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A combined active control method of restricted
nonlinear model and machine learning
technology for drag reduction in turbulent
channel flow
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The practical implementation of machine learning in flow control is limited due to its
significant training expenses. In the present study the convolutional neural network (CNN)
trained with the data of the restricted nonlinear (RNL) model is used to predict the normal
velocity on a detection plane at y+ = 10 in a turbulent channel flow, and the predicted
velocity is used as wall blowing and suction for drag reduction. An active control test
is carried out by using the well-trained CNN in direct numerical simulation (DNS).
Substantial drag reduction rates up to 19 % and 16 % are obtained based on the spanwise
and streamwise wall shear stresses, respectively. Furthermore, we explore the online
control of wall turbulence by combining the RNL model with reinforcement learning
(RL). The RL is constructed to determine the optimal wall blowing and suction based
on its observation of the wall shear stresses without using the label data on the detection
plane for training. The controlling and training processes are conducted synchronously
in a RNL flow field. The control strategy discovered by RL has similar drag reduction
rates with those obtained previously by the established method. Also, the training cost
decreases by over thirty times at Reτ = 950 compared with the DNS-RL model. The
present results provide a perspective that combining the RNL model with machine
learning control for drag reduction in wall turbulence can be effective and computationally
economical. Also, this approach can be easily extended to flows at higher Reynolds
numbers.
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1. Introduction

Flow control for drag reduction in the wall turbulence is of vital importance in industrial
applications. Researchers have pointed out that the production of high friction drag in
turbulence is closely related to the coherent structures near the wall (Kravchenko, Choi
& Moin 1993). Hamilton, Kim & Waleffe (1995) revealed that the regeneration process of
near-wall coherent structures included three phases: the formation of streaks by streamwise
vortices, the breakdown of streaks and the regeneration of streamwise vortices, based
on direct numerical simulation (DNS) of the plane Couette turbulent flow. A common
characteristic of the effective control methods for drag reduction is the attenuation of the
near-wall streamwise vortices (Kim 2011). Choi, Moin & Kim (1994) initially introduced
an active control scheme, known as the opposition control. It involves applying wall
blowing and suction, whose normal velocity is opposite to that observed on a near-wall
detection plane to offset the sweep and ejection motions caused by the streamwise vortices.
The aim is to weaken the Reynolds shear stress, suppress turbulence and reduce the
wall friction drag. Several studies have tried to explain the mechanism underlying drag
reduction by opposition control. Hammond, Bewley & Moin (1998) and Chung & Talha
(2011) pointed out that a ‘virtual wall’ with approximately nothrough flow was formed
halfway between the wall and the detection plane because of the wall blowing and
suction. Furthermore, Deng & Xu (2012) illustrated that opposition control can suppress
the production of streamwise vorticity by weakening the near-wall normal velocity, from
the point of view of the transient growth mechanism (Schoppa & Hussain 2002). The
influence of some parameters on the control effect has been investigated in a number of
studies. It was reported that the drag reduction rate is decreased with the Reynolds number.
For example, approximately 26 % drag reduction was obtained at Reτ = 100, whereas it
was reduced to 19 % at Reτ = 720 (Chang, Collis & Ramakrishnan 2002) and 18 % at
Reτ = 1000 (Deng, Huang & Xu 2016), where Reτ = uτ δ/μ, uτ is the wall shear velocity,
δ is the channel half-height and μ is the kinematic viscosity. Deng et al. (2016) pointed
out that the origin of effectiveness degradation lay in the modulation of the amplitudes of
near-wall coherent structures by large-scale motions in higher Reynolds numbers. Chang
et al. (2002) and Deng et al. (2016) also showed that there exists an optimal height that
is decreased with the Reynolds number, i.e. y+ ≈ 15 at Reτ = 180, y+ ≈ 14 at Reτ = 590
and y+ ≈ 13 at Reτ = 1000, where y+ = yuτ /μ, y is the normal distance from the wall.
Furthermore, Chung & Talha (2011) found that the drag was reduced by 16 % with the
detection plane at y+ = 20 but increased by 17 % with the detection plane at y+ = 23.
Deng & Xu (2012) showed that the y+ < 20 and y+ > 20 controls were, respectively,
anti-phase and in-phase manipulations to the near-wall vertical velocity. By changing the
amplitude of the wall blowing and suction, they proposed the strengthened in-phase control
and the weakened anti-phase control to improve the efficiency of opposition control, and
obtained drag reduction successfully for different detection plane locations.

In recent decades, methods of determining the optimal distribution of normal velocities
used for wall blowing and suction based on measurable physical quantities at the wall have
been invented. This is to prevent the difficulty of placing sensors inside the flow field in real
practice when the opposition control is applied. Based on the Taylor series expansion of
the normal velocity near the wall, Choi et al. (1994) indicated a high correlation coefficient
of about 0.75 between the wall-normal velocities (v) at y+ = 10 and (∂/∂z)/∂w/∂y|w at
the wall through their joint probability density. But, a v control based on (∂/∂z)/∂w/∂y|w
yielded only about 6 % reduction of drag. A variational adjoint-based state estimation
algorithm proposed by Bewley & Protas (2004) improved the prediction performance
to 0.88 based on three kinds of quantities: wall pressure, streamwise and spanwise wall
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shear stresses. It resulted in a better correlation between them and v at y+ = 10. Using
the spanwise wall shear stress or wall pressure as input, a suboptimal control method
proposed by Lee, Kim & Choi (1998) successfully obtained effective wall blowing and
suction similar to that of the opposition control with a drag reduction rate of up to 22 %.
However, their attempt based on the streamwise wall shear stress failed to reduce drag
because of the oversimplified state equation used in the suboptimal procedure (Kasagi,
Suzuki & Fukagata 2009). Feedback control proposed by Koumoutsakos (1999), in which
the manipulation of the vorticity flux components is employed based on the information
of wall pressure, showed similar control efficiency to or better than the opposition control.
Lee et al. (2001) designed a linear quadratic-Gaussian/loop-transfer-recovery controller.
It reduced the skin friction by 10 % at the friction Reynolds number Reτ = 100 using the
streamwise wall shear stress. Also, Morimoto et al. (2002) developed and optimized a
control scheme with the aid of genetic algorithms based on the streamwise wall shear
stress. They obtained a 12 % drag reduction rate. Fukagata & Kasagi (2004) further
improved the suboptimal control of Lee et al. (1998) by using the near-wall Reynolds
shear stress as the cost function. They obtained a drag reduction rate of up to 11.5 % in
turbulent channel flow at Reτ = 180 by using the streamwise wall shear stress.

Recently, with the development of machine learning, there have been various
applications to active flow control problems. For drag reduction in wall turbulence, a
pioneering work by Lee et al. (1997) utilized a neural network to represent the relationship
between the spanwise wall shear stress and the normal velocity at y+ = 10. Applying
the normal velocity predicted by the neural network for wall blowing and suction, they
obtained a drag reduction of 20 %, which was close to that of the opposition control.
Although with different methods, the control strategy with the input of spanwise wall
shear stress was verified once again using the suboptimal control (Lee et al. 1998). This
indicates that the trained neural network acts as an effective predictor of v at y+ = 10
using spanwise wall shear stress. Lorang, Podvin & Le Quéré (2008) applied a similar
multi-layer neural network method in Fourier space to identify the optimal velocity
length scales associated with substantial drag reduction. But both of them pointed out
that using streamwise wall shear stress did not improve or even reduce the efficiency of
neural network-based control. It is noticed that convolutional neural network (CNN) has
been widely applied in fluid mechanics because of its strong feature-extraction capability
especially for two-dimensional figures. Examples include super-resolution reconstruction
(Fukami et al. 2019), prediction of the flow field information (Guo, Li & Iorio 2016; Kim
& Lee 2020) and so on. Han & Huang (2020) developed an active controller based on
CNN to predict v at y+ = 10 used for wall blowing and suction based on spanwise or
streamwise wall shear stress at Reτ = 100, 180, 390. It was found that for spanwise wall
shear stress, a linear single-layer CNN similar to that of Lee et al. (1997) was enough to
realize good prediction and substantial drag reduction; while for streamwise wall shear
stress, a multiple nonlinear CNN architecture was necessary. Based on the constructed
CNN control models, we obtained up to 19 % and 15 % drag reduction based on the
spanwise and streamwise wall shear stresses, respectively. Park & Choi (2020) designed a
larger CNN architecture using wall pressure, streamwise or spanwise wall shear stress as
input in order to extend the CNN model trained by the data from lower-Reynolds-number
flow to control the flow at a higher Reynolds number. They trained the CNN model at
Reτ = 180 and obtained up to 17 %, 11 % and 18 % drag reduction at Reτ = 180 and
11 %, 6 % and 15 % drag reduction at Reτ = 578, based on wall pressure, streamwise and
spanwise wall shear stresses, respectively.

On the other hand, a semi-supervised machine learning method of reinforcement
learning (RL) has also been applied to flow control problems (Rabault et al. 2019; Fan
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et al. 2020a; Tang et al. 2020; Han, Huang & Xu 2022). Especially, Sonoda et al. (2023)
and Lee, Kim & Lee (2023) firstly introduced RL to the turbulent channel flow for drag
reduction. Sonoda et al. (2023) used velocities at the detection plane as input of RL
and optimized a constant multiplication coefficient. Then, the normal velocity multiplied
by that constant was used as wall blowing and suction. This method was based on the
strengthened opposition controller (Chung & Talha 2011), whose strength was chosen
intelligently by RL, and a larger drag reduction rate was obtained than that of the traditional
opposition control. In Lee et al. (2023) the control model used the wall shear stress as the
input of RL and directly outputted the wall blowing and suction, where RL was trained to
obtain a larger drag reduction rate by adjusting its output. This RL control model removes
the limitation of the label data on the detection plane and allows for exploring a better
control strategy than that of the opposition control. Unlike the supervised learning (SL)
control model based on CNN with an offline learning process, the training of the RL model
and control of the flow field are carried out simultaneously, which is known as the online
training. In general, it is challenging to apply the RL to flow control, because its training
process is always accompanied by a large number of simulations of the controlled flow
field, resulting in an extremely high computational cost. Thus, the RL control models are
all restrained within the flow field at low Reynolds numbers. It is a consensus that the cost
of the numerical simulation of flow field is much larger than that of RL. For example, the
simulation accounts for approximately 89 % of the total computation cost of RL control
(Lee et al. 2023), suggesting that accelerating the flow simulation will greatly reduce the
cost of training an RL control model. In the current work we attempt to couple the physical
reduced-order model with machine learning to control the turbulent channel flow for drag
reduction. The aim is to extend the application of the machine learning control model to
wall turbulence at higher Reynolds numbers.

The restricted nonlinear (RNL) model system divides the flow into streamwise streaks,
vortices and fluctuations (Alizard & Biau 2019). It simplifies the Navier–Stokes (N-S)
equations by parametrizing or neglecting the nonlinear interactions among the varying
perturbations while retaining the interaction between them and the streamwise constant
mean flow (Thomas et al. 2014). Farrell & Ioannou (2012) applied the RNL model to
Couette flows by parametrizing the perturbation–perturbation interactions as an additive
stochastic forcing. They found that it could support a realistic self-sustaining process after
the flow transitions even though the forcing was removed. Thomas et al. (2014, 2015)
investigated the dynamics of RNL turbulence systematically to examine the implications
of its simplified structure for the wall turbulence of plane Couette flow. They revealed that
a small number of streamwise varying modes or even as few as one mode can suffice to
sustain the turbulent state, which can be used as a physics-based approach to simplify the
flow representation (Gayme & Minnick 2019). The RNL turbulence at moderate Reynolds
numbers of Reτ = 180–340 in half-channel flow was investigated by Bretheim, Meneveau
& Gayme (2015). The results showed that a band-limited RNL system using one or a few
determined modes improved its prediction of the mean velocity profile and second-order
statistics. Farrell et al. (2016) further studied the RNL turbulence of channel flow at
Reτ = 950 and illustrated that the roll/streak dynamics supporting the turbulence in the
buffer and logarithmic layers in the RNL model were essentially similar to that in DNS.
Their results also pointed out that because the RNL and DNS turbulences were sustainable
with almost the same pressure gradient, the sum of Reynolds stresses was the same linear
function of the height away from the wall and the RNL model produced Reynolds stresses
very similarly with those in DNS. Compared with other reduced-order models, e.g. proper
orthogonal decomposition (Smith, Moehlis & Holmes 2005) and the minimal flow unit
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(Jiménez & Moin 1991), the RNL model is computationally economic with its simplified
dynamical setting requiring fewer streamwise modes for self-sustaining turbulence. Also,
it does not rely on the Reynolds number or channel size since it is directly derived from
the N-S equations.

In the present study the RNL model is coupled with machine learning to control a fully
developed turbulent channel flow for drag reduction. A CNN is constructed to determine
the optimal wall blowing and suction with the input of wall shear stresses. Based on the
opposition control put forward by Choi et al. (1994), SL is utilized to train the CNN based
on the error between its output and the normal velocity at y+ = 10, which is represented
as the RNL-SL control model. The RNL-SL control model is trained by utilizing the
data from the RNL flow field, which exhibits flow characteristics that are comparable
to those observed in DNS. However, it is restricted in the streamwise direction to the
benefit of decreasing the complexity and cost of training. The prediction performance
of the RNL-SL model trained by RNL data is compared on RNL and DNS flow fields.
Then, it is applied to the DNS flow for active control. Furthermore, exploration of the
RL control method coupled with the RNL model is introduced. The RL trains the CNN
through the reward obtained from its online control of the RNL field, which is represented
as the RNL-RL control model. Both the training process and control effects are compared
with those of RNL-SL. Numerical tests are carried out in the flows at three different
Reynolds numbers of Reτ = 100, 180, 950 to verify the capacity of the combined method
of RNL and machine learning. In the following, details of the RNL simulation, frameworks
of RNL-SL and RNL-RL control models are presented in § 2. The training process,
prediction performance and active control results of the RNL-SL model are shown in § 3.
The training process and control strategy of the RNL-RL model are given in § 4, followed
by conclusions in § 5.

2. Methodology

2.1. The RNL model
The base flow is a fully developed turbulent channel flow, of which the streamwise,
wall-normal and spanwise directions are denoted by x, y and z, respectively. Since the
turbulent channel flow is uniform along the streamwise direction in the RNL model, the
velocity and pressure fields u(x, y, z, t), p(x, y, z, t) are decomposed into the streamwise
averaged U( y, z, t), P( y, z, t) and the perturbations u′(x, y, z, t), p′(x, y, z, t) from them,
respectively (Farrell et al. 2016). The corresponding governing equations, derived from
the incompressible N–S and continuity equations, can be expressed as

U t + U · ∇U + ∇P − ν∇2U = −〈u′ · ∇u′〉x, (2.1)

u′
t + U · ∇u′ + u′ · ∇U + ∇p′ − ν∇2u′ = 0, (2.2)

∇ · U = 0, ∇ · u′ = 0, (2.3)

where ν is the kinematic viscosity and the quantities are non-dimensionalized by
the channel half-width δ and the mean velocity Um. The difference between RNL
and N-S equations is due to the approximation of the RNL model, in which the
perturbation–perturbation interaction term −u′ · ∇u′ + 〈u′ · ∇u′〉x is set to zero in the
present study. The RNL system remains the interaction of the perturbations on the
streamwise mean flow field, U , which acts as a driven term of (2.1), i.e. the divergence
of the streamwise mean Reynolds stress. Reynolds stresses are solved by (2.2), which
describes the dynamics of the perturbation flow, u′, under the influence of U . Previous
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Figure 1. Comparison of the mean velocity profile and Reynolds stresses of a plane Couette flow solved by
the RNL model between the present results (lines) and those from Thomas et al. (2014) (circular symbols).

Cases Reτ Lx × Ly × Lz Nx × Ny × Nz

CPU time for single
computational time step

RNL100 95.98 4π × 2 × 4π/3 10 × 64 × 32 0.008
DNS100 99.32 4π × 2 × 4π/3 32 × 64 × 32 0.020
RNL180 170.10 2π × 2 × π 16 × 128 × 128 0.037
DNS180 178.25 2π × 2 × π 128 × 128 × 128 0.205
RNL950 838.08 2π × 2 × π 16 × 384 × 512 0.425
DNS950 930.56 2π × 2 × π 512 × 384 × 512 13.268

Table 1. Computational parameters for the RNL model and DNS of turbulent channel flow.

studies (Constantinou et al. 2014; Bretheim et al. 2015; Farrell et al. 2016) have revealed
that these essential nonlinear interactions are necessary for a self-sustained turbulent state,
and dynamical restriction makes RNL simulation more computationally efficient.

The RNL equations are solved based on the second-order central finite-difference
discretization on a staggered grid and are advanced with the Crank–Nicholson scheme
in time. The fractional step method is adopted for velocity–pressure decoupling (Kim,
Baek & Sung 2002). To verify the numerical accuracy of the RNL solver, a plane
Couette flow at a Reynolds number of Re = 1000 is simulated. The computational domains
and number of grid points in the x, y, z directions are Lx = 4π, Ly = 2, Lz = 4π and
Nx = 16, Ny = 64, Nz = 128, respectively, which are the same with those of Thomas et al.
(2014). The friction Reynolds numbers Reτ of DNS and the RNL model are 66.14 and
64.91, respectively, close to those of Thomas et al. (2014), i.e. 66.2 and 64.9. Also, we
compare the turbulent mean velocity profile and time-averaged Reynolds stresses obtained
from the RNL simulation in figure 1. The results agree very well with the reference data,
validating the computational accuracy of our RNL solver.

In this paper we aim to replace the DNS of turbulent channel flow with the RNL model to
accelerate the numerical simulation to obtain the basic characteristic of the flow field and
the prediction of the drag. Based on that, we limit the number of grids in the streamwise
direction (Nx) to a few and let Ny, Nz be the same as those of DNS, as shown in table 1.

The friction Reynolds number of the RNL model is almost equal to that of DNS, but
the difference between them increases with Reynolds number. Figure 2 shows that RNL
system overpredicts the mean streamwise velocity for y+ > 10 and the slope and intercept
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Figure 2. Mean streamwise velocity profiles from the RNL model with different streamwise grid numbers
compared with that from DNS: (a) Reτ = 180, (b) Reτ = 950.
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Figure 3. Comparison of the Reynolds stress components, u′+v′+, in the same cases shown in figure 2.

of the logarithmic region are not consistent with DNS, which also appear in the baseline
RNL cases without any mode limiting of Bretheim et al. (2015) in a half-channel at
Reτ = 180 and the case of Constantinou et al. (2014) at Reτ = 950. Bretheim et al. (2015)
and Gayme & Minnick (2019) also detected that restricting the streamwise wavenumber of
the RNL model to one determined mode improves its prediction. But it is not considered
in the present study since it is not convenient for our finite-difference solver. Our results
also indicate that increasing the grid resolution in the streamwise direction will ameliorate
this phenomenon. However, it still differs from that of DNS even though the same Nx
is used. Despite these differences, the Reynolds shear stress profiles predicted by the
RNL model are quite realistic and close to those of DNS, as seen in figure 3 even at a
higher Reynolds number of Reτ = 950. This makes it possible to use the RNL model
as a physical reduced-order model to predict the drag economically. Since increasing Nx
improves the prediction of Reynolds shear stress only slightly, hereafter, we will still use
the grid numbers in table 1 for the RNL simulation. Due to the limitation of the streamwise
wavenumbers, compared with DNS, grid numbers of the RNL model are decreased by a
factor of 3.2, 8 and 32 at Reτ = 100, 180, 950, respectively. The corresponding CPU time
for a single computational time step of RNL cases are 2.6, 5.5 and 31.2 times smaller than
those of DNS cases based on the present numerical method. Also, it is noteworthy that by
solving the governing equations of the RNL model in a hybrid physical/Fourier space
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Figure 4. Comparison of the instantaneous streamwise velocity between DNS (a,c) and the RNL model
(b,d): (a,b) Reτ = 180 and (c,d) Reτ = 950. The horizontal plane is at a wall distance of y+ = 15.

grid with certain operations performed efficiently in Fourier space, the computational
efficiency of the RNL model can be further improved (Bretheim, Meneveau & Gayme
2018).

Comparisons of the instantaneous flow field between DNS and the RNL model in
figure 4 show there is a visible restriction of the streamwise wavelengths. However, from
the cross-stream snapshot, the realistic vortical structures are obtained, which verifies the
potential of the RNL model to reflect flow structures that are important in wall turbulence
(Gayme & Minnick 2019). Since Ny, Nz are the same as those of DNS, even though
the high- and low-speed streaks are elongated and much more straight in the streamwise
direction, the number and distribution of the streaky structures in the spanwise direction
are accurately predicted by the RNL model. Detailed comparisons between DNS and
the RNL model of other physical quantities are presented in Appendix B, such as the
instantaneous normal velocity, contours of the streamwise vorticity and so on.

Furthermore, the weights of the RNL-SL control model are trained through the data of
RNL flow fields instead of DNS. So, it is necessary to compare the relationship between
the velocity on the detection plane and the wall shear stresses in DNS and RNL flow fields.
Figure 5 shows the contours of the two-point correlation coefficient ρ between vy+=10 and
∂u/∂y|w, ∂w/∂y|w in both DNS and the RNL model at Reτ = 180 and Reτ = 950. In DNS
flow fields it is shown that vy+=10 and wall shear stresses have distinct correlation in some
regions. The correlation coefficients are antisymmetric with ∂w/∂y|w and symmetrical
with ∂u/∂y|w in the spanwise direction. Also, the correlation with the spanwise wall
shear rate is highest at slightly downstream, which is consistent with that of Park & Choi
(2020). In RNL flow fields, distributions of the correlation coefficients are very similar
to those in DNS flow fields. Limited to smaller streamwise computational grids, contours
of the correlation coefficients are relatively straight in the streamwise direction. But in
the spanwise direction, they share similar characteristics since the grid resolutions are the
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Figure 5. Contours of the correlation coefficients between vy+=10 and (a,c,e,g) ∂u/∂y|w, (b,d, f,h) ∂w/∂y|w.
Results are shown for (a–d) DNS and (e–h) the RNL model at (a,b,e, f ) Reτ = 180 and (c,d,g,h)
Reτ = 950.

same as those of DNS. It shows that the RNL model accurately captures the relationship
between the near-wall normal velocity and the wall shear stress, which makes it possible
to apply machine learning control models trained by RNL data to control the real DNS
field for drag reduction. Also, it is found that correlations of different Reynolds numbers
are very similar in both DNS and the RNL model, indicating that machine learning control
methods with similar structures are possible to be extended to high Reynolds numbers.

2.2. The RNL-SL control framework
Our previous study introduced the usage of CNNs for predicting wall actuations based
on the streamwise or spanwise wall shear stress for drag reduction (Han & Huang 2020).
As show in figure 6, the input data of CNN is wall shear stress and the output is the
predicted wall blowing and suction. Based on the opposite control of Choi et al. (1994),
the optimal wall actuations should have the same absolute value but opposite direction
with the normal velocities at a detection plane. Here, the label data of CNN is opposite to
the normal velocity at the detection plane, and the error between it and the output data is
defined as the loss function, i.e.

Loss = 1
2

N∑
i=1

eλ|v
i
label|(vi

label − vi
output)

2, (2.4)

vlabel = −vy+=10, vwall = σvoutput, (2.5)

to be minimized for updating the parameters of neural networks. In the above equations, λ
is designed for emphasizing large wall actuations and chosen as 5 in this paper; voutput
is the output of the CNN representing the predicted wall blowing and suction based
on the wall shear stress. As introduced above, the amplitude of the wall blowing and
suction is an important factor affecting the drag reduction rate. In the present study,
considering that in a practical situation the controlled flow data are not available in
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Error backpropagation for

updating network parameters

Labels (velociy at detection plane)

Output data (wall actuation)

Input data (spanwise or streamwise wall shear stress)

Input data

(state)

Output data

(action)

Reward

Obtain reward by applying control in flow field

Update network parameters based on the reward

Grids of DNS Grids of RNL

Bottom wall

Detection plane

Supervised learning

Reinforcement learning

Figure 6. Schematic of the coupled RNL and machine learning control models.

advance, we train the RNL-SL control model from the uncontrolled RNL flow data.
In that case, the root-mean-square (r.m.s.) value of voutput will be larger than that of
vy+=10 in the opposition control case, because the near-wall normal velocity is obviously
decreased in the controlled flow. According to Kim & Choi (2017), vy+=10,rms (controlled)
≈ 0.5vy+=10,rms (uncontrolled) under opposition control at Reτ = 180. It will be difficult
to compare the present control effects with those of the traditional opposition control,
as the amplitudes of the wall blowing and suction are different. So, σ in (2.5) is used
to regulate the control strength at each control time step to ensure that vwall,rms is equal
to vy+=10,rms on the detection plane, i.e. σ = vy+=10,rms (controlled) /voutput,rms, where
vy+=10,rms (controlled) is obtained in advance from the opposition control as a reference
case.

Training data of the inputs and labels are both obtained from DNS in Han & Huang
(2020). At higher Reynolds numbers, the training process of CNN will be observably
elongated because a larger number of training data are required with the increasing
complexity of the nonlinear relationship between the wall shear stress and normal
velocities, which also causes an extra cost of obtaining training data. So it is harder and
more expensive to extend it to a much more complicated flow situation with higher Re.
The highest friction Reynolds number in Han & Huang (2020) and Park & Choi (2020)
is 390 and 578, respectively. Furthermore, previous researches have revealed that the
computational cost of neural networks is quite small compared with that of the flow solver.
So, a scientific reduced-order model for calculating the flow field is necessary to accelerate
the training process of the machine learning control model and extend the scope of its
application to higher Re.

To the best of our knowledge, the RNL model has not been reported to be used for
flow control problems. As seen above, the RNL model can reproduce the basic flow
characteristics of turbulent channel flow to some extent with restricted streamwise Fourier
components, which can easily simplify the flow representation. In this paper we apply
the RNL model to drag reduction in wall turbulence coupled with machine learning
technologies. The architecture of the RNL-SL control model is similar to that of the
CNN control model proposed by Han & Huang (2020). The essential difference lies in the
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training data of CNN. To reduce the computational cost and training difficulty, we exploit
RNL simulation to obtain the training dataset including the input and label data instead of
DNS. As seen in figure 6, the grids of the RNL model in the wall-normal and spanwise
directions are kept the same as DNS, but the streamwise grids are limited to a few. All
the training procedures are based on RNL data. When the loss function converges to the
minimum, the training process of the CNN is finished, in which case the RNL-SL control
model is equipped with the ability of predicting the normal velocity at the detection plane
based on the wall shear stress of the RNL field. Then, it will be directly applied to the
DNS flow, which is an absolutely new situation that the machine learning control model
has never met. Based on the similarity of the flow field between the RNL model and DNS,
the trained RNL-SL model should also be effective in controlling the realistic DNS field.
We will first check its ability to predict the wall blowing and suction based on the wall
shear stress and then investigate its drag reduction control effects on the real channel flow.

In the present study we also use two kinds of wall variables: streamwise and spanwise
wall shear stresses, ∂u/∂y|w, ∂w/∂y|w, as the input data. Since Lee et al. (1998) have used
a theoretical method to deduce the suboptimal control method, which obtains a concise
formula describing the relationship of wall blowing and suction and spanwise wall shear
stress, it is convenient to compare the control model based on RNL-SL with the analytical
expression of suboptimal control method. For facilitating comparison, CNN with spanwise
wall shear stress as input is constructed using a single linear convolutional layer without
an activation function, and the size of the filter kernel in the streamwise direction is
truncated to 1. This means that the CNN only has trainable weights in the spanwise
direction. The size of the convolution kernel in the spanwise direction is determined based
on previous knowledge (Lee et al. 1997; Han & Huang 2020; Park & Choi 2020) that at
least approximately 90 wall units are necessary for ∂w/∂y|w to predict the wall blowing
and suction. It is noted that the performance of nonlinear CNN models is also tested with
multiple convolutional layers and the hyperbolic tangent activation function. The results
show that they do not significantly increase the drag reduction rate, indicating that a linear
model is able to represent the relationship between vy+=10 and the spanwise wall shear
stress.

For ∂u/∂y|w, theoretical derivation of the suboptimal control method fails due to the
oversimplification of the strong nonlinear relationship between ∂u/∂y|w and the normal
velocities at the detection plane. We adopt a multi-layer nonlinear CNN architecture
with a hyperbolic tangent activation function as the activation function. In this case,
it is inevitable to involve the information of ∂u/∂y|w in the steamwise direction when
calculating the wall blowing and suction. However, the grids in the streamwise direction
are much more sparse than DNS. In order to make the CNN structure trained based on
RNL data directly adapted to DNS, before training, the training data from the RNL model
is interpolated in the streamwise direction to share the same grid numbers as those of
DNS. The computational cost of this interpolation is negligible. Our results also verify
that the style of interpolation, such as linear, polynomial interpolation or padding zero
for the energy of the larger wavenumber, has little influence on the training results, so
hereafter the linear interpolation is used for convenience.

Architecture of the CNN used in the present study is shown in figure 7. Input data
are the wall shear stress with the shape of Nx × Nz. One convolutional layer used here
includes periodic padding, convolutional operation, batch normalization and activation
function. Due to the size of the filter kernel used in convolution, we use periodic padding
in both the streamwise and spanwise directions to avoid the loss of edge information.
We use the hyperbolic tangent activation function instead of rectified linear units (ReLU)
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Input data

Nx × Nz (Nx + m) × (Nz + n) Nx × Nz × Nfi Nx × Nz × Nfi Nx × Nz

Periodic

padding

Convolution layer i:
(2m + 1) × (2n + 1) × Nfi

Multiple convolutional layers

Batch norm

& activation
Output data

Figure 7. Architecture of the CNN used in the present study. Here (2m + 1) × (2n + 1) is the size of filter
kernel and Nfi represents the number of filter kernels used in the ith convolutional layer. The output dimensions
of each layer are shown below them. The widths of periodic padding in the streamwise and spanwise directions
(m, n) are determined by the shape of the filter kernel to ensure that the output dimensions after convolution
remain consistent with the input.

Input data Reτ

Number of
convolutional layers Size of filter kernel

Number of
filter kernels

Activation
function

100 1 1 × 9 1 no
∂w/∂y|w 180 1 1 × 19 1 no

950 1 1 × 19 1 no
100 3 3 × 3 6,6,6 tanh

∂u/∂y|w 180 4 5 × 5 6,6,6,6 tanh
950 5 9 × 9 6,6,6,6,6 tanh

Table 2. Details of the CNN architectures for different cases.

that is commonly used in CNN (Nair & Hinton 2010), in order to retain negative neural
input and output in the training process. The corresponding hyperparameters of the CNN
architecture are summarized in table 2, which are chosen based on our previous attempts
based on DNS data (Han & Huang 2020).

2.3. The RNL-RL control framework
Even though prediction of the optimal wall blowing and suction by the RNL-SL model
only requires the input of wall shear stress, its training process is dependent on the velocity
within the flow field. In this section we combine the RNL model with RL, which undergoes
training without reliance on labelled data. Due to the computational efficiency of the RNL
model, we will further explore the potential of applying the RNL-RL control model to
turbulent channel flows at higher Reynolds numbers.

As shown in figure 6, comparing with the RNL-SL model, it is seen that with the help of
the RL architecture that updates the network parameters based on the reward of applying
the RL output (action) to control the flow instead of the error between output and the label
data, the RNL-RL model eliminates the dependence of information on the detection plane.
The RL depends on a well-designed reward for better exploration of the unknown output
region to optimize the weights of its neurons. The training datasets of the RL model,
including the input data (state), the output data (action) and the reward of applying this
action to control the turbulent channel flow, are acquired after each interaction between
the RL control and the flow field. So, each interaction needs a numerical simulation of
several time steps. Due to the lack of label data to guide the training, the RL model needs
to observe the flow environment and adjust its action repeatedly within several epochs
in order to obtain a larger reward. When one epoch finishes, the flow environment will
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be reset and the next epoch of training begins. In each epoch with a time period of T ,
the RL agent described by CNN gets the state (st, defined as the wall shear stress) from
the initial environment as input data, which is an instantaneous field of fully developed
turbulent channel flow. After the operation of CNN, the RL agent outputs the action (at),
which is thought to be the optimal wall blowing and suction based on the present CNN
parameters. Then, the controlled RNL channel flow by at is advanced within a state step,
which contains 50 simulation time steps according to Lee et al. (2023). Then the next state
(st+1) is reached. In the present study, one epoch of RL T involves 800, 1200 and 2000
state steps at Reτ = 100, 180, 950, respectively. The reward of a state step is defined as

rt = τ0 − τw

τ0
, (2.6)

where τw and τ0 denote the averaged frictions with and without control within a state step,
respectively. The training set (st, at, rt, st+1) of one state step is then recorded into a replay
buffer, whose memory size is chosen as 30 000, and when the replay buffer is full, the
oldest data will be removed. During the training process, a group of training sets is chosen
randomly from the replay buffer to decrease the correlation between them over time. The
batch size is set to 64, which is determined based on previous knowledge.

The RL model used in the present study is trained by the deep deterministic policy
gradient (DDPG) algorithm (Lillicrap et al. 2015), which is especially useful in continuous
action problems. The DDPG consists of two networks: the actor network (μθμ) and the
critic network (QθQ). The actor network is responsible for generating the output action
based on the observed state, as mentioned earlier. Specifically, the output action is obtained
using the equation at = μθμ(st). On the other hand, the critic network aims to evaluate the
action by fitting a value function QθQ(st, at). This value function represents the expected
return after taking the action at in the state st, i.e.

QθQ(st, at) = E

[ T∑
i=t

γ i−tr(si, ai)

]
, (2.7)

where E means the expectation and γ is the time discount rate indicating the decaying
effect of the action over time until the end of the epoch, which is chosen as 0.99 according
to Fan et al. (2020b), Paris, Beneddine & Dandois (2021). Here θμ and θQ are the
parameters of actor and critic networks; θμ is optimized by maximizing the expected
total reward QθQ and θQ is updated based on the temporal difference error defined as
the difference between the estimated value function of the current state-action pair and the
value function of the next state-action pair. More details can be found in Appendix D.

The CNN architecture and its corresponding hyperparameters used in the actor network
are the same as discussed in figure 7 and table 2, since their input and output are the same.
The key to successful training of RL is based on a better estimate of the value function
interpreted by the critic network. Referring to Lee et al. (2023), we use a relatively complex
network as shown in figure 8. Different from the actor network based on figure 7, input of
the critic network includes both the state and its corresponding action calculated from the
actor network. The output of the critic network is the value of QθQ , which is utilized to
assess the desirability of the action in the current state. Here, zero padding is used before
each convolutional layer for simplicity. Due to substantial dimension reduction from input
to output, average pooling is incorporated into certain convolutional layers and a fully
connected layer is added before the output. The hyperparameters of the critic network are
given in table 3.
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Input data

(state & action)
Conv 1:

3 × 3 × 32

Zero

padding
Convolution

layer

Conv 1

Conv 2

Batch norm

& ReLU

Average

pooling

Conv 2:

3 × 3 × 32
∙
∙
∙

Nx × Nz × 2 Nx × Nz × 32 Nx/2 × Nz/2 × 32 (Flatten) × 32

Fully connected
layer

Output data
(Q - value)

1

Figure 8. Architecture of the critic network used in DDPG. The output dimensions of each layer are shown
below them. Conv 1 and Conv 2 represent two kinds of convolutional layers. Conv 2 has an additional average
pooling layer compared with Conv 1.

Reτ

Number of
Conv 1

Number of
Conv 2

Size of filter
kernels

Number of
filter kernels

Activation
function

100 4 1 3 × 3 32 ReLU
180 3 2 3 × 3 32 ReLU
950 3 2 3 × 3 32 ReLU

Table 3. Hyperparameters used in the critic networks for different cases. Here, numbers of the filter kernels in
each convolutional layer are all fixed as 32. The order Conv 1 + Conv 2 + (Conv 1) × 3 is used at Reτ = 100.
The order (Conv 1 + Conv 2) × 2 + Conv 1 is used at Reτ = 180, 950. It is noted that these hyperparameters
remain the same for both ∂w/∂y|w and ∂u/∂y|w.

3. Training process and control result of RNL-SL model

In this section we show the training process of the RNL-SL model based on the data from
the RNL flow field. Then its prediction performance in predicting the normal velocities
on the detection plane based on the wall shear stress in both RNL and DNS flow fields
is estimated. Active control results of the well-trained RNL-SL in DNS flow fields are
presented subsequently.

3.1. Training process
There are three kinds of variables of RNL data: streamwise mean, fluctuation and their
summation, based on which, the RNL-SL model can be trained separately when using
∂w/∂y|w as input. For ∂u/∂y|w, given the demand of streamwise information of physical
quantities, streamwise mean variables cannot be used for training. Since their training
processes are almost the same, we only show the results based on the total (summation)
quantities of RNL data. The training dataset consists of 2000 instantaneous RNL fields
including the instantaneous wall shear stress and the corresponding normal velocities on
the detection plane at y+ = 10. The amount of training data is sufficient thanks to the
characteristics of weight sharing of CNN architecture, because the output at each grid point
of a convolutional layer is calculated using the same filter kernal for convolution operation.
Figure 9 shows the averaged loss and correlation coefficient between the output and label
data over each training epoch. It is obvious that all the losses decrease rapidly with epoch
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Figure 9. Training loss (black lines) and correlation coefficient (red dashed lines) between the output and
label of the RNL-SL model in terms of epoch based on the input of (a–c) ∂w/∂y|w and (d–f ) ∂u/∂y|w:
(a,d) Reτ = 100, (b,e) Reτ = 180, (c, f ) Reτ = 950.
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Figure 10. Weight distribution in the spanwise direction of the RNL-SL model based on ∂w/∂y|w from
(a) Reτ = 100, (b) Reτ = 180, (c) Reτ = 950. The model is trained based on the total velocity (u), fluctuation
velocity (u

′
) and mean velocity (U) from the RNL model and compared with that from DNS.

and eventually achieve a convergent value. Variations of the correlation coefficients exhibit
the same variation tendency. All the correlation coefficients are around 0.90, indicating
great interpretation of the relationship between wall shear stresses and the normal velocity
on the detection plane by the RNL-SL model. It also shows that the number of training
epochs of ∂u/∂y|w is almost 10 times larger than that of ∂w/∂y|w because of the complexity
of their CNN architectures. The fluctuations of the loss and correlation coefficient of
∂u/∂y|w are much larger, implying the complex nonlinear relations between the input and
output of CNN, making it difficult for training. However, when comparing the training
processes of Reτ = 180 with that of Reτ = 950, it is found that the necessary epochs do
not increase distinctly with Reynolds number for both ∂w/∂y|w and ∂u/∂y|w.

Due to the simple architecture of CNN for ∂w/∂y|w, we can easily draw out the
distribution of the filter kernels in the spanwise direction in figure 10. We compare the
models trained with three different kinds of RNL data as mentioned above as well as the
weights obtained based on DNS data from Han & Huang (2020), which have been proved
perfectly consistent with the theoretical solution of suboptimal control. It is surprising
that the weight distributions of all the cases are analogous with each other. Weights near
the point of interest have the largest value and then decay rapidly to almost zero at the
boundary of the sensing region of the filter kernel. It is worth noting that the weight
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Figure 11. Test results of the correlation coefficient between the output and the label of the RNL-SL model
in terms of time based on the input of (a–c) ∂w/∂y|w and (d–f ) ∂u/∂y|w: (a,d) from Reτ = 100, (b,e) from
Reτ = 180, (c, f ) from Reτ = 950. Results are compared between DNS and the RNL model by using the same
model trained by RNL data.

distributions do not demonstrate strict antisymmetry as observed in the analytical solutions
of the suboptimal control, even though we attempted to triple the size of the training data.
But it has only a small influence on the drag reduction effect, indicating that the training
data are sufficient and the training process is converged. The results of Reτ = 950 have
not been shown in previous studies, but the similar distribution profile and good prediction
performance shown below verifies their credibility. Successful training of the CNN model
based on RNL data reveals that the RNL simulation makes a reliable prediction of the
turbulent channel flow, especially in the near-wall region.

3.2. Comparison of prediction performance in the RNL model and DNS
To illustrate the prediction performance of the trained RNL-SL models, we apply them
to both RNL and DNS flow fields, which are new for them to test. The time histories of
the correlation coefficients at the steady stage in the RNL model and DNS are shown in
figure 11. For ∂w/∂y|w, the predicted correlation coefficients of the RNL model at different
Reynolds numbers almost remain constant without decaying with time. Their averaged
values are all around 0.9, which are nearly the same as those of the training process. It
indicates that the RNL-SL model is well trained and can effectively reflect the relationship
between wall shear stress and the predicted wall blowing and suction. When directly
applying the RNL-SL model to the DNS flow field, the correlation coefficients obtained
are a little smaller than those in the RNL test flow field. However, the averaged values are
still over 0.8, which is larger than that using other machine learning methods, e.g. the Lasso
(Tibshirani 1996), random forest (Breiman 2001) and fully connected neural networks as
discussed in Park & Choi (2020). For ∂u/∂y|w, it is observed that there appears to be a
more distinct oscillation of the correlation coefficient than that in the training process.
However, the averaged values of the RNL flow field are almost kept at a similar level close
to the training cases, which are about 0.9, 0.8 and 0.8 at Reτ = 100, 180, 950, respectively.
The correlation coefficients in the DNS test field decline sharply to 0.6, 0.4 and 0.38 as
compared with those in the RNL field. Differences of the prediction performance in the
RNL model and DNS for ∂u/∂y|w can be attributed to deficiency of the flow field details
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Figure 12. Instantaneous contours of vlabel and vwall at Reτ = 100: (a,d) vlabel, (b,e) vwall based on ∂w/∂y|w,
(c, f ) vwall based on ∂u/∂y|w. Plots (a–c) are from the RNL model and (d–f ) are from DNS.
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Figure 13. Instantaneous contours of vlabel and vwall at Reτ = 180: (a,d) vlabel, (b,e) vwall based on ∂w/∂y|w,
(c, f ) vwall based on ∂u/∂y|w. Plots (a–c) are from the RNL model and (d–f ) are from DNS.

in the streamwise direction, which is necessary for predicting the normal velocities from
∂u/∂y|w. Nevertheless, these coefficients are stable without changing with time.

Figures 12–14 show the instantaneous prediction results based on the RNL-SL models
in both the RNL and DNS flow fields at different Reynolds numbers. Due to the restriction
of the streamwise modes in the RNL model, the contours of the normal velocities at
y+ = 10 show elongated features (figures 12–14a), which can also be seen in the prediction
results (figures 12–14b,c). It is also seen that the performances of ∂w/∂y|w always
outperform those of ∂u/∂y|w, consistent with the correlation coefficients in figure 11.
Figures 12–14(e, f ) are obtained directly by using the corresponding RNL-SL model in
the DNS flow field. Despite the substantial differences between the labels from the RNL
model and DNS (comparing figures 12–14(a) with (c)), the RNL-SL models are also
effective for prediction. It is not difficult to infer that the control model trained only based
on RNL data can give a good prediction of the velocity field in the spanwise direction,
because the RNL model and DNS have the same spanwise computational domain and
grid resolution. On the other hand, the prediction performance based on ∂w/∂y|w is much
better than that of ∂u/∂y|w. It is not only because of the simple relationship between
∂w/∂y|w and v at y+ = 10, but also because the CNN model based on ∂w/∂y|w does not
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Figure 14. Instantaneous contours of vlabel and vwall at Reτ = 950: (a,d) vlabel, (b,e) vwall based on ∂w/∂y|w,
(c, f ) vwall based on ∂u/∂y|w. Plots (a–c) are from the RNL model and (d–f ) are from DNS.

Averaged correlation
coefficients based on

Reτ ∂w/∂y|w ∂u/∂y|w
100 0.85 0.55
180 0.85 0.36
950 0.81 0.30

Table 4. Averaged correlation coefficients between the output of the RNL-SL model and the normal velocities
at y+ = 10 of the controlled DNS flow based on the streamwise and spanwise wall shear stresses at
Reτ = 100, 180, 950.

need the streamwise direction information and the model based on ∂u/∂y|w is influenced
by information in the streamwise direction, especially when using a larger number of
convolution layers. According to table 1, in order to reduce the computational cost, fewer
grids in the streamwise direction are used and the ratio of Nz to Nx becomes larger with
Reynolds numbers. When training the RNL-SL model at a larger Reynolds number, the
deficiency of the flow simulation in the streamwise direction becomes more evident. Lack
of some effective and key information makes it perform not so well as that using the
spanwise wall shear stress. However, the flow features in the spanwise direction, such as
the alternating positive and low-speed streaky structures are evident and similar to the
label data.

3.3. Application to active control
In this subsection we apply the well-trained RNL-SL models by the uncontrolled RNL
data to DNS flow fields for drag reduction in a turbulent channel flow at different Reynolds
numbers. Table 4 shows the averaged correlation coefficients between the predicted wall
blowing and suction and the normal velocities at the detection plane in the controlled
DNS flow. Comparing these results with those shown in figure 11, it can be concluded that
based on ∂w/∂y|w, the trained RNL-SL models perform well for prediction in both the
uncontrolled and controlled flow fields, and their correlation coefficients are almost the
same. Based on ∂u/∂y|w, the averaged correlation coefficients decrease as compared with
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Figure 15. Scatter plots of vlabel and vwall at Reτ = 180 based on (a) ∂w/∂y|w and (b) ∂u/∂y|w.

that based on the uncontrolled flow data, indicating the influence of the wall blowing
and suction on the relationship between streamwise wall shear stress and the normal
velocities at y+ = 10. This phenomenon was also detected by Park & Choi (2020), where
the correlation coefficient is decreased more than that of the present study. The reason
may be that they use a more complex CNN architecture for training. In the present study,
since the streamwise modes of the RNL training data are substantially restricted, using
a CNN model with more convolutional layers and filter kernels does not improve the
training and prediction accuracies obviously. Even though the prediction performance in
the controlled flow field is a little lower than that of the uncontrolled one, the predicted
wall blowing and suction also maintain approximately linear relations with the labels
as shown in figure 15 taken the cases of Reτ = 180, for example. The predicted wall
blowing and suction can also reproduce the main flow characteristics of the flow field,
as shown by the instantaneous contours in figure 16. The results are consistent with those
in figures 12–14(d–f ), where the RNL-SL models with input of ∂w/∂y|w make a better
prediction of not only the correlation coefficient of the whole flow field but also the details
of the flow structures. When using ∂u/∂y|w as input, the RNL-models’ prediction capacity
decreases and the predicted velocity distribution appears with nonconformity from the
view within some small windows of the flow field, which explains the reason of lower
drag reduction rates shown below.

Figure 17 presents the time histories of the wall shear stress of controlled flow based on
∂w/∂y|w and ∂u/∂y|w compared with the uncontrolled ones at different Reynolds numbers.
The wall shear stress (τw) of the controlled case is normalized by the uncontrolled case (τ0)
at each Reynolds number. It is obvious that all the cases controlled by RNL-SL models
obtain drag reduction and when the control begins at t = 0, the wall shear stress decreases
immediately and reaches a new level with a lower skin friction. The time interval to reach
this new level becomes shorter with the increase of Reynolds number. The drag reduction
rate is defined as

DR = τ0 − τw

τ0
= 1 − τw

τ0
, (3.1)

which is larger based on ∂w/∂y|w than that of ∂u/∂y|w. This is consistent with the
prediction performance as listed in table 4. Furthermore, to compare the drag reduction
rates based on the RNL-SL model with those of the traditional opposition control, drag
reduction rates of different cases are given in table 5. For the opposition control based on
the normal velocities at y+ = 10 of Reτ = 180, 20 % drag reduction is obtained, which
is the same as those obtained in the previous studies (Chang et al. 2002; Chung & Talha
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Figure 16. Instantaneous contours of vlabel and vwall from the controlled DNS flow field: (a,d,g) vlabel,
(b,e,h) vwall based on ∂w/∂y|w, (c, f,i) vwall based on ∂u/∂y|w. Plots (a–c) are from Reτ = 100, (d–f ) are from
Reτ = 180 and (g–i) are from Reτ = 950. The correlation coefficients of Reτ = 100, 180, 390 are 0.91, 0.88,
0.81 based on ∂w/∂y|w and 0.52, 0.39, 0.36 based on ∂u/∂y|w, respectively.
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Figure 17. Time histories of the streamwise wall shear stress of uncontrolled and controlled flows based on
∂w/∂y|w and ∂u/∂y|w: (a) Reτ = 100, (b) Reτ = 180 and (c) Reτ = 950.

DR (%) with RNL-SL

Reτ

DR (%) with the
opposition control ∂w/∂y|w ∂u/∂y|w

100 21 19 16
180 20 19 14
950 18 16 12

Table 5. Drag reduction rates (DR) from different cases of the RNL-SL model control and corresponding
opposition control.

2011). So far few researches have reported the opposition control results for Reτ = 950;
DR = 18 % in the present study is close to the value of 16 % reported by Deng et al.
(2016) for Reτ = 1000 at y+ ≈ 9.8 using a spectral DNS solver. Drag reduction rates of
the RNL-SL models based on ∂w/∂y|w can almost reach over 95 % of those based on the
opposition control, which means that the wall blowing and suction predicted by ∂w/∂y|w
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Figure 18. Profiles of the turbulent velocity fluctuations, urms (line with square), vrms (solid line) and wrms
(dashed line) from cases of no control (black), controlled based on ∂w/∂y|w (red) and ∂u/∂y|w (blue):
(a) Reτ = 100, (b) Reτ = 180, (c) Reτ = 950.

capture well the main characteristics of the optimal velocities on the detection plane. By
means of the simplicity and computation economy of the RNL training data, the coupled
RNL and CNN method can be easily applied to higher Reynolds numbers. Limited to the
prediction performances of the RNL-SL models based on ∂u/∂y|w, drag reduction rates
are always lower than that based on ∂w/∂y|w at all the Reynolds numbers. But the drag
reduction rates based on ∂u/∂y|w are all over 12 % at different Reynolds numbers up to
Reτ = 950, which is still larger than those reported in the previous studies, e.g. 10 % from
a two-dimensional linear controller at Reτ = 100 (Lee et al. 2001), 12 % from a control
scheme optimized by a genetic algorithm at Reτ = 100 (Morimoto et al. 2002), 11.5 %
from an improved suboptimal control at Reτ = 180 (Fukagata & Kasagi 2004) and 11 %
from a multiple input and output CNN controller at Reτ = 180 (Park & Choi 2020).

Figure 18 presents the profiles of the velocity fluctuations of the controlled channel
flow and the uncontrolled one at different Reynolds numbers. All the components of the
velocity fluctuations were substantially suppressed by the wall blowing and suction of
the RNL-SL models, among which the suppression on the wall-normal velocity from the
controller based on ∂w/∂y|w is the most pronounced. Focusing on vrms, it can be found
that it has a value greater than 0 at the wall and is almost equal with that of y+ = 10,
which determines a similar control strength with that of the opposition method according
to (2.5). The value vrms decreases firstly and then increases with y+. It forms a minimum
value close to zero between the wall and y+ = 10, where a ‘virtual wall’ is established to
prevent the momentum and energy transfer, resulting in drag reduction (Hammond et al.
1998). Figure 19 shows the instantaneous vortical structures identified by using the second
invariant of the velocity gradient tensor (Q). With the same value of Q, the controlled flow
fields show fewer vortices compared with the uncontrolled cases, which verifies that the
wall blowing and suction destroy the vortical structures. Furthermore, the degree of the
weakening of the vortex is proportional to the drag reduction rate, which is consistent with
the results shown in table 5.

4. Training process and control result of RNL-RL model

In this section the RL control of a turbulent channel flow based on the input of the wall
shear stress only is investigated. In contrast to the RNL-SL control model, the training
process of the RNL-RL model is online learning, which means that it is completed while
continuously learning how to effectively control flow fields. The whole training process is
carried out in RNL flow fields and the label data are not needed. Then, the well-trained
RNL-RL model is also tested to control the DNS flow.
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Figure 19. Instantaneous vortical structures identified by the isosurface of Q within the lower half-channel
flow for uncontrolled cases (a,d,g), controlled cases based on ∂w/∂y|w (b,e,h) and ∂u/∂y|w (c, f,i). The
vortical structures are coloured by the normal velocities. Results are shown for (a–c) Reτ = 100, Q = 0.1;
(d–f ) Reτ = 180, Q = 1; (g–i) Reτ = 950, Q = 30.

4.1. Training process
As described in § 2.3, RNL-RL discovers the optimal control strategy through iterative
interactions with the flow field within a single epoch. When an epoch ends, the
environment will be reset to the uncontrolled one and a new iteration of learning begins.
Figure 20 shows the training process of the RNL-RL model based on the input of ∂w/∂y|w.
The averaged reward within the second half-epoch increases rapidly with each epoch and
is converged to a constant, indicating that the model has been well trained. The minimum
number of training epochs is about 10 for all the cases at Reτ = 100, 180, 950. It is similar
to that of 16 epochs trained through the DNS flow field at Reτ = 180, as reported by
Lee et al. (2023). Due to the usage of the RNL model for training, the computational
cost is over 10 times lower at the same Reynolds number of Reτ = 180. At Reτ = 950, the
computational cost has fallen even more sharply (by over 30 times as shown in table 1) due
to the fewer grids used in the streamwise direction, where Nx = 16 in the RNL model and
Nx = 512 in DNS, for example. So, the present RNL-RL model can be easily extended to
control the turbulent flow at a much higher Reynolds number. During the training process,
we also monitor the correlation coefficient between the output of the RNL-RL model and
the normal velocities on the detection plane. Figure 20(d,e, f ) clearly shows that during the
last five epochs of the training process of the RNL-RL model, the correlation coefficient
at each state step remains around 0.8, which is similar to that of the test results of the
RNL-SL model shown in figure 11. This result shows that the control strategy learned by
RL based on ∂w/∂y|w without label data also leads to a similar result with the opposition
control method.

To learn more details about the training process, figure 21(a) shows the normalized wall
shear stress of uncontrolled flow and the controlled flow by the RNL-RL model within
the first 10 epochs. It can be found that at the beginning of training, the RNL-RL model
fails to output effective wall blowing and suction, resulting in the increase of wall shear
stress. However, the RNL-RL model continuously adjusts its control strategy within the
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Figure 20. Reward (a–c) and the correlation coefficient (d–f ) between the output of the RNL-RL model
and the normal velocities at y+ = 10 in terms of epoch based on the input of ∂w/∂y|w: (a,d) Reτ = 100,
(b,e) Reτ = 180, (c, f ) Reτ = 950.
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Figure 21. Wall shear stresses of the uncontrolled and controlled flows by the RNL-RL model (a) and the
corresponding correlation coefficient between the output of the RNL-RL model and the normal velocity at
y+ = 10 (b) within the first 10 epochs at Reτ = 180.

following epochs and succeeds in reducing the friction at the wall. Also, the drag reduction
rate increases with each epoch, showing better control performance. The corresponding
correlation coefficient also appears to have a similar variation trend in figure 21(b).

Figure 22 compares the converged weight distribution of the RNL-RL model with that
of the RNL-SL model. It is surprising that results agree well with each other, which
means that the CNN, which describes the relation between ∂w/∂y|w and the optimal wall
blowing and suction determined by RNL-SL and RNL-RL models, shares the same weight
distribution. In other words, the control strategy discovered from our RNL-RL model that
only uses spanwise wall shear stress in RNL flow fields as input, is close to the globally
optimal solution.

4.2. Application to active control
Even though the training process in RNL flow fields shows effective drag reduction, it
still needs to test whether the RNL-RL model also works well in real DNS flow fields.
Figure 23 shows the drag reduction results in a DNS test. It is notable that the drag
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Figure 22. Weight distribution in the spanwise direction of the RNL-RL model based on ∂w/∂y|w at
(a) Reτ = 100, (b) Reτ = 180 and (c) Reτ = 950. The model is trained based on the total velocity (u) and
compared with the RNL-SL model.
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Figure 23. Comparison of time histories of the streamwise wall shear stress of uncontrolled and controlled
flows based on ∂w/∂y|w from the RNL-SL and RNL-RL models: (a) Re = 100, (b) Re = 180, (c) Re = 950.

reduction rate is larger than the convergent reward shown in figure 20. The reason is that
during the period of each epoch, as shown in figure 21(a), the wall shear stress has not
reached the steady stage. But it has no influence on the training of the RNL-RL model,
because in this period of epoch, the model has been trained well enough and increasing
the period will not improve the training effect. It has also been discussed in detail in Han
et al. (2022) about the influence of T on the training results. Moreover, it is found that
the drag reduction rates at different Reynolds numbers are almost the same as those of the
RNL-SL models. According to table 5, drag reduction rates of our RNL-RL models also
achieve 90 %, 95 % and 89 % of those with opposition control.

Furthermore, the control mechanism determined by RNL-RL is analysed and compared
with that of the opposition control. The previous researches have shown that the spanwise
wall shear stress is an indicator of the streamwise vortices, better than wall pressure and
streamwise wall shear stress, because ∂w/∂y|w is the spanwise trace left by the streamwise
vortices on the wall and they show strong correlation in the near-wall region (Kravchenko
et al. 1993; Ge, Xu & Cui 2011). Ge et al. (2011) further compared the differences of the
cross-correlation coefficients between ∂w/∂y|w and ωx from the uncontrolled flow field
and the controlled one by random wall blowing and suction. It was found that they almost
remained the same as each other, which meant that the correlation between ∂w/∂y|w and
ωx was robust and would not be affected by the wall actuations. In that case, by using
∂w/∂y|w as the input, our RNL-RL model should also be able to detect the appearance of
the streamwise vortices and determine wall blowing and suction for control.

To clarify this control mechanism, referring to Lee et al. (2023), we show the
instantaneous contours of the streamwise vorticity and the wall blowing and suction in
figure 24. From the most prominent blue region in figure 24(a) (representing a negative
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Figure 24. Instantaneous contours of the streamwise vorticity with v–w velocity vector field and the wall
blowing and suction based on the RNL-RL model at Reτ = 180 at different times of (a,b). Lines of the z
gradient of the spanwise wall shear stress ((∂/∂z)/∂w/∂y|w) and the wall blowing and suction are compared.
Here the asterisk represents normalization by the r.m.s. values of themselves.
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Figure 25. Contours of the two-point correlation between the spanwise wall shear stress and the streamwise
vorticity in (a) uncontrolled and (b) controlled flow by the RNL-RL model at Reτ = 180.

streamwise vorticity), it is seen that sweep and ejection events are induced on the left
and right sides, respectively. Within this region, the control strategy derived by RL
involves applying blowing in the sweeping region and suction in the ejection region. This
control strategy is similar with the opposition control and the suboptimal control based on
∂w/∂y|w, since both of them aim at suppressing the up-and-down motion induced by the
streamwise vortices (Choi et al. 1994; Lee et al. 1998, 2023). The most prominent red
region shown in figure 24(b) also exhibits a consistent drag reduction mechanism. Also,
the effect of wall blowing and suction by the RNL-RL model on the near-wall turbulence is
shown by the two-point correlation between the spanwise wall shear stress and streamwise
vorticity in figure 25. It is found that these correlations are suppressed by the RNL-RL
control and the position of the correlation minima appears further away from the wall,
indicating the weakening of the streamwise vortices. So, it can be concluded that if only
using ∂w/∂y|w as input, RNL-RL tends to capture the streamwise vortices suppression
mechanism as its optimal solution, which has also been reported by Lee et al. (2023).
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Figure 26. Contours of the instantaneous wall blowing and suction by the RNL-RL model in (a) the x–z plane
and (b) the u′–v′ plane at Reτ = 180. Here u′ and v′ of (b) are from y+ = 10. The wall blowing and suction
velocities corresponding to the unsampled u′ and v′ are obtained through linear interpolation.

Different with the present work, Sonoda et al. (2023), Guastoni et al. (2023) applied
RL to determine the optimal wall blowing and suction with the input of streamwise and
normal velocity fluctuations on the detection plane at y+ = 15. Moreover, they used a
deep neural network to represent the RL agent. It can be viewed as a point-to-point style,
as dictated in (1) of Guastoni et al. (2023) and (3.4) and (3.5) of Sonoda et al. (2023).
The wall blowing and suction at one grid point is only dependent on the streamwise and
normal velocities at the same position on the detection plane. On the other hand, since
CNN is used as the RL agent in the present study, the wall blowing and suction at a grid
point is determined by the wall shear stresses within a certain range around it. So, their
control strategy indicates an abrupt switch between strong wall blowing and suction for
downwelling of high-speed fluids and upwelling of low-speed fluids. Also, due to the
dependence on the streamwise velocity fluctuation on the detection plane, the control
strategy of Guastoni et al. (2023) shows an inclination angle of the boundary between wall
blowing and suction. But our RNL-RL model is almost independent of the streamwise
velocity fluctuation, similar with that of opposition control, as shown in figure 26(b). The
wall blowing and suction explored from our RNL-RL model extends longitudinally in
the streamwise direction and alternatively changes along the spanwise direction reflecting
instantaneous near-wall streaky structures (figure 26a), whereas the wall actuations from
their model are uniform in the spanwise direction and the streamwise wavelength is equal
to the streamwise domain size. Besides the differences from the input data and the RL
architecture, different hyperparameters used for training will also lead to different local
optimum solutions (Lee et al. 2023).

Furthermore, we also carry out RNL-RL training based on the input of ∂u/∂y|w; but
it does not produce effective drag reduction results, even though the training process is
convergent and appears to have drag reduction effects in the RNL field. When applying
the trained model to control the DNS flow, the output wall blowing and suction do not
produce effective drag reduction. It may be due to the different flow fields in the streamwise
direction between the RNL model and DNS for training based on ∂u/∂y|w. For the SL of
CNN discussed in the above sections, even though there are also losses of the information
in the streamwise direction, the output of the RNL-SL model can still give acceptable
prediction with the guidance of label data. But for the RNL-RL model, the adjustment
of the action is completely dependent on the value function adopted by the RL agent
based on its observation of the flow environment. In this case, the restriction in the
streamwise direction makes the RNL-RL model trained by RNL data not applicable in
control of the DNS flow field. This needs to be further investigated in the future. As for a
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preliminary attempt of combining the RNL model with RL, successful application based
on the spanwise wall shear stress to the turbulent channel flow at up to Reτ = 950 provides
us an enlightening insight that a physical reduced-order model can overcome the difficulty
of high computational cost in the RL training and improve the feasibility of applying a
machine learning control method to practical situations.

5. Conclusions

In the present study an efficient flow control method, which combines the RNL model
with machine learning technology, was developed for drag reduction in turbulent channel
flow, aiming at reducing the training cost of the machine learning control. By eliminating
the streamwise varying perturbation–perturbation nonlinearity, the RNL model is used as
a reduced-order model to carry out simulation of the wall turbulence economically. The
machine learning control model is designed to predict effective wall blowing and suction
to weaken the streamwise vortices.

Firstly, the coupled RNL-SL control model is trained by RNL data to predict the normal
velocities at a detection plane at y+ = 10 as wall blowing and suction based on streamwise
or spanwise wall shear stress. The architecture of the RNL-SL model is constructed in
a manner similar to our previous investigation (Han & Huang 2020), in which a linear
single-layer CNN is employed for prediction using the spanwise wall shear stress as input,
while a CNN with multiple nonlinear convolutional layers is utilized with the streamwise
wall shear stress. Although the flow field of RNL simulation shows some differences with
those of DNS, the well-trained RNL-SL model exhibits remarkable resemblance to the
CNN model trained using DNS data (Han & Huang 2020) and the analytical solution
of the suboptimal control (Lee et al. 1998). It indicates that the RNL model captures
the fundamental self-sustaining mechanism in turbulent channel flow especially in the
near-wall region. The RNL-SL model is tested in a DNS flow field. Based on the spanwise
wall shear stress, the correlation coefficients between the predicted normal velocities
and those at the detection plane are 0.85, 0.80 and 0.81, which are slightly lower than
those obtained in the test RNL flow field, 0.90, 0.89 and 0.90 at Reτ = 100, 180, 950,
respectively. The prediction performance based on the streamwise wall shear stress in
the DNS flow field decreases to about one half of that in RNL flow field. It is because
the streamwise information of the flow field has more influence on the training process
when using the streamwise wall shear stress as input. However, it is restricted in the RNL
simulation resulting in larger differences between the training data from the RNL model
and the test one from DNS. The correlation coefficients in DNS based on the streamwise
wall shear stress are 0.60, 0.40 and 0.36 at Reτ = 100, 180, 950, respectively. This also
shows the linear relationship between the predicted value and the label data, and it is still
applicable for flow control. Active control of the DNS flow field is carried out using the
wall blowing and suction determined by the RNL-SL model. Drag reduction rates are
over 16 % using the RNL-SL model with the spanwise wall shear stresses at the Reynolds
number of up to Reτ = 950, and 12 % using the streamwise wall shear stress. These results
indicate that the RNL model is effective for predicting the optimal wall blowing and
suction to reduce the drag in the turbulent channel flow. It enables significant savings in
computational cost, which can be used as a physical reduced-order model for accelerating
the training of the machine learning control model.

Furthermore, we also tested a control strategy based on the wall quantities only, without
the need of the label data on the detection plane, which is hard to acquire in real practice.
A semi-supervised machine learning method of RL can optimize the control strategy by
analysing the reward of control without the label data. It is well known that RL relies
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much on the simulation speed of the flow field since it is an online learning process,
where the controlling and training processes are conducted synchronously. In the present
study we attempted to explore the possibility of combining the RNL model with RL to
determine the optimal wall blowing and suction based on the spanwise wall shear stress.
With the help of the RNL model, the RNL-RL model discovers the effective control
strategy, which achieves similar drag reduction rates as reported in the previous studies, but
with significantly reduced learning cost. Compared with the results of Lee et al. (2023),
the training cost of our RNL-RL model is decreased by over thirty times at Reτ = 950
since much fewer grids are used in the RNL model. The control strategy discovered by
the RNL-RL model was also investigated. By analysing the influence of wall blowing
and suction on the streamwise vortices, it was found that with the input of spanwise wall
shear stress, RNL-RL applies blowing and suction to suppress the streamwise vortices in
a similar way with the opposition control. In addition, we also carried out the training of
the RNL-RL model based on the streamwise wall shear, but the lack of flow information
in the streamwise direction of the RNL model makes it difficult for RNL-RL to learn
an effective and convergent control strategy. So it remains to be explored in the future.
The present results provide a perspective that it is feasible to extend the application of the
machine learning control method to the flow field at higher Reynolds numbers by coupling
a physical reduced-order model to keep the learning cost within an acceptable range. The
RNL model has been proven to be a good choice, especially for drag reduction in wall
turbulence.
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Appendix A. Open source code

The source code of this project is released as open source on the GitHub of the author:
https://github.com/Bingzheng-Han/RNL-ML-control.

Appendix B. Comparison between RNL and DNS flow fields

Figure 27 shows the instantaneous wall-normal velocity from RNL flow fields compared
with that from DNS flow. Similar with the results of the streamwise velocity, The normal
velocity at y+ = 10 also show a visible restriction of the streamwise wavenumbers and
present an elongated streak in the streamwise direction. In the spanwise direction, because
of the usage of the same grid resolution, alternating positive and negative velocity
fluctuations in RNL fields are similar to DNS. These phenomena are consistent for both
Reτ = 180 and Reτ = 950.

From the instantaneous streamwise vorticity in the y–z plane shown in figure 28, the
overall distribution of ωx in the RNL model is very similar to that in DNS, especially
in the near-wall region where the amplitudes of ωx are the largest. It indicates that the
restriction of the streamwise wavenumbers does not affect the RNL model’s prediction of
streamwise vortices. The r.m.s. fluctuations of the streamwise, wall-normal and spanwise
vorticities at Reτ = 180 and Reτ = 950 are shown in figure 29. The results from RNL
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Figure 27. Comparison of the instantaneous normal velocity between (a,c) DNS and (b,d) the RNL model at
y+ = 10: (a,b) Reτ = 180 and (c,d) Reτ = 950.
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Figure 28. Comparison of the instantaneous streamwise vorticity between (a,c) DNS and (b,d) the RNL
model: (a,b) Reτ = 180 and (c,d) Reτ = 950.

fields are all similar with those from DNS, but there are several differences in both
the inner- and buffer-layer regions. Even though the magnitude of the r.m.s. of the
streamwise vorticity is under-predicted because the small scales that dominate the near
wall and buffer-layer vorticity are under-resolved in the RNL model, the locations of the
maximum and minimum values in the near-wall region are consistent with DNS, which
has also been reported by Gayme & Minnick (2019). The position of the maximum value
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Figure 29. Comparison of the r.m.s. fluctuations of the streamwise (—), normal (– –) and spanwise
(- · -) vorticities normalized by the wall shear stress: (a) Reτ = 180 and (b) Reτ = 950. Symbols of �, ∇, ◦
representing streamwise, normal and spanwise vorticities from Kim et al. (1987). Red lines are the results from
DNS and blue lines are from the RNL model.
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Figure 30. Variations of the loss with the number of the filter kernels (Nfi) and convolutional layers (� for 2,
� for 4 and � for 6) used in the CNN architecture based on the streamwise wall shear stress at Reτ = 180:
(a) the filter kernel size is 3 × 3, (b) the filter kernel size is 5 × 5.

can be considered to be the position of the centre of the streamwise vortices, and the
distance between the minimum and the maximum locations represents the mean radius of
streamwise vortices (Kim, Moin & Moser 1987). Accordingly, the RNL model is able to
predict the streamwise vortices near the wall.

Appendix C. Parametric study on CNN

As shown in table 2, there are three main hyperparameters related to CNN, i.e. number
of the convolutional layers, size of the filter kernel and number of filter kernels in each
convolutional layer. Taking the RNL-SL model based on the streamwise wall shear stress at
Reτ = 180 as an example, it is seen in figure 30 that increasing the number of convolutional
layers and the filter kernels used in each layer reduces the loss between the output of CNN
and the label data. However, it is observed that regardless of the number of convolutional
layers employed, errors with 8 filter kernels per layer remain roughly the same as those
with 6 kernels per layer. Also, increasing the number of convolutional layers from 4 to 6
does not decrease the loss substantially. Furthermore, the training losses obtained with 5 ×
5 filter kernels are always smaller than those obtained with 3 × 3 filter kernels. Therefore,
a CNN model with 4 convolutional layers, each using six 5 × 5 filter kernels, is employed
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in predicting the optimal wall blowing and suction based on the streamwise wall shear
stress at Reτ = 180, as listed in table 2.

Appendix D. Algorithm of DDPG

As introduced in § 2.3, DDPG consists of two networks: the actor network (μθμ) and the
critic network (QθQ). Here θμ is optimized by maximizing the expected total reward QθQ .
To update θQ, it needs to obtain the Bellman equation by making use of the recursive
relationship

QθQ(st, at) = E[r(st, at) + γ QθQ(st+1, at+1)], (D1)

where at+1 = μθμ(st+1). Since (D1) is derived without any estimation, QθQ(st, at) from
(D1) is thought to be the target value and the evaluation value by the critic work from (2.7)
should be as close as possible to it. Thus, θQ is optimized to minimize the loss:

L(θQ) = E[(r(st, at) + γ QθQ(st+1, at+1) − QθQ(st, at))
2]. (D2)

Since the updated network QθQ is also used in calculating the target value (D1), the
updating is prone to divergence (Lillicrap et al. 2015). It can be solved by using another
network Q

θQ′ , which shares the same architecture as the critic network but is updated
asynchronously with it to calculate the target value in (D1) (Mnih et al. 2013). When
updating θQ′

, the soft weight update method proved by Lillicrap et al. (2015) is applied,
i.e. θQ′ = τθQ + (1 − τ)θQ, to increase the stability of training, where τ = 0.01 in the
present study. A similar operation is also applied to utilize a target actor network μ

θμ′ for
calculating the next action at+1 = μ

θμ′ (st+1) in (D1).
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