations by Fourier transform, which have become the basis of
modern research in turbulence (Motzfeld, 1938; Taylor, 1938). The correlation
approach leads, in particular, to the Kármán–Howarth equation (von Kármán and
Howarth,1938) for an incompressible, statistically homogeneous, and isotropic7

hydrodynamic turbulence. This equation describes the fluid dynamics through
correlators – two-point measurements in physical space. As we will see in Chap-
ter 2, this result is central for the establishment of the exact four-fifths law of
Kolmogorov (1941a), which is not a dynamic equation but a statistical solution of
Navier–Stokes equations.

3 “Numerical calculation” here means calculation carried out by hand with a method essentially based on finite
differences.

4 This empirical law should not be confused with the exact four-thirds law which deals with structure functions
(see Chapter 2).

5 It is known that a cloud of milk dilutes more rapidly in tea if stirred with a spoon.
6 It is the British Francis Galton (1822–1911) who seems to have been the first to correctly introduce the

concept of correlation for statistical studies in biology.
7 This is the strong isotropy that is considered here, which we will return to in Section 1.4.

https://doi.org/10.1017/9781009275880.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009275880.002


1.1 Brief History 5

1.1.2 Kolmogorov’s Law and Intermittency

In the 1930s and under the leadership of the mathematician Kolmogorov, the
Soviet school became very active in turbulence. At that time, Kolmogorov was
working on stochastic processes and random functions. It was therefore natural
that he turned his attention to turbulence, where a pool of data was available.
Based on some of the work described in the Section 1.1.1, Kolmogorov and his
student Obukhov set out to develop a theory for the standard case of incompressi-
ble, statistically homogeneous, and isotropic hydrodynamic turbulence. Based, in
particular, on the Kármán–Howarth equation, Kolmogorov (1941a,b) established
the first exact statistical law of turbulence – known as the four-fifths law – which
relates a third-order structure function involving the difference of the component
in direction ` of the velocity between two points separated by the vector `, the
distance `, and the mean rate of dissipation of kinetic energy ε (〈〉 means the
ensemble average):8

−
4

5
ε` = 〈[u`(x+ `)− u`(x)]3

〉. (1.2)

To establish this universal law, Kolmogorov assumes that fully developed turbu-
lence becomes isotropic on a sufficiently small scale, regardless of the nature of
the mean flow. He also assumes that ε becomes independent of viscosity within
the limits of large Reynolds numbers (i.e. low viscosity); this is what is often
referred to today as the zeroth law of turbulence. After several years of research, a
first exact law was established for which it was possible to get rid of the nonlinear
closure problem. The trick used to achieve this was to relate the cubic nonlin-
ear term to the mean energy dissipation in the inertial range, that is, in a limited
range of scales between the larger scales where inhomogeneous effects can be felt,
and the smaller scales where viscosity efficiently damps the fluctuations. We will
return at length to the law (1.2) in Chapter 2. Kolmogorov’s law remained unno-
ticed for several years (outside the USSR). It was Batchelor (1946) who was the
first to discover the existence of Kolmogorov’s articles:9 he immediately realized
the importance of this work, which he shared with the scientific community at
the Sixth International Congress of Applied Mathematics held in Paris in 1946
(Davidson et al., 2011).

For his part, independently of Kolmogorov but inspired by the ideas of Richard-
son (1922), Taylor (1938), and the work by Millionschikov (1939, 1941), who was
another student of Kolmogorov, Obukhov (1941b) proposed a nonexact spectral
theory of turbulence based on the relationship:

8 Kolmogorov was probably the first to be interested in structure functions that are constructed from the differ-
ences and not from the products of a field (here the velocity field), as was the case with the Kármán–Howarth
equation.

9 The English version of the Russian papers had been received in the library of the Cambridge Philosophical
Society.
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6 1 General Introduction

∂E

∂t
+ D = T , (1.3)

with E the energy spectrum, D the viscous dissipation, and T the energy transfer
(in Fourier space). The artificial closure proposed is based on an average over
small scales. He obtained as a solution the energy spectrum:10

E(k) ∼ k−5/3 , (1.4)

which is dimensionally compatible with Kolmogorov’s exact law. In extend-
ing this study, Obukhov was then able to provide a theoretical justification for
Richardson’s (1926) empirical 4/3 law of diffusion. Later, Yaglom (1949) obtained
a new exact law, applied this time to the passive scalar: this model describes how
a scalar evolves, for example the temperature or the concentration of a product, in
a turbulent fluid for which the velocity fluctuations are given.

For a short period of time Kolmogorov thought that the mean rate of energy
dissipation was the key to establishing a more general exact law describing the sta-
tistics at any order in terms of a velocity structure function. This general law would
have provided a complete statistical solution to the problem of hydrodynamic tur-
bulence. But in 1944, Landau11 pointed out the weakness of the demonstration
(proposed by Kolmogorov during a seminar), which we will come back to in
Chapter 2: it does not take into account the possible local fluctuations of ε, a
property called intermittency. It took about 20 years for Kolmogorov (1962) and
Oboukhov (1962) to propose, in response to Landau, a model (and not an exact
law) of intermittency based on a log-normal statistics which incorporates the exact
four-fifths law as a special case. Kolmogorov’s answer was given (in French) at a
conference held in Marseilles in 1961 to celebrate the opening of the Institut de
Mécanique Statistique de la Turbulence. This conference became famous because
it brought together for the first time all the major specialists (American, European,
and Soviet) on the subject. It was also during this conference that the first energy
spectrum in k−5/3 measured at sea was announced (Grant et al., 1962).

Basically, the notion of intermittency is related to the concentration of dissi-
pation in localized structures of vorticity. As mentioned by Kolmogorov, inter-
mittency may slightly modify the −5/3 exponent of the energy spectrum, but its
most important contribution is expected for statistical quantities of higher orders
(the exact law is of course not affected). This new formulation is at the origin of
work, in particular, on the concept of fractal dimension as a model of intermittency
(Mandelbrot, 1974; Frisch et al., 1978) – see Chapter 2. It is interesting to note
that we already find the concept of fractional dimension in Richardson’s (1922)
book, where the study of geographical boundaries is discussed.

10 In general, this solution is called the Kolmogorov spectrum, but it would be more accurate to call it the
Kolmogorov–Obukhov spectrum. This spectrum was also obtained independently by other researchers, such
as Onsager (1945) and Heisenberg (1948).

11 Landau’s remark (Landau and Lifshitz, 1987) can be found in the original 1944 book (Davidson et al., 2011).
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1.1 Brief History 7

1.1.3 Spectral Theory and Closure

In this postwar period, the theoretical foundations of turbulence began to be estab-
lished. The first book exclusively dedicated to this subject is that of Batchelor
(1953), which still remains a standard reference on the subject: it deals with sta-
tistically homogeneous turbulence. From the 1950s, a major objective seemed to
be within the reach of theorists: developing a theory for homogeneous and iso-
tropic turbulence in order to rigorously obtain the energy spectrum. The work
of Millionschikov (1941) (see also Chandrasekhar, 1955) based on the quasi-
normal approximation (QN) had opened the way: this approximation – a closure –
assumes that moments of order four and two are related as in the case of a normal
(Gaussian) law without making this approximation for moments of order three
(which would then be zero, making the problem trivial). Kraichnan (1957) was
the first to point out that this closure was inconsistent because it violated some
statistical inequalities (realizability conditions), and Ogura (1963) demonstrated
numerically that this closure could lead to a negative energy spectrum for some
wavenumbers.

In this quest, Kraichnan (1958, 1959) proposed a sophisticated theory which
does not have the defects we have just mentioned: it is the direct interac-
tion approximation (DIA), which is based on field theory methods, a domain
in which Kraichnan was originally trained.12 The fundamental idea of this
approach is that a fluid perturbed over a wavenumber interval will have its
perturbation spread over a large number of modes. Within the limit L→+∞,
with L being the side of the cube in which the fluid is confined, this inter-
val becomes infinite in size, which suggests that the mode coupling becomes
infinitely weak. The response to the perturbation can then be treated in a sys-
tematic way. Under certain assumptions, two integro-differential equations are
obtained for the correlation functions in two points of space and two of time,
and the response function. The inferred prediction for the energy spectrum, in
k−3/2, is, however, not in dimensional agreement with Kolmogorov’s theory, nor
with the main spectral measurements. Improvements were then made (Lagrangian
approach) to solve some problems (noninvariance by random Galilean transfor-
mation, Kolmogorov spectrum) (Kraichnan, 1966): this new theory can be seen
as the most sophisticated closure model.13 This work has led, in particular, to
the development of the EDQNM (eddy-damped quasi-normal Markovian) clo-
sure model (Orszag, 1970), still widely used today, to which we will return in
Chapter 3.

12 Kraichnan became interested in turbulence in the early 1950s while he was Einstein’s postdoctoral fellow.
Together, they searched for nonlinear solutions to the unified field equations.

13 In (strong) eddy turbulence, no exact spectral theory with an analytical closure has been found to date.
This contrasts with the (weak) wave turbulence regime, for which an asymptotic closure is possible (see
Chapter 4).
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8 1 General Introduction

1.1.4 Inverse Cascade

Two-dimensional hydrodynamic (eddy) turbulence is the first example where an
inverse cascade was suspected. The motivation for the study of such a system may
seem on the face of it surprising, but several works showed that a two-dimensional
approach could account for the atmospheric dynamics quite satisfactorily (Rossby
and collaborators, 1939). We now know that the rotation, or stratification, of the
Earth’s atmosphere tends to confine its nonlinear dynamics to horizontal planes.14

The first work on two-dimensional hydrodynamic turbulence dates back to the
1950s with, for example, Lee (1951), who demonstrated that a direct energy
cascade would violate the conservation of enstrophy (proportional to vorticity
squared), which is the second inviscid invariant (i.e. at zero viscosity) of the
equations. Batchelor (1953) had also noted at the end of his book that the exist-
ence of this second invariant should contribute to the emergence, by aggregation,
of larger and larger eddies. He concluded by asserting the very great differ-
ence between two- and three-dimensional turbulence. By using the two inviscid
invariants, energy and enstrophy, Fjørtoft (1953) was able on his part to demon-
strate, in particular with dimensional arguments, that the energy should cascade
preferentially towards large scales.

It is in this context, clearly in favor of an inverse energy cascade, that Kraichnan
became interested in two-dimensional turbulence. Using an analytical devel-
opment of Navier–Stokes equations in Fourier space, the use of symmetries,
and under certain hypotheses such as the scale invariance of triple moments,
Kraichnan (1967) rigorously demonstrated the existence of a dual cascade – that
is, in two different directions – of energy and enstrophy (see Chapter 3). This
prediction is in agreement with previous analyses and the existence of a direct
cascade of enstrophy and an inverse cascade of energy for which the proposed
(nonexact) spectrum is in k−5/3.

The existence in the same system of two different cascades was quite new in
eddy turbulence. This prediction has since been accurately verified both experi-
mentally and numerically (Leith, 1968; Pouquet et al., 1975; Paret and Tabeling,
1997; Chertkov et al., 2007). The second-best-known system where an inverse
cascade exists is that of magnetohydrodynamics (MHD): using some arguments
from Kraichnan (1967), Frisch et al. (1975) deduced in the three-dimensional case
the possible existence of an inverse cascade of magnetic helicity, a quantity which
plays a major role in the dynamo process in astrophysics (Galtier, 2016). To date,
we know several examples of turbulent systems producing an inverse cascade (see,
e.g., the review of Pouquet et al., 2019).

14 Chapter 6 is devoted to inertial wave turbulence (i.e. incompressible hydrodynamic turbulence under a uni-
form and rapid rotation), for which it can be rigorously demonstrated that the cascade is essentially reduced
to the direction transverse to the axis of rotation. However, it can be shown in this case that the energy cascade
is direct.
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1.1 Brief History 9

Kraichnan’s (1967) discovery was made at a period when the theory of wave
turbulence, the regime that is the main subject of this book, was beginning to
produce important results. The brief history presented in Chapter 4 allows us to
appreciate the evolution of ideas on this subject, which finds a large part of its
foundations in eddy turbulence (spectral approach, inertial range, cascade, clo-
sure problem). In this context, a problem that attracted a lot of attention was that
of gravity wave turbulence (which is an example of surface waves). This prob-
lem deals with four-wave resonant interactions: in this case, there are two inviscid
invariants, energy and wave action. The first is characterized by a direct cascade
and the second by an inverse cascade. The study carried out15 by Zakharov and
Filonenko (1966) (see also Zakharov and Filonenko, 1967) focused only on the
energy spectrum. The authors obtained the exact solution as a power law asso-
ciated with energy, but curiously they did not focus on the second solution and
therefore did not immediately realize that it corresponded to a new type of cas-
cade. Starting from a similar study (involving four-wave resonant interactions)
on Langmuir wave turbulence by Zakharov (1967), in which the energy spectrum
had also been obtained, Kaner and Yakovenko (1970) found the second exact solu-
tion corresponding to an inverse cascade of wave action. It is thus in the field of
plasmas that the existence of a dual cascade was finally demonstrated in wave
turbulence.16

A major difference between the two turbulence regimes is that, unlike (strong)
eddy turbulence, (weak) wave turbulence theory is analytical (see Chapter 4). In
this case, one can develop a uniform asymptotic theory and obtain the dynamic
equations of the system and then, if they exist, its exact spectral solutions. It is
then possible to provide analytical proof of the type of cascade (direct or inverse).
It is also possible to prove the local character of turbulence (by a study of the
convergence of integrals) and thus be in agreement with one of Kolmogorov’s
fundamental hypotheses. For this reason, exact nontrivial solutions of wave tur-
bulence are called Kolmogorov–Zakharov spectra. There are several examples in
wave turbulence where there is an inverse cascade of wave action; in Chapter 9 we
present the case of gravitational wave turbulence (Galtier and Nazarenko, 2017).
It is less common to obtain an inverse cascade in the case of three-wave resonant
interactions. An example is given by rotating magnetohydrodynamic turbulence:
the energy cascades directly and the hybrid helicity (a modified magnetic helicity)
cascades inversely (Galtier, 2014).

To conclude this section, let us note that Robert Kraichnan and Vladimir
Zakharov received the Dirac medal in 2003 for their contributions to the the-
ory of turbulence, particularly the exact results and the predictions of inverse

15 Many other studies have been devoted to gravity wave turbulence. Chapter 4 discusses some of them.
16 The second exact solution corresponding to an inverse cascade of wave action for gravity waves was published

by Zaslavskii and Zakharov (1982).
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10 1 General Introduction

cascade, and for identifying classes of turbulence problems for which in-depth
understanding has been achieved.

1.1.5 Emergence of Direct Numerical Simulation

From the 1970s, a new method for analyzing turbulence emerged: direct numer-
ical simulation (Patterson and Orszag, 1971; Fox and Lilly, 1972). By direct, we
mean the simulation of the fluid equations themselves and not a model of these
equations. We have already cited as a model the EDQNM approximation used in
hydrodynamics (Orszag, 1970); there is also the case of magnetohydrodynamics
with the study of the inverse cascade of magnetic helicity (Pouquet et al., 1976).
There are other models such as nonlinear diffusion models (Leith, 1967) or shell
models (Biferale, 2003) – which we will briefly discuss in Chapter 3.

Since its beginnings, direct numerical simulation has made steady progress. It
currently represents a means of studying turbulence in great detail; it is also an
indispensable complement to experimental studies. It is impossible to summarize
in a few lines the numerous results obtained in the field of numerical simulation.
Let us simply point out that the regular increase in spatial resolution makes it pos-
sible to increase the Reynolds number and to describe increasingly fine structures
(see Figure 1.2). It is interesting to compare the current situation with the first
direct numerical simulations of incompressible three-dimensional hydrodynamic
turbulence. For example, Orszag and Patterson (1972) used a spatial resolution of
643 and, as explained by the authors, each time step then required a computation
time of 30 seconds! It is also interesting to note that the diffusion of knowledge
takes some time: for example, the first direct numerical simulation of incompress-
ible three-dimensional magnetohydrodynamic turbulence was realized by Pouquet
and Patterson (1978) with a spatial resolution of 323. Nowadays, a standard direct
numerical simulation of turbulence is generally performed with a pseudospectral
code, in a periodic box and with a spatial resolution of about 20483 – the high-
est to date being 16 3843 (Iyer et al., 2019). For more information on the subject,
the reader can consult the review article of Alexakis and Biferale (2018), where
numerous examples of direct numerical simulation are presented in the context of
various turbulence studies.

1.1.6 Turbulence Today

In the history of sciences on turbulence, the early 1970s were a turning point.
Very schematically, we can consider that the theory of turbulence was built
during the years 1922–1972, a period during which the main concepts were intro-
duced, allowing the first exact results to be obtained.17 The books of Monin and

17 The year 1922 can be used as a reference since it is this year that Richardson introduced the fundamental
concept of energy cascade.
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1.1 Brief History 11

Figure 1.2 Two-dimensional direct numerical simulation of incompressible magneto-
hydrodynamic turbulence (see Chapter 7). The image, with a spatial resolution of
2048× 2048, shows the norm of the out-of-plane component of the electric current. The
white regions correspond to the sites of energy dissipation.

Yaglom (1971, 1975) summarize the situation well. After this period, which can
be described as exploration, the years 1972–2022 are rather a period of exploita-
tion during which the results of incompressible hydrodynamics were generalized
to other systems, often much more complex. However, it would be simplistic to
limit this second period to a simple exploitation, because new concepts have also
emerged and our knowledge has been considerably refined thanks, in particular,
to numerous experiments and direct numerical simulations.

Today, the physics of turbulence appears in many fields (physics, geophysics,
astrophysics, cosmology, aeronautics, biology) and it is impossible to draw up
an exhaustive list of its applications. Given the difficulty of the subject, the use of
simple – even simplistic – models of turbulence is quite common. The best-known
result is probably the Kolmogorov energy spectrum. While there is no reason to
think that this form of spectrum appears in other turbulence problems, it is often
mentioned or even used. On the other hand, the exact laws based on two-point

https://doi.org/10.1017/9781009275880.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009275880.002


12 1 General Introduction

measurements in physical space are less known, as well as the regime of wave
turbulence.

Part I of this book is a short introduction to eddy turbulence, where histori-
cally the main concepts and results of turbulence have been developed. This part
is therefore very important to appreciate Part II, the second and main part of the
book, devoted to wave turbulence. In Chapter 2, special attention will be given
to anomalous dissipation and the zeroth law of turbulence, which are fundamen-
tal for both eddy and wave turbulence. It is then used to derive a modern form
of the Kolmogorov exact law. We note in passing that the exact laws of turbu-
lence are also valid for wave turbulence: for example, the Kolmogorov exact law
(without the assumption of statistical isotropy) is also valid for inertial wave tur-
bulence (see Chapter 6). In Chapter 2 we also introduce the Kolmogorov eddy
phenomenology (which we will compare to the wave turbulence phenomenology
in the second part) and intermittency models. The treatment of turbulence in Fou-
rier space will be presented in Chapter 3. In particular, the discussion of statistical
closures developed in the 1960s is relevant to the comparison with the wave turbu-
lence closure presented in Chapter 4. The case of two-dimensional turbulence will
also be discussed in great detail; we will show that the Zakharov transformation,
used so far only for wave turbulence, can also be a powerful tool in this case.

Part II of the book is devoted to wave turbulence: after a general introduction
to the subject and a nonexhaustive list of applications of this regime (Chapter
4), various examples will be treated in Chapters 5 to 9. Capillary wave turbu-
lence is probably the simplest example to present the theory of wave turbulence.
Therefore, in Chapter 5, we present this theory in great detail. This is an essential
technical chapter to master the asymptotic development.

This book is an introduction to the physics of wave turbulence. The bias is to
present fundamental results limited to the case of statistically homogeneous tur-
bulence. Therefore, the problems of inhomogeneity that we encounter, especially
in laboratory experiments, will not be discussed. Nevertheless, the results of lab-
oratory experiments will be regularly presented, as well as those obtained from
observations or numerical simulations.

1.2 Chaos and Unpredictability

Defining turbulence precisely requires the introduction of a number of notions
that we will define in part in this chapter. Without going into detail, we can notice
that the disordered – or chaotic – aspect seems to be the primary characteristic of
turbulent flows. The chaotic nature of a system is of course related to nonlineari-
ties. It is often said that a system is chaotic when two points initially very close to
each other in phase space separate exponentially over time. This definition can be
extended to the case of fluids.
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1.2 Chaos and Unpredictability 13

The origin of the media success of chaos theory goes back to the early 1960s. It
is indeed at this period that the meteorologist Lorenz from the Massachusetts Insti-
tute of Technology (MIT) decided to use his computer (a Royal McBee LGP-300,
without screen, capable of performing 60 operations per second) to numerically
integrate a system of nonlinear differential equations – the Lorenz system – which
is a simplified version of the fluid equations of thermal convection and whose form
is:

dX

dt
= σ (Y − X ) , (1.5a)

dY

dt
= ρX − Y − XZ , (1.5b)

dZ

dt
= XY − βZ , (1.5c)

Figure 1.3 Numerical simulation of the Lorenz system (1.5) with σ = 10, ρ = 28 and
β = 8/3. The three variables X (t), Y (t), and Z(t) show a randomness, or unpredictability,
in terms of variations or sign changes.
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14 1 General Introduction

where σ , ρ, and β are real parameters. In Figure 1.3 we show the evolution over
time of the three variables X (t), Y (t), and Z(t).

By pure chance, Lorenz (1963) observed that two initial conditions very close
to each other diverge quite rapidly.18 Since linear functions imply results propor-
tional to the initial uncertainties, the observed divergence could only be explained
by the presence of nonlinear terms in the model equations. Lorenz then under-
stood that even if some nonlinear phenomena are governed by rigorous and
perfectly deterministic laws, precise predictions are impossible because of the
sensitivity to initial conditions, which is, as we know, a major problem in mete-
orology. To make this result clear, Lorenz used an image that contributed to the
media success of chaos theory: the famous butterfly effect. He explained that the
laws of meteorology are so sensitive to initial conditions that the simple flap-
ping of a butterfly’s wings in Brazil can trigger a tornado in Texas. Lorenz had
thus just demonstrated that the future is unpredictable. But what is unpredicta-
ble is not necessarily chaotic (i.e. disordered), as demonstrated, for example, by
the existence of strange attractors (Hénon, 1976): we then speak of determin-
istic chaos. In phase space, this translates into trajectories irresistibly attracted
by complex geometric figures. These systems wander randomly around these
figures, without passing twice through the same point. In Figure 1.4, we show
Lorenz’s strange attractor: it appears when we plot the function f (X , Y , Z) over
time.

Turbulent flows are also unpredictable. Two initial conditions that are very close
to each other diverge quite rapidly over time. Although the equations – such as
those of Navier–Stokes – governing fluid motion are deterministic, it is not pos-
sible to predict exactly the state of the turbulent fluid at some distant future time.
However, a distinction exists between turbulence and chaos: the word chaos is
nowadays mainly used in mechanics to describe a deterministic dynamic system
with a small number of degrees of freedom. In turbulence, flows have a very large
number of degrees of freedom, which results, for example, in the nonlinear exci-
tation of a wide range of spatial scales. As we will see in this book, turbulence
is, on the other hand, predictable in the statistical sense, hence the importance of
studying turbulence with statistical tools.

1.3 Transition to Turbulence

The observation of turbulence in fluid mechanics is often part of everyday life
experiences. In fact, it is under this regime that most of the natural flows of
the usual terrestrial fluids such as air and water occur. There is a very large
variety of turbulent flows: for example, geophysical flows (atmospheric wind,

18 Lorenz was not the first to wonder about unpredictability. Henri Poincaré addressed the question at the end
of the nineteenth century in his study on the stability of the solar system (Poincaré, 1890). Later, Richardson
(1922) also wondered about the effect of initial conditions on the predictability of atmospheric flows.
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Figure 1.4 The Lorenz attractor appears when we plot the function f (X , Y , Z) over time,
with X (t), Y (t), and Z(t) given by solving the Lorenz system.

river currents), astrophysical flows (sun, solar wind, interstellar cloud), biolog-
ical (blood), quantum (superfluid), or industrial flows (aeronautical, hydraulic,
chemical). Despite this diversity, these turbulent flows have a number of common
properties.

Probably the most familiar example of turbulent flow is that of a river encoun-
tering an obstacle, such as a rock. Downstream, there is a random movement of
water characterized by the presence of eddies of different sizes. As we will see
in Chapter 2, the eddy is the central concept in the analysis of strong turbulence
and, in particular, in the phenomenological description of the cascade of energy to
spatial scales that are generally smaller. In Figure 1.5, one can see schematically
how such a flow moves from the laminar regime with a low Reynolds number Re,
to the fully developed turbulence regime with a Reynolds number that exceeds
1000. In particular, during this transition a Kármán vortex street is formed for
Re ∼ 100. Historically, it was Reynolds who was the first to study the transition
between these two regimes in 1883 and who gave his name to the dimensionless
parameter – the Reynolds number – measuring the degree of turbulence of a flow.
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16 1 General Introduction

Figure 1.5 Transition between laminar (top) and turbulent (bottom) regimes as a function
of the Reynolds number Re for a flow coming from the left and encountering an obstacle
(symbolized by a disc). Figure adapted from Feynman et al. (1964).

This number reflects the relative importance of nonlinear versus dissipative effects
in the Navier–Stokes equations and is written as follows:

Re =
UL

ν
, (1.6)

with U and L a velocity and a characteristic length of the flow respectively, while
ν is the kinematic viscosity.
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1.4 Statistical Tools and Symmetries

We have mentioned the importance of approaching the physics of turbulence with
statistical tools in order to better understand its random nature. In this section, we
recall some of these tools that are generally introduced in the course of statistical
physics.

1.4.1 Ensemble Average

The ensemble average 〈X 〉 of a quantity X is a statistical average performed on N
independent realizations (with N →+∞) where we measure this quantity:

〈X 〉 = lim
N→+∞

1

N

N∑
n=1

Xn . (1.7)

If the averaged quantity is, for example, the velocity field, one has:

〈u(x, t)〉 = lim
N→+∞

1

N

N∑
n=1

un(x, t) . (1.8)

The average operation commutes with derivatives of different kinds, for example:〈
∂u(x, t)

∂x

〉
=
∂〈u(x, t)〉

∂x
. (1.9)

The ensemble average operator is analogous to the one used in statistical thermo-
dynamics. Generally, this is not equivalent to a spatial or temporal average, except
under special conditions. For example, when turbulence is statistically homoge-
neous, the ergotic hypothesis can be used to calculate an ensemble average as a
spatial average (Galanti and Tsinober, 2004). Note that, to date, no proof of the
ergodic theorem is known for the Navier–Stokes equations.

1.4.2 Autocorrelation

To characterize the disorder in a signal u(x, t), one uses the concept of correlation.
The simplest correlation function is the autocorrelation:

R(x, t, T) = 〈u(x, t)u(x, t + T)〉 , (1.10)

which measures the resemblance of the function to itself, here at two different
instants. The quantity u(x, t) (for example, a velocity component) is a random
function. To get statistical independence between u(x, t) and u(x, t + T), T cannot
be too small, because the fundamental laws of turbulence lead us to expect a cer-
tain memory of the signal: T must therefore be larger than a value Tc, which is
called the correlation time. A similar analysis can be done for two measurement
points not in time, but in space. In this case, we arrive at the notion of correlation
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R(T)/R(0)

Tc0

1

T

Figure 1.6 Illustration of the meaning of the correlation scale Tc from a given auto-
correlation function: the surface + is by definition equal to the surface − (see relation
(1.11)).

length Lc (also called the integral scale). Thus, a random flow is characterized by
a spatiotemporal memory whose horizon is measured by Tc and Lc. The turbu-
lence study consists in extracting information on the spatiotemporal memory of
the flow which can thus be revealed only if we place ourselves on relatively small
spatiotemporal correlation scales. Figure 1.6 illustrates the notion of correlation
time; by definition we have:

Tc ≡
1

R(0)

∫
+∞

0
R(T)dT , (1.11)

where the dependence in t has been forgotten under the assumption of statistical
homogeneity.

1.4.3 Probability Distribution and PDF

Let us define Fy(x) as the probability of finding a fluctuation of the random var-
iable y in the interval ] − ∞, x]: the function Fy is by definition a probability
distribution. From this definition one has:

• Fy(x) is an increasing function,
• Fy(x) is a continuous function,
• Fy(−∞) = 0 and Fy(+∞) = 1.

If this function is differentiable then F′y(x) defines a probability density function
(PDF), that is, F′y(x) is the probability of finding y in the interval ]x, x+ dx]. In the
framework of intermittency (Chapter 2) we will see that the normal (or Gaussian)
and Poisson PDFs play a central role.
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1.4.4 Moments and Cumulants

The moments of a probability density function are the means of the powers:

Mn = 〈y
n
〉 =

∫
+∞

−∞

xnF′y(x)dx . (1.12)

We may note that the moment of order one is the mean or expected value. The
moments of y− 〈y〉 are said to be centered. The variance is the centered moment
of order two:

〈(y− 〈y〉)2
〉 , (1.13)

while the mean quadratic deviation is the root of the variance.
Given any non-Gaussian random function of zero mean whose second-order

moments are known, it is then possible to calculate the fictitious moments of
order n that this function would have if it were a Gaussian function. The differ-
ence between the actual nth-order moment of the function and the corresponding
Gaussian value is called the nth-order cumulant. Then, the odd cumulants are
equal to the moments (since the odd moments of a Gaussian are zero) and by def-
inition all the cumulants are zero for a Gaussian function. We will come back to
moments, and cumulants in particular, in Chapter 4, when the asymptotic closure
of wave turbulence is introduced.

1.4.5 Structure Functions

A structure function of order n of a quantity f (x) is by definition:

Sn = 〈( f (x1)− f (x2))n
〉 = 〈(δf )n

〉 , (1.14)

where x1 and x2 are two points of the space. We will see in Chapter 2 that the
first rigorous law established in turbulence by Kolmogorov (1941a) involves the
velocity structure function of order three.

1.4.6 Symmetries

In order to simplify the analytical study of turbulence, we often impose certain
symmetries on the flow. Unless explicitly stated, the symmetries below are taken
in the statistical sense.

• Homogeneity: This is the space translation invariance. It is the most classical
assumption that is satisfied at the heart of turbulence, that is, far from the walls
of an experiment. This assumption is essential in the theoretical treatment of
turbulence insofar as it brings important simplifications both in physical space
and in Fourier space. For a homogeneous turbulence the ergotic hypothesis
allows one to calculate an ensemble average as a spatial average.
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• Stationarity: This is the time translation invariance. It is a very classical
hypothesis insofar as a system generally finds its balance between the external
forces and the dissipation which occurs at a small scales by viscous friction.
For stationarity turbulence the ergotic hypothesis allows one to calculate an
ensemble average as a time average.
• Isotropy: This is an invariance under any arbitrary rotation. It is a classical

assumption in hydrodynamics, which is less justified in presence of an external
agent like, for example, rotation or stratification.
• Mirror symmetry: This is the invariance under any plane symmetry. It corre-

sponds to an invariance when the sign of all vectors (x→ −x, u→ −u, etc.)
is changed. It allows the removal of quantities such as the kinetic helicity. One
speaks of strong isotropy when turbulence is both isotropic and mirror sym-
metric. Throughout the book we shall use the word isotropy in the weak sense
to indicate invariance under rotations, but not necessarily under reflexions of
the frame of reference.
• Scale invariance: This is the (nonstatistical) invariance by a transformation of

the type u(x, t) → λhu(λx, λ1−ht). The solutions of the Navier–Stokes equa-
tions satisfy this symmetry if h = −1. If the viscosity is zero then h can be
anything. In practice, this symmetry can be found in the turbulent regime if the
scales considered are much greater than those at which the viscosity acts.

The statistical symmetries we have just defined can emerge in a fluid when the
Reynolds number is large enough. A return to Figure 1.5 is instructive: com-
parison of the five images actually shows that the initial symmetries of the fluid
disappear at an intermediate Reynolds number to reveal other symmetries at large
Reynolds number.
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