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Abstract

We prove a new linear relation for multiple zeta values. This is a natural generalisation of the restricted
sum formula proved by Eie, Liaw and Ong. We also present an analogous result for finite multiple zeta
values.
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1. Main results

1.1. Main result for multiple zeta values. For k1, . . . , kr ∈ Z≥1 with k1 ≥ 2, the
multiple zeta values (MZVs) and the multiple zeta-star values (MZSVs) are defined
respectively by

ζ(k1, . . . , kr) :=
∑

n1>···>nr≥1

1

nk1
1 · · · n

kr
r

and

ζ?(k1, . . . , kr) :=
∑

n1≥···≥nr≥1

1

nk1
1 · · · n

kr
r

.

They are both generalisations of the Riemann zeta values ζ(k) at positive integers.
For an index k = (k1, . . . , kr), we call |k| := k1 + · · · + kr the weight and r the depth.

We write ζ+(k1, . . . , kr) := ζ(k1 + 1, k2, . . . , kr). For two indices k and l, we denote by
k + l the index obtained by componentwise addition, and always assume implicitly
the depths of both k and l are equal. We also write l ≥ 0 if every component of l is a
nonnegative integer. Our first main result is the following formula.
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Theorem 1.1. For (k1, . . . , kr) ∈ Zr
≥1 and t ∈ Z≥0,∑

m1+···+mr=r+t
mi≥1 (1≤i≤r)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζ+(am1 , . . . , amr )

=

t∑
l=0

∑
m1+···+mr−1=t−l
mi≥0 (1≤i≤r−1)

∑
|e|=l
e≥0

ζ+((k1, {1}m1 , . . . , kr−1, {1}mr−1 , kr) + e).

Here and hereafter, each ami denotes an mi-tuple of positive integers. When r = 1, we
understand the right-hand side as ζ+(k1 + t).

Remark 1.2. Theorem 1.1 is equivalent to the derivation relation which was obtained
by Ihara et al. [3]. This equivalence will be explained in Section 3.

Remark 1.3. We can deduce the sum formula∑
s1+···+su=k

s1≥2,si≥1(2≤i≤u)

ζ(s1, . . . , su) = ζ(k)

from Theorem 1.1 by taking r = 1, k1 = k − u and t = u − 1 for any positive integers k
and u with k − u ≥ 1.

Example 1.4. For (k1, k2) = (1, 2) and t = 1,

2ζ(2, 1, 2) + ζ(2, 2, 1) = ζ(2, 3) + ζ(3, 2) + ζ(2, 1, 2).

Theorem 1.1 is also equivalent to the following result.

Theorem 1.5. For (k1, . . . , kr) ∈ Zr
≥1 and s, t ∈ Z≥0,∑

m1+···+mr=r+t
mi≥1 (1≤i≤r)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζ+(am1 , . . . , amr , {1}
s)

=

t∑
l=0

∑
m1+···+mr−1=t−l
mi≥0 (1≤i≤r−1)

∑
|e|=l
e≥0

ζ+((k1, {1}m1 , . . . , kr−1, {1}mr−1 , kr, {1}s) + e
)
.

When r = 1, we understand the right-hand side as
∑
|e|=t
e≥0

ζ+((k1, {1}s) + e).

This is a generalisation of the restricted sum formula obtained by Eie et al. [1]. The
case r = 1 gives the original formula.

The proof of Theorem 1.5 will be given in Section 2. Here, we prove the equivalence
of Theorems 1.1 and 1.5.

Proof of the equivalence of Theorems 1.1 and 1.5. It is clear that Theorem 1.5 implies
Theorem 1.1 by setting s = 0. So, we prove that Theorem 1.1 implies Theorem 1.5.
Write G(k, s, t) (respectively H(k, s, t)) for the left-hand side (respectively the right-
hand side) of Theorem 1.5 and let F(k, s, t) := G(k, s, t) − H(k, s, t). We prove
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F(k, s, t) = 0 for k ∈ Zr
≥1, s, t ∈ Z≥0 by induction on s. If s = 0, then F(k, 0, t) = 0 by

Theorem 1.1. We assume F(k, s, t) = 0 for some s ∈ Z≥0 and show F(k, s + 1, t) = 0.

G((k, 1), s, t) =
∑

m1+···+mr+1=r+t+1
mi≥1 (1≤i≤r+1)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζ+(am1 , . . . , amr , {1}
mr+1+s)

=

t+1∑
mr+1=1

∑
m1+···+mr=r+t−mr+1+1

mi≥1 (1≤i≤r)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζ+(am1 , . . . , amr , {1}
mr+1+s)

=

t+1∑
mr+1=1

G(k, s + mr+1, t − mr+1 + 1)

=

t∑
u=0

G(k, s + t − u + 1, u),

H((k, 1), s, t) =

t∑
l=0

∑
m1+···+mr=t−l
mi≥0 (1≤i≤r)

∑
|e|=l
e≥0

ζ+((k1, {1}m1 , . . . , {1}mr−1 , kr, {1}mr+s+1) + e
)

=

t∑
l=0

t−l∑
mr=0

∑
m1+···+mr−1=t−l−mr

mi≥0 (1≤i≤r−1)

∑
|e|=l
e≥0

ζ+((k1, {1}m1 , . . . , {1}mr−1 , kr, {1}mr+s+1) + e
)

=

t∑
mr=0

t−mr∑
l=0

∑
m1+···+mr−1=t−l−mr

mi≥0 (1≤i≤r−1)

∑
|e|=l
e≥0

ζ+((k1, {1}m1 , . . . , {1}mr−1 , kr, {1}mr+s+1) + e
)

=

t∑
mr=0

H(k, s + mr + 1, t − mr)

=

t∑
u=0

H(k, s + t − u + 1, u).

Therefore,

F((k, 1), s, t) =

t∑
u=0

F(k, s + t − u + 1, u).

By replacing s by s + 1 and t by t − 1,

F((k, 1), s + 1, t − 1) =

t−1∑
u=0

F(k, s + t − u + 1, u).

Subtracting the two previous equations,

F(k, s + 1, t) = F((k, 1), s, t) − F((k, 1), s + 1, t − 1).
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By applying this equation repeatedly and F(k, s, 0) = 0 for arbitrary index k and
s ∈ Z≥0, we obtain

F(k, s + 1, t) =

t∑
t′=1

(−1)t′−1F((k, {1}t
′

), s, t − t′ + 1),

which gives the desired result. �

1.2. Main result for finite multiple zeta values. There are two types of finite
multiple zeta value (FMZV): A-finite multiple zeta(-star) values (A-FMZ(S)Vs) and
symmetric multiple zeta(-star) values (SMZ(S)Vs).

We consider the collection of truncated sums

ζp(k1, . . . , kr) =
∑

p>n1>···>nr≥1

1

nk1
1 · · · n

kr
r

modulo all primes p in the quotient ring A = (
∏

p Z/pZ)/(
⊕

p Z/pZ), which is
a Q-algebra. Elements of A are represented by (ap)p, where ap ∈ Z/pZ, and two
elements (ap)p and (bp)p are identified if and only if ap = bp for all but finitely many
primes p. For k1, . . . , kr ∈ Z≥1, theA-FMZVs and theA-FMZSVs are defined by

ζA(k1, . . . , kr) :=
( ∑

p>n1>···>nr≥1

1

nk1
1 · · · n

kr
r

(mod p)
)

p
,

ζ?A(k1, . . . , kr) :=
( ∑

p>n1≥···≥nr≥1

1

nk1
1 · · · n

kr
r

(mod p)
)

p
.

SMZ(S)Vs were first introduced by Kaneko and Zagier [4, 6]. For k1, . . . , kr ∈ Z≥1,

ζ∗
S

(k1, . . . , kr) :=
r∑

i=0

(−1)k1+···+kiζ∗(ki, . . . , k1)ζ∗(ki+1, . . . , kr).

Here, the symbol ζ∗ on the right-hand side stands for the regularised value coming
from harmonic regularisation, that is, a real value obtained by taking constant terms of
harmonic regularisation as explained in [3]. In the sum, we understand ζ∗(∅) = 1. Let
ZR be the Q-vector subspace of R spanned by 1 and all MZVs, which is a Q-algebra.
Then, the SMZVs are defined as elements in the quotient ringZR/(ζ(2)) by

ζS(k1, . . . , kr) := ζ∗
S

(k1, . . . , kr) (modζ(2)).

For k1, . . . , kr ∈ Z≥1, we also define the SMZSVs inZR/(ζ(2)) by

ζ?
S

(k1, . . . , kr) :=
∑

� is either a comma ‘,’
or a plus ‘+’

ζ∗
S

(k1� · · ·�kr) (modζ(2)).

Denoting by ZA the Q-vector subspace of A spanned by 1 and all A-FMZVs,
Kaneko and Zagier conjectured that there is an isomorphism betweenZA andZR/ζ(2)
as Q-algebras such that ζA(k1, . . . , kr) and ζS(k1, . . . , kr) correspond with each other.
(For more details, see [4, 6].) In the following, the letter ‘F ’ stands either for ‘A’ or
‘S’. Now, we state our second main result.
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Theorem 1.6. For (k1, . . . , kr) ∈ Zr
≥1 and t ∈ Z≥0,∑

m1+···+mr=r+t
mi≥1 (1≤i≤r)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζF (am1 , . . . , amr )

=

t∑
l=0

∑
m1+···+mr−1=t−l
mi≥0 (1≤i≤r−1)

∑
|e|=l
e≥0

ζF
(
(k1, {1}m1 , . . . , kr−1, {1}mr−1 , kr) + e

)
.

When r = 1, we understand the right-hand side as ζF (k1 + t).

Remark 1.7. We can also obtain the FMZVs version of the restricted sum formula by
replacing ζ+ with ζF in Theorem 1.5.

2. Proof of Theorem 1.5

2.1. Integral series identity. A 2-poset is a pair (X, δX), where X = (X,≤) is a finite
partially ordered set and δX is a label map from X to {0, 1}. A 2-poset (X, δX) is called
admissible if δX(x) = 0 for all maximal elements x ∈ X and δX(x) = 1 for all minimal
elements x ∈ X.

A 2-poset (X, δX) is depicted as a Hasse diagram in which an element x with δ(x) = 0
(respectively δ(x) = 1) is represented by ◦ (respectively •). For example, the diagram

s��s��
c
AAs��c

represents the 2-poset X = {x1, x2, x3, x4, x5}with order x1 < x2 < x3 > x4 < x5 and label
(δX(x1), . . . , δX(x5)) = (1, 1, 0, 1, 0). This 2-poset is admissible.

For an admissible 2-poset X, we define the associated integral

I(X) :=
∫

∆X

∏
x∈X

ωδX(x)(tx),

where
∆X := {(tx)x ∈ [0, 1]X |tx < ty if x < y}

and

ω0(t) :=
dt
t
, ω1(t) :=

dt
1 − t

.

For example,

I

 s��s��
c
AAs��c  =

∫
t1<t2<t3>t4<t5

dt1
1 − t1

dt2
1 − t2

dt3
t3

dt4
1 − t4

dt5
t5
.
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For indices k = (k1, . . . , kr) and l = (l1, . . . , ls), we define µ(k, l) as a 2-poset
corresponding to the following diagram:

s��c
c

kr

s��c
c

k1

��
c��c

c
l1 A

AAs��c
c

l2 AA
AAs��c

c
ls

For an index k = (k1, . . . , kr), let k? be the formal sum of 2r−1 indices of the form
(k1� · · ·�kr), where each � is replaced by ‘,’ or ‘+’.

We also define the Q-bilinear ‘circled harmonic product’ ~ by

(k1, . . . , kr) ~ (l1, . . . , ls) := (k1 + l1, (k2, . . . , kr) ∗ (l2, . . . , ls)),

where product ‘∗’ is the harmonic product defined inductively by

∅ ∗ k = k ∗ ∅ = k,
k ∗ l = (k1,k′ ∗ l) + (l1,k ∗ l′) + (k1 + l1,k′ ∗ l′)

for any indices k = (k1,k′) and l = (l1, l′).
Kaneko and Yamamoto proved the following formula for MZVs.

Theorem 2.1 (Kaneko–Yamamoto [5]). For any nonempty indices k and l,

ζ(µ(k, l)) = ζ(k ~ l?).

2.2. Proof of Theorem 1.5. For k = (k1, . . . , kr, {1}s) and l = ({1}t+1),

ζ(µ(k, l)) =I

 s ss
��
s��c

c
kr

s��c
c

k1

��
c
AAs

st



=
∑

m1+···+mr+ j=r+t
(mi≥1, j≥0)

I



ccc sss�Hk1 − 1 m1 − 1
HH��cc sssk2 − 1 m2 − 1
H�scc sss�Hkr − 1 mr − 1
H�
@�s ss ss j


=

t∑
j=0

(
s + j

s

) ∑
m1+···+mr=r+t− j

mi≥1 (1≤i≤r)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζ+(am1 , . . . , amr , {1}
s+ j).
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In general, for k′ = (k1, . . . , kr+s) and l = ({1}t+1),

ζ(k′ ~ l?) =

t∑
l=0

∑
m1+···+mr+s=r+s+t−l

mi≥1 (1≤i≤r)

∑
|e|=l
e≥0

ζ+((k1, {1}m1−1, . . . , kr+s, {1}mr+s−1) + e)

because the index ({1}t+1)? is equal to the formal sum of all indices of weight t + 1.
Now, we put kr+1 = · · · = kr+s = 1 here. Then, the index (k1, {1}m1−1, . . . , kr+s, {1}mr+s−1)
on the right becomes (k1, {1}m1−1, . . . , kr−1, {1}mr−1−1, kr, {1}u−1) with u = mr + · · · + mr+s.
For a fixed u, the number of (s + 1)-tuples (mr, . . . ,mr+s) giving u = mr + · · · + mr+s is(

u−1
s

)
. Thus,

ζ(k ~ l?) =

t∑
l=0

s+t−l+1∑
u=s+ j

(
u − 1

s

) ∑
m1+···+mr−1=r+t+s−l−u

mi≥1

∑
|e|=l
e≥0

ζ+((k1, {1}m1−1, . . . , kr, {1}u−1) + e
)
.

By writing u = s + j + 1,

ζ(k ~ l?) =

t∑
l=0

t−l∑
j=0

(
s + j

s

) ∑
m1+···+mr−1=r+t−l− j−1

mi≥1

∑
|e|=l
e≥0

ζ+((k1, {1}m1−1, . . . , kr, {1}s+ j) + e
)

=

t∑
j=0

(
s + j

s

) t− j∑
l=0

∑
m1+···+mr−1=r+t−l− j−1

mi≥1

∑
|e|=l
e≥0

ζ+((k1, {1}m1−1, . . . , kr, {1}s+ j) + e
)
.

By the integral-series identity and by induction on t, Theorem 1.5 follows.

3. Alternative proof of Theorem 1.1 and proof of Theorem 1.6

3.1. Alternative proof of Theorem 1.1. The derivation relation for MZVs was first
proved by Ihara et al. [3]. Horikawa et al. [2] showed the equivalence of the derivation
relation and Theorem 3.2.

Definition 3.1. For k = (k1, . . . , kr) ∈ Zr
≥1, we define Hoffman’s dual index of k by

k∨ = (1, . . . , 1︸  ︷︷  ︸
k1

+ 1, . . . , 1︸  ︷︷  ︸
k2

+1, . . . , 1 + 1, . . . , 1︸  ︷︷  ︸
kr

).

Theorem 3.2 (Horikawa et al. [2]). For k ∈ Zr
≥1 and l ∈ Z≥0,∑

|e|=l
e≥0

ζ+(k + e) =
∑
|e′ |=l
e′≥0

ζ+((k∨ + e′)∨).

In this subsection, we prove Theorem 1.1 by showing that it is equivalent to
Theorem 3.2, that is, we will show the following result.

Theorem 3.3. Theorem 1.1 and Theorem 3.2 are equivalent.
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Remark 3.4. Tanaka [9] showed that the restricted sum formula in [1] can be written
as the linear combination of the derivation relation. Theorem 3.3 is a generalisation of
this result.

The implications among ‘Generalised restricted sum formula’, ‘Restricted sum
formula’, ‘Ohno-type relation’ and ‘Derivation relation’ for MZVs can be summarised
as follows:

Generalised restricted sum formula
(Theorem 1.1, Theorem 1.5) ⊃ Restricted sum formula [1]

⇔

(This paper)

Ohno-type relation ([2], Theorem 3.2)

⇔

[2]

Derivation relation [3]

Proof of Theorem 3.3. The case r = 1 is obvious. For r ≥ 2, the following Lemma 3.5
gives Theorem 3.3. �

We denote the naive shuffle of two indices (k1, . . . , kr) and (l1, . . . , ls) by

(k1, . . . , kr) X(l1, . . . , ls)

and we extend ζ linearly. For example, (3, 1) X(2) = (2, 3, 1) + (3, 2, 1) + (3, 1, 2). For
k = (k1, . . . , kr) ∈ Zr

≥1 with r ≥ 2 and u ∈ Z≥0, set ku := (k1, ((k2, . . . , kr−1) X({1}u)), kr).
We also let

fL(k, t) :=(L.H.S. of Theorem 1.1 for k, t), fR(k, t) :=(R.H.S. of Theorem 1.1 for k, t),

gL(k, t) :=
∑
|e|=t
e≥0

ζ+(k + e), gR(k, t) :=
∑
|e′ |=t
e′≥0

ζ+((k ∨ + e′)∨),

f (k, t) := fL(k, t) − fR(k, t), g(k, t) :=gL(k, t) − gR(k, t)

and we extend them linearly with respect to the indices. Under these settings, we have
the following result.

Lemma 3.5. For k ∈ Zr
≥1 with r ≥ 2 and t ∈ Z≥0,

f (k, t) = −

t∑
u=0

g(ku, t − u), g(k, t) = −

t∑
u=0

(−1)u f (ku, t − u).

Proof. To prove the first equation, it is sufficient to show fR(k, t) =
∑t

u=0 gL(ku, t − u)
and fL(k, t) =

∑t
u=0 gR(ku, t − u). The proof of the former is obvious as follows:
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fR(k, t) =

t∑
l=0

∑
|e|=l
e≥0

ζ+((k1, ((k2, . . . , kr−1) X({1}t−l)), kr) + e)

=

t∑
l=0

∑
|e|=l
e≥0

ζ+(kt−l + e) =

t∑
l=0

gL(kt−l, l).

To prove the latter, we denote the m-fold repetition of ‘1+’ (respectively ‘1,’) by

1+
m

(respectively 1,
m

), and 1 by 1 . For example,

ζ( 1+
3

1,
2

1+
0

1 ) = ζ(1 + 1 + 1 + 1, 1, 1) = ζ(4, 1, 1).

Then

gR(ku, t − u) =
∑
|e′ |=t−u

e′≥0

ζ+((k∨u + e′)∨
)

=
∑
|e′ |=t−u

e′≥0

ζ+
((

(k1, ((k2, . . . , kr−1) X({1}u)), kr)∨ + e′
)∨)

=
∑

α1+···+αr−1=u, αi≥0
|e′ |=t−u, e′≥0

ζ+
((

(k1, {1}α1 , k2, {1}α2 , . . . , kr−1, {1}αr−1 , kr)∨ + e′
)∨)

=
∑

α1+···+αr−1=u, αi≥0
|e′ |=t−u, e′≥0

ζ+
(((

1+
k1−1

1,
α1+1

1+
k2−1

1,
α2+1
· · ·

· · · 1+
kr−1−1

1,
αr−1+1

1+
kr−1

1
)∨

+ e′
)∨)

=
∑

α1+···+αr−1=u, αi≥0
|e′ |=t−u, e′≥0

ζ+
(((

1,
k1−1

1+
α1+1

1,
k2−1

1+
α2+1
· · ·

· · · 1,
kr−1−1

1+
αr−1+1

1,
kr−1

1
)

+ e′
)∨)

=
∑

α1+···+αr−1=u
e1,1+···+er,kr−1=t−u

αi≥0, ei, j≥0

ζ+
((

1+
e1,1

1, · · · 1+
e1,k1−1

1, 1+
e1,k1 +1

1+
α1

1, 1+
e2,1

1, · · · 1+
e2,k2−2

1, 1+
e2,k2−1+1

· · · · · ·

1+
αr−1

1, 1+
er,1

1, · · · 1+
er,kr−2

1, 1+
er,kr−1

1
)∨)
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=
∑

α1+···+αr−1=u
e1,1+···+er,kr−1=t−u

αi≥0, ei, j≥0

ζ+
(

1,
e1,1

1+ · · · 1,
e1,k1−1

1+ 1,
e1,k1 +1

1,
α1

1+ 1,
e2,1

1+ · · · 1,
e2,k2−2

1+ 1,
e2,k2−1+1

· · · · · ·

1,
αr−1

1+ 1,
er,1

1+ · · · 1,
er,kr−2

1+ 1,
er,kr−1

1
)
.

Taking the sum over u = 0, . . . , t,
t∑

u=0

gR(ku, t − u) =
∑

α1+···+αr−1+e1,1+···+er,kr−1=t
αi≥0,ei, j≥0

ζ+
(

1,
e1,1

1+ · · · 1,
e1,k1−1

1+ 1,
e1,k1 +1︸                                              ︷︷                                              ︸

weight=e1,1+···+e1,k1 +k1
depth=e1,1+···+e1,k1 +1

1,
α1

1+ 1,
e2,1

1+ · · · 1,
e2,k2−2

1+ 1,
e2,k2−1+1︸                                                                ︷︷                                                                ︸

weight=α1+e2,1+···+e2,k2−1+k2
depth=α1+e2,1+···+e2,k2−1+1

· · · · · ·

1,
αr−1

1+ 1,
er,1

1+ · · · 1,
er,kr−2

1+ 1,
er,kr−1

1︸                                                                    ︷︷                                                                    ︸
weight=αr−1+er,1+···+er,kr−1+kr
depth=αr−1+er,1+···+er,kr−1+1

)

=
∑

m1+···+mr=r+t
mi≥1 (1≤i≤r)

∑
|ami |=ki+mi−1

(1≤i≤r)

ζ+(am1 , . . . , amr ) = fL(k, t).

We assume the first equation in the lemma and prove the second by induction on t.
The case t = 0 is clear. Let t > 0 and assume g(k, t′) = −

∑t′
u=0(−1)u f (ku, t′ − u) for all

integers t′ with 0 ≤ t′ < t. From the first equation,

g(k, t) = − f (k, t) −
t∑

u=1

g(ku, t − u) = − f (k, t) +

t∑
u=1

t−u∑
u′=0

(−1)u′ f ((ku)u′ , t − u − u′).

Since (ku)u′ =
(

u+u′
u

)
ku+u′ , by writing v = u + u′,

g(k, t) = − f (k, t) +

t∑
u=1

t∑
v=u

(−1)v−u
(
v
u

)
f (kv, t − v)

= − f (k, t) +

t∑
v=1

(−1)v
v∑

u=1

(−1)u
(
v
u

)
f (kv, t − v)

= − f (k, t) −
t∑

v=1

(−1)v f (kv, t − v) = −

t∑
u=0

(−1)u f (ku, t − u).

This completes the proof. �
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3.2. Proof of Theorem 1.6. The following theorem is called an Ohno-type relation
for FMZVs. It was conjectured by Kaneko [4] and proved by Oyama [8].

Theorem 3.6 (Oyama [8]). For k ∈ Zr
≥1 and l ∈ Z≥0,∑

|e|=l
e≥0

ζF (k + e) =
∑
|e′ |=l
e′≥0

ζF
(
(k∨ + e′)∨

)
.

Remark 3.7. The derivation relation for FMZVs was conjectured by Oyama and
proved by the second author [7]. Horikawa et al. [2] showed the equivalence of the
derivation relation and the above theorem for FMZVs.

By Theorem 3.6, we can prove Theorem 1.6 in exactly the same manner as in
the previous subsection. The relations among ‘Generalised restricted sum formula’,
‘Ohno-type relation’ and ‘Derivation relation’ for FMZVs can be summarised as
follows.

Generalised restricted sum formula (Theorem 1.6)

⇔

(This paper)

Ohno-type relation ([8], Theorem 3.6)

⇔

[2]

Derivation relation [7]
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