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CONDITIONAL LOGIC IS COMPLETE FOR CONVEXITY IN
THE PLANE

JOHANNES MARTI

ILLC, University of Amsterdam

Abstract. We prove completeness of preferential conditional logic with respect to convexity
over finite sets of points in the Euclidean plane. A conditional is defined to be true in a finite
set of points if all extreme points of the set interpreting the antecedent satisfy the consequent.
Equivalently, a conditional is true if the antecedent is contained in the convex hull of the points
that satisfy both the antecedent and consequent. Our result is then that every consistent formula
without nested conditionals is satisfiable in a model based on a finite set of points in the plane.
The proof relies on a result by Richter and Rogers showing that every finite abstract convex
geometry can be represented by convex polygons in the plane.

§1. Introduction. Preferential conditional logic was introduced by Burgess [9] and
Veltman [41] to axiomatize the validities of the conditional with respect to a semantics
in models based on ordering relations. In this semantics a conditional ϕ � � is true
with respect to an order over a finite set of worlds if the consequent � is true at all
worlds that are minimal in the order among the worlds at which the antecedent ϕ is
true. Preferential conditional logic is sound and complete in this semantics with respect
to models that are based on arbitrary preorders. But both Burgess and Veltman note
that for completeness it suffices to consider partial orders. The axioms of preferential
conditional logic are a weakening of the axioms in Lewis’ conditional logic [27] that
is sound and complete for models that are based on strict weak orders, which are in
bijective correspondence with total preorders.

Similar semantic clauses as in conditional logic, and thus analogous axiomatic
systems, have later also been used in default reasoning [25, 36], in belief revision theory
[18, 34] and in dynamic epistemic logic [7, 37]. It should also be mentioned that the
axiomatizations of conditional logics with respect to their order semantics are similar
to the characterizations of choice functions that are rationalizable by some preference
relation [5, 35]. Moreover, the semantic clause for the conditional in orders, which
is often attributed to [27], goes back to an earlier semantic clause for conditional
obligations in deontic logic [19].

Preferential conditional logic has also been shown to be complete with respect
to semantic interpretations that are quite different from the semantics in terms of
partial orders. Most notable are the interpretation of validity of inferences between
conditionals as preservation of high conditional probability [1, 15] and premise
semantics, where the conditional is interpreted relative to a premise set. A premise
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Fig. 1. A finite set of points in the plane and examples of conditionals that are true or false
relative to this set of points.

set is a family of sets of worlds, thought of as propositions that encode relevant
background information from the linguistic context [24, 40]. In this paper we provide
yet another interpretation to preferential conditional logic. We show that it is complete
with respect to convexity over finite sets of points in the Euclidean plane. This places
conditional logic into the tradition of modal logics with a natural spatial or geometric
semantics [38], most famous of which is the completeness result for S4 with respect to
the topology of the real line by McKinsey and Tarski [8, 31].

To illustrate our semantics consider the finite set of points in Figure 1. Think of
these points as satisfying propositional letters as indicated in their label. For instance
the point p̄qr in the upper right corner satisfies q and r but not p. Our semantics is
such that a conditional ϕ � � is true relative to such a set of points if the set of points
at which ϕ is true is completely contained in the convex hull of the set of points at
which both ϕ and � are true. Recall that a convex set is a set that for any two points
in the set also contains the complete line segment between these points. Intuitively,
these are the sets without holes or dents. The convex hull of a set is the least convex
set that contains the set. As an example of a convex hull we have in Figure 1 that the
shaded area is the convex hull of the three points pqr, p̄qr and pq̄r. In this example the
conditional (p ∨ q) � r is true because all points at which p ∨ q is true are contained
in the convex hull of the points where p ∨ q and r are both true. The conditional p � r
is however not true in the example because the point pqr̄ satisfies p but is not contained
in the convex hull of the points pqr and pq̄r, which are all the points that satisfy p
and r.

An equivalent formulation of our semantic clause is that a conditional ϕ � � is
true if the consequent � is true at all the extreme points of the set of points where the
antecedent ϕ is true. An extreme point of some set is a point in the set that is not in the
convex hull of all the other points from the set. Intuitively, the extreme points of some
set are the outermost points of that set. In the example from Figure 1 we have that pqr,
p̄qr and pq̄r are the extreme points of the set that is shaded. On the other hand pqr̄ is
not an extreme point of the shaded set because it is in the convex hull of the points pqr,
p̄qr and pq̄r. Note that in this formulation of the semantic clause for a conditional
ϕ � � the extreme points of the set of points satisfying the antecedent ϕ play a role
that is analogous to the minimal ϕ-worlds in the order semantics. Conversely, we will
see later that the upward closed sets in an order play a role that is analogous to the
convex sets in the geometric semantics.

In this paper we focus on a semantics that is only defined for formulas that do not
contain nested conditionals and in which all propositional letters occur in the scope
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of a conditional. It is possible to overcome this restriction but this has no significant
influence on the axiomatic questions that we are concerned with.

The main result of our paper can be formulated as follows: All finite constellation
of points in the plane of the kind as shown in Figure 1 satisfy all the theorems in
preferential conditional logic and every formula that is not a theorem of the logic is
false in some such constellation.

The completeness proof from this paper consists of two steps:

1. We first observe that preferential conditional logic is complete for a semantics
in models based on convex geometries.

2. We then show that every finite convex geometry can be represented by a finite
set of points in the plane in such a way that all true formulas of conditional logic
are preserved.

From these two steps we obtain our completeness result because by the first step every
consistent formula ϕ is true in some finite model based on a convex geometry and by
the second step this model can be transformed into a concrete model of ϕ that is based
on a finite set of points in the plane. We now describe these two steps in greater detail.

In the first step we make use of the notion of a convex geometry [3, 14, 22]. Formally,
convex geometries are families of sets that are closed under arbitrary intersections and
have the anti-exchange property, which is a separation property that is reminiscent
of the T0 separation property in topology. Convex geometries are a combinatorial
abstraction of the notion of a convex set in Euclidean spaces, such as the Euclidean
plane. This is somewhat analogous to how topological spaces are an abstraction from
the notions of open and closed sets in Euclidean spaces. The convex sets in any subspace
of an Euclidean space form a convex geometry. But it is not the case that every convex
geometry, or even every finite convex geometry, is isomorphic to a subspace of some
Euclidean space. An easy way to see this is to observe that in any Euclidean space all
singleton sets are convex, which is not enforced by the definition of a convex geometry.

One can view the semantics in convex geometries as a generalization of the order
semantics over partial orders. The family of upward closed sets in any partial order
form a convex geometry. Moreover, a conditional is true relative to a given partial
order if and only if it is also true in the convex geometry of all upward closed sets in
the order. Note that this especially means that the completeness of the order semantics
entails the completeness of the semantics in convex geometries.

To understand the relation between the order semantics, the semantics in convex
geometries and the semantics for convexity between finitely many points in the plane it
might be helpful to think of an analogy with the different semantics for the modal logic
S4. Both, preferential conditional logic and S4, have a relatively concrete relational
semantics in terms of partial orders for preferential conditional logic and in terms of
preorders, that are transitive and reflexive relations, for S4. Both logics have an abstract
spatial or geometric semantics, the semantics in convex geometries for preferential
conditional logic and the semantics in topological spaces for S4. In both cases the
abstract semantics generalizes the relational semantics. For preferential conditional
logic this is done by considering the upward closed sets in the partial order as a convex
geometry. For S4 one can also consider the upward closed sets in a preorder, which form
a so-called Alexandroff topology. Both logics additionally have a concrete spatial or
geometric semantics, over a finite set of points in the plane for preferential conditional
logic, and over the whole real line for S4. In both cases proving completeness for
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the concrete spatial or geometric semantics requires extra work. For preferential
conditional logic this is the construction mentioned in the second step above and
in the case of S4 it is the theorem of McKinsey and Tarski.

The semantics in convex geometries can also be seen as a further development of
premise semantics. The convex sets in our semantics play the role of the complements
of the sets of worlds in the premise set of premise semantics. There is, however, a
crucial difference in the semantic clause with which a conditional is interpreted in a
family of sets of worlds. Motivated by linguistic considerations premise semantics uses a
quite sophisticated semantic clause that is insensitive to closing the family of sets under
intersections. In [17, 32] it is observed that for developing proof systems for preferential
conditional logic it is beneficial to lift the implicit assumption that the family of sets of
worlds, relative to which the conditional is evaluated, is closed under intersections. To
achieve this they use a simplified semantic clause from [29] that is sensitive to closure
under intersections. When one uses the conditional with this semantic clause relative
to a family of sets of worlds that is not closed under intersection different formulas
turn out to be true than would be true relative to the same family of sets of worlds
using the semantic clause from premise semantics. Hence, it is helpful to distinguish
this new setting from premise semantics and call it neighborhood semantics, following
the terminology form [32].

This neighborhood semantics is also the starting point for the categorical
correspondence in [30]. Based on earlier work on the theory of choice functions [20, 23]
this paper establishes a correspondence between finite Boolean algebras with additional
structure that encodes non-nested preferential conditional logic and families of subsets
of the set of atoms of these algebras. To obtain a well-behaved correspondence it is
necessary to allow for families of sets that are not closed under intersections. However,
one can require closure under unions and a separation property that is dual to the
anti-exchange property mentioned above. If one then considers the complements of
all the sets in a such a family of sets then one obtains a new family that is closed
under arbitrary intersections and that has the anti-exchange property. Thus, one gets
a convex geometry.

The second step of the proof is to show that for every finite convex geometry there
is a finite subspace of the plane that satisfies the same formulas in conditional logic.
This step is not trivial because, as we already explained above, not every finite convex
geometry is isomorphic to a subspace of some Euclidean space. However, following
[21], there has recently been a lot of literature on representing finite convex geometries
inside of Euclidean spaces by some more intricate construction than just selecting an
isomorphic subspace [2, 11, 12, 33]. The main result of [21], for which [33] give a
much shorter proof, is that every finite convex geometry is isomorphic to the convex
geometry on a finite set of points in some Euclidean space, if we use an alternative
notion of convex set that is slightly different from the standard notion of convex set.
Moreover, [33] shows that every finite convex geometry is isomorphic to the convexity
over a set of polygons in the plane, using the standard notion of convexity, but now
every point in the original convex geometry corresponds to a whole polygon in the
plane. The papers [2, 11, 12] investigate to what extent it is possible to prove the same
result using circles instead of polygons.

In the second step of the completeness proof we make use of the representation
by [33], where a finite convex geometry is represented by a set of polygons. This
construction is such that the extreme points of any two polygons in the set are disjoint.
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One can thus define a function that maps an extreme point of some polygon in the set to
the point in the original convex geometry that the polygon is representing. The domain
of this function can be considered to be the finite subspace of the plane consisting of
all the points that are an extreme point of one of the polygons. The crucial insight is
then that this function is a strong morphism of convex geometries in a sense defined in
[30], which guarantees the preservation of true formulas in conditional logic.

The structure of this paper is as follows: In Section 2 we review the notion of
a convex geometry and fix the necessary terminology. In Section 3 we present the
syntax of preferential conditional logic and define its semantics in convex geometries.
Section 4 contains a self-contained completeness result for preferential conditional
logic with respect to its semantics in convex geometries. In Section 5 we discuss the
notion of morphism between finite convex geometries from [30] that preserves the truth
of all formulas in conditional logic. In Section 6 we show that the representation of
finite convex geometries in the plane from [33] yields such a morphism. In Section 7
we put the results from the previous sections together to prove the completeness of
preferential conditional logic with respect to convexity between finite sets of points in
the plane. Moreover, we show that this result cannot be improved to a completeness
result with respect to sets of points on the real line.

§2. Convex geometries. In this section we recall some basic terminology and results
related to abstract convex geometries. For a more thorough introduction see [3, 14] or
[22, Chapter 3]

2.1. Basic definitions. A convex geometry (W, C) is a set W together with a family
C ⊆ PW of convex sets that has the following properties:

1. C is closed under arbitrary intersections, that is,
⋂

X ∈ C for all X ⊆ C.
2. C has the anti-exchange property that for every C ∈ C and all x, y ∈W with
x, y /∈ C and x �= y there is a D ∈ C with C ⊆ D such that x ∈ D and y /∈ D,
or x /∈ D and y ∈ D.

We sometimes use just W, or just C, to denote the convex geometry (W, C) consisting
of both W and C. Thereby it is assumed that the identity of the other component is
understood from the context.

Most authors require that ∅ ∈ C. We do not require this because, as we explain in
Remark 3.4, it is convenient for the semantics of conditional logic to allow for convex
geometries in which the empty set is not convex.

We call the complements of convex sets feasible, following the literature on
antimatroids [22, Chapter 3]. The family of all feasible sets is denoted byF = {W \ C |
C ∈ C}. We use the notation X =W \ X to denote the complement of some X ⊆W .

Given any subset X ⊆W its convex hull co(X ) ⊆W is defined as

co(X ) =
⋂

{C ∈ C | X ⊆ C}.

Because convex sets are closed under intersection the convex hull co(X ) is a convex set.
In fact it is the least convex set containing X. One can also show that as an operation on
PW the convex hull co : PW → PW defines a closure operator, meaning thatX ⊆ Y
implies co(X ) ⊆ co(Y ), X ⊆ co(X ), and co(co(X )) ⊆ co(X ) for all X,Y ⊆W . The
relation between the family of convex sets and the convex hull is an instance of the well-
known correspondence between complete meet-semilattices and closure operators.
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For every subset X ⊆W , where (W, C) is a convex geometry, we define the relative
convexity on X as follows: A set C ⊆ X is convex in the relative convexity if there is
some set C ′ that is convex in W such that C = C ′ ∩ X . It is not hard to see that the
relative convexity is a convex geometry.

The prime examples of a convex geometry are the families of convex sets in the
Euclidean space Rn for every dimension n. A set C ⊆ Rn is convex if it contains the
complete line segment between any two of its points. This means that for all x, y ∈ C
we need {�x + (1 – �)y | � ∈ [0, 1]} ⊆ C . We call the family of convex sets defined in
this way the standard convexity. It is well known that the convex hull of a set X ⊆ Rn

in the standard convexity is the set of all convex combinations of points in X, where a
convex combination of x1, ... , xk ∈ X is any point that can be written as

∑k
i=1 �ixi , for

�1, ... , �k ≥ 0 with
∑k
i=1 �i = 1.

Another example of convex geometries are partially ordered sets. Because the
standard semantics of conditional logic is usually defined over partially ordered sets
this example provides the link between convex geometries and conditional logic. Recall
that a partially ordered set, or just poset, is a set W together with a partial order ≤
on W, where a partial order is a binary relation that is reflexive, transitive and anti-
symmetric. Given a partial order ≤ on W we define the upset convexity U(≤) on W
to consist of all the upward closed sets in ≤, that is, all the sets C such that x ∈ C
and x ≤ y implies y ∈ C . The convex hull of a set X ⊆W is then identical to the
set X↑ = {y ∈W | x ≤ y for some x ∈ X}, which is the upward closure of X. Note
that U(≤) is just the Alexandroff topology associated to the order ≤. Closure under
arbitrary intersections is thus obvious. The anti-exchange property follows from the
T0 separation property of any Alexandroff topology that is defined from a poset. The
reason that in this paper we assume that the order semantics of conditional logic is
based on posets instead of just preorders is that the Alexandroff topology of a preorder
that is not anti-symmetric does not have the T0 separation property and thus it is not
a convex geometry.

2.2. Extreme points. A point x ∈ X in some set X ⊆W in a convex geometry
(W, C) is an extreme point of X if x /∈ co(X \ {x}). The intuition is that an extreme
point of X is an outermost point of the set X. The extreme points of a set in the
upset convexity of a poset are precisely the minimal elements of the set. We write
ex(X ) ⊆ X for the set of all of its extreme points of X. The following proposition
yields an alternative characterization for the set of extreme points.

Proposition 2.1. For every X ⊆W we have ex(X ) =
⋂
{Y ⊆ X | X ⊆ co(Y )}.

Proof. For the contrapositive of the ⊆-inclusion take x ∈ X such that there is some
Y ⊆ X with x /∈ Y and X ⊆ co(Y ). Then x ∈ co(Y ) ⊆ co(X \ {x}) and so x is not
an extreme point of X.

For the contrapositive of the ⊇-inclusion consider an x ∈ X with x ∈ co(X \ {x}).
Set Y = X \ {x}, and observe that X ⊆ co(Y ) but x /∈ Y .

For finite sets one has the following relation between extreme points and the convex
hull operator.

Theorem 2.2. The following are equivalent for every finite set K ⊆W in a convex
geometry C on W:

ex(K) ⊆ X iff K ⊆ co(K ∩ X ) for all X ⊆W.
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Proof. This follows from item 3 of Theorem 1 in [30] and the observation that
every finite set is smooth in the terminology of that paper. Note that the proof of this
theorem uses the characterization from Proposition 2.1 as the definition of the extreme
points.

Lastly, we define the notion of a polygon. A polygon P ⊆W in a convex geometry
(W, C) is any set that can be written of the form P = co(P′) for a finite set P′ ⊆ P.
Clearly every such polygon has only a finite number of extreme points because for any
x ∈ P with x /∈ P′ we have that x ∈ co(P′) ⊆ co(P \ {x}).

§3. Conditional logic. In this section we discuss the syntax of preferential
conditional logic that we use in this paper and explain its semantics in convex
geometries.

3.1. Syntax of one-step preferential conditional logic. Conditional logics are
commonly formulated in a classical propositional modal language with one binary
modality �, which forms the conditional ϕ � � with antecedent ϕ and consequent
� [10, 27]. That � is a modality means that one can nest conditionals, as for
example in the formula (((p � q) � r) ∧ q) → r. In this paper we choose not to deal
with the complications arising from nested conditionals and instead just work with
one-step formulas that are Boolean combination of conditionals over propositional
formulas. This is not a substantial restriction for most conditional logics, because
the axiomatizations of these logics constrain only one layer of conditionals and then
are extended freely to formulas of larger conditional depth. Readers familiar with
coalgebraic modal logic might recognize this as the one-step setup that is common in
coalgebraic logic [26]. We sketch in Remarks 3.3 and 7.2 below how one would extend
our semantics and completeness result to formulas with nested conditionals.

To be more precise about our setting fix a set Prop of propositional letters and
consider the grammar

ϕ0 ::= p | ¬ϕ0 | ϕ0 ∧ ϕ0, where p ∈ Prop,

ϕ1 ::= ϕ0 � ϕ0 | ¬ϕ1 | ϕ1 ∧ ϕ1.

Let L0 be the set of formulas generated from ϕ0 and L1 the set of formulas generated
from ϕ1. Note that L0 is just the language of classical propositional logic. In both L0

and L1 we use further Boolean connectives, such as ∨, →, and ↔, as abbreviations
with their usual meaning in classical logic. To omit parenthesis we assume that ¬ binds
stronger than ∧ and ∨, which in turn bind stronger than �, → and ↔.

In our axiomatization of preferential conditional logic we follow the one-step setup in
that we only consider proofs in which all formulas are either fromL0 or fromL1. Hence,
proofs are not allowed to contain nested conditionals or formulas with conditionals
that contain propositional letters that are not in the scope of a conditional.

As axioms we allow all instances of propositional tautologies inL0 plus the following
axioms that are in L1:

(Id) p � p, (And) (p � q) ∧ (p � r) → (p � q ∧ r),
(CM) (p � q) ∧ (p � r) → (p ∧ r � q), (Or) (p � q) ∧ (r � q) → (p ∨ r � q).

We have the following inference rules: First, modus ponens, where the premises are
either both in L0 or both in L1; second, uniform substitution ϕ/ϕ[�], where either
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ϕ ∈ L0 and� : Prop → Li for some i ∈ {0, 1}, orϕ ∈ L1 and� : Prop → L0; and third,
we have the following two inference rules, with premises in L0 and conclusions in L1:

(LLE)
ϕ ↔ �

(ϕ � �) ↔ (� � �)
, and (RW)

� → �
(ϕ � �) → (ϕ � �)

.

As is common in Hilbert-style axiomatizations we understand these rules such that the
conclusion is derivable whenever the premises are derivable. In the derivation system
given here there is no notion of a proof with open assumptions, and the rules (LLE)
and (RW) would no longer be sound for proofs with open assumptions.

We use the standard notions of derivability and consistency for formulas in either
L0 or L1 with respect to the above axiomatic system. We also write � ϕ if some ϕ ∈ Li
for some i ∈ {0, 1} is derivable

The axioms and rules given here and their names closely follow the rules of System
P in the literature on nonmonotonic consequence relations [25]. It is however easy to
show that these rules and axioms are interderivable with the rules and axioms from [9]
or [41].

The following proposition gathers examples of derivable formulas and rules.

Proposition 3.1. The following formulas are derivable in preferential conditional logic:

(WCM) (p � q ∧ r) → (p ∧ q � r), (CCut) (p � q) ∧ (p ∧ q � r) → (p � r),
(S) (p ∧ q � r) → (p � ¬q ∨ r), (CCut’) (p � q) ∧ (q � r) → (p ∨ q � r).

The following rule is derivable in preferential conditional logic:

(R)
� → �

(ϕ � �) → ((ϕ ∧ �) ∨ � � �)
.

Proof. Derivation of (WCM): With (RW) we obtain that (p � q ∧ r) → (p � q)
and (p � q ∧ r) → (p � r) are derivable. Because by (CM) the formula (p � q) ∧
(p � r) → (p ∧ r � q) is an axiom we can then use propositional reasoning to derive
(p � q ∧ r) → (p ∧ q � r).

In the remaining derivations we omit the steps that are propositional and focus on
the axioms or rules involving the conditional. We are confident that the reader is able
to supply the missing details. As an example a short description of the above derivation
of (WCM) would be as follows: From p � q ∧ r we can derive with the help of (RW)
that p � q and that p � r. With (CM) it follows that p ∧ q � q.

Derivation of (S): First observe that from (Id) we get thatp ∧ ¬q � p ∧ ¬q and with
(RW) we obtain p ∧ ¬q � ¬q ∨ r. Then use (RW) again to obtain p ∧ q � ¬q ∨ r
from p ∧ q � r. We can use (Or) to get (p ∧ q) ∨ (p ∧ ¬q) � ¬q ∨ r. By (LLE) we
obtain p � ¬q ∨ r.

Derivation of (CCut): Fromp ∧ q � r it follows by (S) thatp � ¬q ∨ r. Combining
this with the assumption p � q using (And) we obtain p � (¬q ∨ r) ∧ q. By (RW)
follows that p � r because (¬q ∨ r) ∧ q → r is a theorem of classical propositional
logic.

Derivation of (CCut’): First derive p ∨ q � q using (Or), (Id) and the assumption
p � q. Then observe that by (LLE) we obtain (p ∨ q) ∧ q � r from the assumption
q � r. Then apply (CCut) to p ∨ q � q and (p ∨ q) ∧ q � r, substituting the letter p
in (CCut) with p ∨ q. This yields p ∨ q � r.
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Derivation of (R): Because of the premise that � → � we obtain � � � because of
(RW) and the instance� � � of (Id). Applying (CM) toϕ � � and� � � yieldsϕ ∧
� � �. Because � � � holds by (Id) we can use (Or) to get (ϕ ∧ �) ∨ � � �.

3.2. Semantics of the conditional in convex geometries. To give a semantics to the
conditional we are using models that are based on abstract convex geometries as defined
in Section 2. Thus, we define a modelM = (W, C, V ) to consist of

• a set W, whose elements are called points or worlds,
• a convex geometry C ⊆ PW over W, and
• a function V : Prop → PW that is called the valuation function.

As is usual in modal logics the valuation function V is used to assign meanings to the
propositional letters in Prop. This assignment of meanings is extended to propositional
formulas from L0 in the standard way with the recursive clauses

[[p]]V = V (p), [[¬ϕ]]V =W \ [[ϕ]]V , and [[ϕ ∧ �]]V = [[ϕ]]V ∩ [[�]]V .

We often write [[ϕ]] for [[ϕ]]V if V is clear from the context.
We use the standard clauses for the propositional connectives over L1 relative to the

modelM = (W, C, V ):

M |= ¬ϕ iff notM |= ϕ, and M |= ϕ ∧ � iff M |= ϕ andM |= �.

The conditional has the following semantics:

M |= ϕ � � iff for all C ∈ C with [[ϕ]] � C there is a D ∈ C
with C ⊆ D and [[ϕ]] � D such that[[ϕ]] ⊆ D ∪ [[�]].

The truth of formulas in L1 is only relative to the model M and does not need to be
relativized to a world of evaluation. This is possible because we do not nest conditionals
and all propositional letters that occur in a formula from L1 need to be in the scope of
some conditional.

We use the standard notion of validity, calling a formula ϕ ∈ L1 valid iff M |= ϕ
for all models M. As usual in modal logic we also call a formula valid over a class of
models or convex geometries if it is true in all models from this class or it is true in all
models that are based on a convex geometry from the class.

Preferential conditional logic is sound for this semantics. Note that the proof
of soundness never uses the special properties of the convex geometry C ⊆ PW .
Soundness already holds for arbitrary families of sets.

Proposition 3.2. If ϕ ∈ L1 is derivable in preferential conditional logic then ϕ is valid.

Proof. One first shows, analogous to the soundness of propositional logic, that if
� ϕ for some ϕ ∈ L0 then [[ϕ]]V =W for all valuations V : Prop → PW . Using this
one can show the statement of the proposition with a routine induction on the length
of derivations in the axiomatic system. Here we only treat the case of the axiom (Or)
and leave all other cases, which are easier, to the reader.

Consider any model M = (W, C, V ). We want to show that M |= (p � q) ∧ (r �
q) → (p ∨ r � q). Assume thatM |= p � q and thatM |= r � q. To showM |= p ∨
r � q consider any convex C ∈ C such that [[p ∨ r]]V � C . We need to find a convex
D ∈ C withC ⊆ D, [[p ∨ r]]V � D and [[p ∨ r]]V ⊆ D ∪ [[q]]V . Because [[p ∨ r]]V � C
it follows that either [[p]]V � C or [[r]]V � C . Consider the case where [[p]]V � C . The
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reasoning in the other case where [[r]]V � C is completely analogous. Because M |=
p � q it follows from [[p]]V � C that there is some C ′ ∈ C with C ⊆ C ′, [[p]]V � C ′

and [[p]]V ⊆ C ′ ∪ [[q]]V . Then distinguish cases depending on whether [[r]]V ⊆ C ′.
If [[r]]V ⊆ C ′ then we can let D = C ′ because [[p ∨ r]]V � C ′ follows from

[[p]]V � C ′ and [[p ∨ r]]V ⊆ C ′ ∪ [[q]]V follows from [[p]]V ⊆ C ′ ∪ [[q]]V together
with [[r]]v ⊆ C ′.

If [[r]]V � C ′ then we can apply the assumption M |= r � q to obtain a
C ′′ ∈ C with C ′ ⊆ C ′′, [[r]]V � C ′′ and [[r]]V ⊆ C ′′ ∪ [[q]]V . We can let D = C ′′. It
clearly holds that C ⊆ C ′′. That [[p ∨ r]]V � C ′′ follows from [[r]]V � C ′′. Lastly,
it holds that [[p ∨ r]]V ⊆ C ′′ ∪ [[q]]V because [[p]]V ⊆ C ′ ∪ [[q]]V , C ′ ⊆ C ′′ and
[[r]]V ⊆ C ′′ ∪ [[q]]V

If we allow C ⊆ PW to be an arbitrary family of sets then our semantics is equivalent
to the neighborhood semantics that has already been used in the literature [17, 29, 32].
Thus the semantics in convex geometries specializes the neighborhood semantics for
preferential conditional logic. To see why our semantics specializes neighborhood
semantics let us dualize the semantic clause such that it is expressed in terms of the
family F of feasible sets. It then becomes the clause

M |= ϕ � � iff for all F ∈ F with F ∩ [[ϕ]] �= ∅ there is a G ∈ F
with G ⊆ F and G ∩ [[ϕ]] �= ∅ such that G ∩ [[ϕ]] ⊆ [[�]].

This clause is precisely the same as the clause that is used for arbitrary familiesF ⊆ PW
in [17, 29, 32]. It can be traced back to much earlier approaches in premise semantics
[24, 39, 40] and can also be seen as the generalization of the clause from [16] to the
infinite case.
Remark 3.3. By making the convex geometry in a model depending on the world of
evaluation, one can extend our semantics to deal with nested conditionals. This means
that we would consider models of the formM = (W, C, V ), where C :W → PPW is
such that C(w) is a convex geometry for all w ∈W . The conditional is then evaluated
relative to a world w by using the above clause relative to the convex geometry C(w).
In [17, 32] this kind of semantics is used, however, with the dualized semantic clause
and without requiring that C(w) is a convex geometry.

Remark 3.4. Observe that if in some model M = (W, C, V ) we have that [[ϕ]] ⊆ C
for all C ∈ C then M |= ϕ � ⊥. In this sense the worlds in

⋂
C can be thought of

as impossible worlds. We do not require that ∅ ∈ C because we want to allow W to
contain such impossible worlds. For the results of this paper this is not crucial because,
as we argue in Proposition 5.1 below, impossible worlds can always be eliminated from
W, without changing the set of true conditionals. In more complex settings, such as
the nested semantics from Remark 3.3 or the duality results from [30], it is however
convenient to allow for impossible worlds.

If the antecedent of a conditional ϕ � � evaluates to a finite set [[ϕ]] then the
semantic clause for the conditional can be simplified.

Proposition 3.5. For any modelM = (W, C, V ) and ϕ,� ∈ L0 such that [[ϕ]] ⊆W is
finite the following are equivalent:

1. M |= ϕ � �,
2. ex([[ϕ]]) ⊆ [[�]], and
3. [[ϕ]] ⊆ co([[ϕ]] ∩ [[�]]).
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Proof. The equivalence of items (2.) and (3.) follows from Theorem 2.2. Hence, it
suffices to show that items (1.) and (3.) are equivalent.

Assume that M |= ϕ � � and consider any C ∈ C such that [[ϕ]] ∩ [[�]] ⊆ C .
We want to show that then [[ϕ]] ⊆ C . If this was not the case then it would follow
from M |= ϕ � � that there is some D ∈ C with C ⊆ D such that [[ϕ]] � D and
[[ϕ]] ⊆ D ∪ [[�]]. These latter two inclusions entail that [[ϕ]] ∩ [[�]] � D, contradicting
[[ϕ]] ∩ [[�]] ⊆ C ⊆ D.

For the other direction assume that [[ϕ]] ⊆ co([[ϕ]] ∩ [[�]]). We derive a contradiction
from the assumption that notM |= ϕ � �. The goal is to construct an infinite, strictly
increasing chain C0 ⊂ C1 ⊂ ... of convex sets such that Ci � [[ϕ]] and (Ci+1 \ Ci) ∩
[[ϕ]] �= ∅ for all i ∈ N. This then contradicts the assumption that [[ϕ]] is finite.

Because we assume that notM |= ϕ � � there is someC ∈C withC � [[ϕ]] such that
for everyD ∈ C with C ⊆ D andD � [[ϕ]] we have that [[ϕ]] � D ∪ [[�]]. Let C0 = C .

To construct Ci+1 from Ci assume that we have a Ci ∈ C such that Ci � [[ϕ]]. From
the assumption that [[ϕ]] ⊆ co([[ϕ]] ∩ [[�]]) it follows that there is some x ∈ [[ϕ]] ∩ [[�]]
such that x /∈ Ci . Because C = C0 ⊆ Ci we obtain from the choice of C that
[[ϕ]] � D ∪ [[�]]. Thus, there is some y ∈ [[ϕ]] such that y /∈ Ci and y /∈ [[�]]. Because
x ∈ [[�]] it follows that x �= y and thus we can apply the anti-exchange property to
obtain a convex set C+ with Ci ⊆ C+ that contains precisely one of x and y. We set
Ci+1 = C+. Since both x and y are in [[ϕ]], but none of them is in Ci , it follows that
Ci+1 � [[ϕ]] and (Ci+1 \ Ci) ∩ [[ϕ]] �= ∅.

Example 3.6. The picture in Figure 1 can be taken to show the modelM = (W, C, V )
with

• W = {x, y, z, u, v} ⊆ R2 withx = (0, 5),y = (4, 5), z = (2.4, 3),u = (1.9, 4.3),
v = (1.2, 1.5),

• C is the relative convexity of W in R2, and
• V (p) = {x, z, u}, V (q) = {x, y, u} and V (r) = {x, y, z}.

Example 3.7. As the running example for our completeness proof we use the following
formula:

α = (� � p) ∧ (q � p) ∧ (¬(p ↔ q) � p) ∧ ¬(¬q � p) ∧ ¬((p ↔ q) � p)

∧ ¬(¬p � ¬q).
A relatively simple modelM = (W, C, V ) in which α is true is as follows:

• W = {pq, pq̄, p̄q, p̄q̄} is a four-element set,
• C = {∅, {p̄q}, {p̄q̄}, {pq, p̄q}, {pq̄, p̄q}, {p̄q, p̄q̄},W \ {pq̄},W \ {pq},W },

and
• V (p) = {pq, pq̄} and V (q) = {pq, p̄q}.

Example 3.8. Every model in the order semantics of the formM = (W,≤, V ), where
≤ is a partial order over W, yields a model M ′ = (W,U(≤), V ) in the sense defined
here. In fact M and M ′ satisfy the same conditionals. In the finite case this follows
from the reformulation of our semantic clause in Proposition 3.5 and the observation
that the minimal elements of some set in a poset are precisely its extreme points in the
upset convexity. In the infinite case we leave it to the reader to check that the semantic
clause for the conditional relative to an infinite partial order ≤ from [9, 41]

M |= ϕ � � iff for all w ∈ [[ϕ]] there is a v ≤ w with v ∈ [[ϕ]]

such that for all u ≤ v if u ∈ [[ϕ]] then u ∈ [[�]]
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is equivalent to the semantic clause given above with respect to the upset convexity
U(≤). This connection between the order semantics and the semantics in abstract
convex geometries has as a precursor the connection between the order semantics and
premise semantics that was already observed in [28, 29, 39].

§4. Completeness for abstract convex geometries. This section contains a complete-
ness result for preferential conditional logic with respect to the models from Section
3.2 that are based on abstract convex geometries. It reads as follows:

Theorem 4.1. Every one-step formulaϕ ∈ L1 that is consistent in preferential conditional
logic is true in a model of the form (W, C, V ), where W is a finite set and C a convex
geometry over W.

This theorem is a consequence of at least two results that already exist in the literature:

1. Theorem 4.1 can be obtained from the well-known completeness with respect
to the semantics in posets [9, 41] together with the observation from
Example 3.8 that every model based on a poset gives rise to a model based
on a convex geometry that satisfies the same formulas. However, it needs to be
checked that the necessary formal proofs go through with our more restrictive
one-step proof system and that the completeness construction yields a finite
model with an anti-symmetric ordering.

2. An alternative approach is to connect to the nonmonotonic consequence
relations from [25] and then apply the duality result from [30]. Observe that
every consistent formula ϕ ∈ L1 gives rise to a nonmonotonic consequence
relation|∼ satisfying the axioms of System P, by takingα |∼ � iff � ϕ → (α � �).
If one then moves to the free Boolean algebra over Prop, which we can assume
to be finite, then one is precisely on the algebraic side of the dual correspondence
from [30]. On the spatial side of this duality one then obtains a convex geometry
over the atoms of the free Boolean algebra on Prop.

For readers who are not comfortable with adapting these existing results we give a
direct proof of Theorem 4.1.

To prove Theorem 4.1 we need to define a finite model M = (W, C, V ) such that
M |= ϕ. We first discuss the definition of the domain W and the valuationV : Prop →
PW . We let W be the set of all assignments a : Prop → {0, 1} in the sense of classical
propositional logic. This set is finite because we can assume Prop to be finite since
there are only finitely many propositional letters occurring in ϕ. The valuation V :
Prop → PW is defined such that V (p) = {a ∈W | a(p) = 1} for all p ∈ Prop. By
the completeness theorem for classical propositional logic we have that [[α]]V ⊆ [[�]]V
iff � α → � for all α, � ∈ L0. We use this fact in the continuation of this proof without
explicitly mentioning it. We also need that for every setY ⊆W there is a characteristic
formula �(Y ) ∈ L0 such that [[�(Y )]]V = Y . Because Prop and W are finite we can
define �(Y ) =

∨
a∈Y �(a), where �(a) =

∧
{p | a(p) = 1} ∧

∧
{¬p | a(p) = 0}.

To define the convex geometry C we first fix a maximally consistent set Σ ⊆ L1 with
ϕ ∈ Σ. Because ϕ is consistent such a set exists by Lindenbaum’s Lemma. Below we
are implicitly going to make use of the fact that Σ is closed under provable implications,
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that is, if �
∧

Σ′ → 	 for some finite Σ′ ⊆ Σ then 	 ∈ Σ. We then define the family of
convex sets as follows:

C = {C ⊆W | [[α]] ∩ [[�]] ⊆ C implies [[α]] ⊆ C for all α, � ∈ L0 with α � � ∈ Σ}.
Define the modelM = (W, C, V ). To finish the proof of Theorem 4.1 we need to verify
that C is a convex geometry and thatM |= ϕ. It is straightforward to check that C is
closed under intersections. Thus it follows from Lemma 4.3 below, which states that C
has the anti-exchange property, that C is a convex geometry. ThatM |= ϕ follows from
Lemma 4.4, which states thatM |= 
 iff 
 ∈ Σ for all 
 ∈ L1.

To prove Lemmas 4.3 and 4.4 we need the following syntactic characterization of
the convex hull operator in C:

h : PW → PW,
Y �→

⋃
{[[�]] ⊆W | � � �(Y ) ∈ Σ}.

It is possible to show that h is the closure operator associated to the meet semilattice
C ⊆ PW . We do not do this here because the completeness proof only needs the
following weaker properties of h:

Lemma 4.2. For all Y ⊆W it holds that

1. Y ⊆ h(Y ), and
2. h(Y ) ∈ C.

Proof. For item 1. observe that by (Id) we have that � �(Y ) � �(Y ). Thus � ϕ →
(�(Y ) � �(Y )) and �(Y ) � �(Y ) ∈ Σ, which entails Y = [[�(Y )]] ⊆ h(Y ) by the
definition of h.

For item 2. take any α, � ∈ L0 such that α � � ∈ Σ and [[α]] ∩ [[�]] ⊆ h(Y ). We
need to show that then [[α]] ⊆ h(Y ). Because W is finite it follows from [[α]] ∩ [[�]] ⊆
h(Y ) that there are finitely many �1, ... , �n ∈ L0 with [[α]] ∩ [[�]] ⊆ [[�1]] ∪ ··· ∪ [[�n]] and
�i � �(Y ) ∈ Σ for all i ∈ {1, ... , n}. From the former we get that � (α ∧ �) → (�1 ∨
··· ∨ �n). Using (RW) we obtain α � (�1 ∨ ··· ∨ �n) ∈ Σ because by (Id) and (And) we
have that α � α ∧ � ∈ Σ. From the latter, that �i � �(Y ) ∈ Σ for all i ∈ {1, ... , n}, it
follows with finitely many applications of (Or) that �1 ∨ ··· ∨ �n � �(Y ) ∈ Σ. Because
of the (CCut’) from Proposition 3.1 we get that α ∨ �1 ∨ ··· ∨ �n � �(Y ) ∈ Σ. By the
definition of h this entails [[α]] ⊆ h(Y ).

Lemma 4.3. C has the anti-exchange property.

Proof. Consider any C ∈ C and x �= y with x, y /∈ C . We derive a contradiction
from the assumption that for all D ∈ C with C ⊆ D we have x ∈ D iff y ∈ D.

If this assumption was true then it follows that y ∈ h(�(C ∪ {x})) because
x ∈ h(�(C ∪ {x})), C ⊆ h(�(C ∪ {x})) and h(�(C ∪ {x})) ∈ C. Thus there is some
�y ∈ L0 such that y ∈ [[�x ]] and �y � �(C ∪ {x}) ∈ Σ. Because � �(C ∪ {x}) →
�(C ∪ {x, y}) it follows from the derived rule (R) in Proposition 3.1 that (�y ∧
�(C ∪ {x, y})) ∨ �(C ∪ {x}) � �(C ∪ {x}) ∈ Σ. One can check that ([[�y ]] ∩ (C ∪
{x, y})) ∪ (C ∪ {x}) = C ∪ {x, y}. Thus it follows with (LLE) that �(C ∪ {x, y}) �
�(C ∪ {x}) ∈ Σ.

If we interchange the roles of x and y in the reasoning from the previous
paragraph we obtain that also �(C ∪ {x, y}) � �(C ∪ {y}) ∈ Σ. Thus with the
help of (And) we can deduce �(C ∪ {x, y}) � (�(C ∪ {x}) ∧ �(C ∪ {y})) ∈ Σ from
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which we get �(C ∪ {x, y}) � �(C ) ∈ Σ by (RW). This contradicts C ∈ C because
[[�(C ∪ {x, y})]] ∩ [[�(C )]] ⊆ C but [[�(C ∪ {x, y})]] � C .

Lemma 4.4. For all 
 ∈ L1 it holds that

M |= 
 iff 
 ∈ Σ.

Proof. The proof of this lemma is an induction on the complexity of L1. The cases
for the Boolean operators are straightforward. Thus we only treat the base case where

 = α � � .

For the right-to-left direction assume that α � � ∈ Σ. To prove M |= α � � we
show that [[α]] ⊆ co([[α]] ∩ [[�]]), where co denotes the convex hull operator of the
convex geometry C. Thus we need to show that [[α]] ⊆ C for every convex set C ∈ C
with [[α]] ∩ [[�]] ⊆ C . This follows directly from the definition of C.

For the other direction assume that M |= α � � . This means that [[α]] ⊆
co([[α]] ∩ [[�]]). Because by Lemma 4.2 h([[α]] ∩ [[�]]) is a convex set containing
[[α]] ∩ [[�]] it follows that co([[α]] ∩ [[�]]) ⊆ h([[α]] ∩ [[�]]). Thus [[α]] ⊆ h([[α]] ∩ [[�]]).
Because W is finite it follows from the definition of h that there are �1, ... , �n such
that [[α]] ⊆ [[�1]] ∪ ··· ∪ [[�n]] and �i � α ∧ � ∈ Σ for all i ∈ {1, ... , n}. It follows from
the former with the help of (Id) and (RW) that � α � �1 ∨ ··· ∨ �n. Using (Or) we
get that �1 ∨ ··· ∨ �n � α ∧ � ∈ Σ because �i � α ∧ � ∈ Σ for all i ∈ {1, ... , n}. With
the help of (CCut’), which is derivable according to Proposition 3.1, it follows that
α ∨ �1 ∨ ··· ∨ �n � α ∧ � ∈ Σ. Because of (WCM) from Proposition 3.1 we obtain that
(α ∨ �1 ∨ ··· ∨ �n) ∧ α � � ∈ Σ and by (LLE) we get that α � � ∈ Σ.

Remark 4.5. Note that no two distinct worlds in the model that is constructed in the
proof of Theorem 4.1 satisfy the same propositional letters. This is in stark contrast to
the completeness proofs of preferential conditional logic with respect to its semantics
in orders from [9, 41]. Part of the complexity of the constructions in these proofs
comes from the fact that they duplicate possible worlds to obtain enough witnesses
in the constructed order. It follows from the discussion of the coherence condition in
Section II.4.1 of [41] or from the example in the last paragraph of Section 5.2 in [25]
that such a duplication of worlds is necessary to obtain completeness with respect to
the order semantics. That such a duplication of worlds is not needed for completeness
with respect to convex geometries is exploited in the duality result from [30], which
uses convex geometries on the spatial side of the duality.

§5. Morphisms of convex geometries. In this section we recall the notion of a
morphism between convex geometries from [30]. The motivation for this notion is that
in the finite case they are precisely the functions that preserve and reflect the truth
of all conditionals. It should be mentioned that our notion of morphism cannot be
straightforwardly adapted to the infinite case as its adequacy relies on the reformulation
of the semantics from Proposition 3.5, which only holds in the finite case.

The definition of a morphism uses the following existential and universal image
maps: For every f :W → U we write f∃ : PW → PU for the left adjoint and f∀ :
PW → PU for the right adjoint of the inverse image map f–1 : PU → PW,X �→
{w ∈W | f(w) ∈ X}. Concretely, this means that for all Y ⊆W

f∃(Y ) = {u ∈ U | f–1({u}) ∩ Y �= ∅}, and

f∀(Y ) = {u ∈ U | f–1({u}) ⊆ Y}.
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It is easy to check that f∃(Y ) = f∀(Y ) for all Y ⊆W . Note that f∃ is just the usual
direct image map.

A morphism f from a convex geometry (W, C) to a convex geometry (U,D) is a
function f :W → U such that f∀(C ) ∈ D for all C ∈ C. The morphism f is a strong
morphism if it additionally satisfies that for every D ∈ D there is some C ∈ C such
that D = f∀(C ). Thus, strong morphism are precisely the functions for which D =
{f∀(C ) ⊆ U | C ∈ C}. By dualizing and exploiting f∃(Y ) = f∀(Y ) one can adapt
this definition of morphism to the feasible sets of a convex geometry. A morphism is
then a function f such that f∃(F ) is feasible for every feasible F, and it is strong if
every feasible set arises as f∃(F ) for some feasible F.

The reader can convince themselves that surjective affine transformations on the
plane, such as translations, rotations or scalings, are strong morphisms.

For posets we have that f :W → U is a morphism between the upset convexities of
partial orders ≤ on W and ≤′ on U if and only if it satisfies the following condition,
which is just the back condition on bounded morphism in modal logic:

• For all w ∈W and u′ ≤′ f(w) there is an u ≤ w such that f(u) = u′.

The morphism f is strong if and only if it additionally satisfies the following
condition:1

• For all u ∈ U there is aw ∈W such that f(w) = u and for allw ′ ≤ w we have
f(w ′) ≤′ u.

Note that these two conditions on the graph of f correspond to the conditions on
bisimulations between models based on posets from [43].

A further example of a morphism comes from the following proposition. It shows
that removing impossible worlds from a model yields a submodel that embeds with
a strong morphism. As a consequence impossible worlds can be removed without
altering the truth of one-step formulas.

Proposition 5.1. Let (W, C) be any convex geometry and let I =
⋂

C. Define U =
W \ I and let D be the relative convexity of U in W. Then ∅ ∈ D and the embedding
e : U →W,u �→ u is a strong morphism from (U,D) to (W, C).

Proof. That ∅ ∈ D follows because, by the closure of C under arbitrary intersection,
we have that I ∈ C, and thus ∅ = I ∩U ∈ D by the definition of the relative convexity.
To see that e is a strong morphism it is easier to reason with the feasible sets. The
worlds in I do not appear in any feasible set from (W, C) and thus it is clear that the
feasible sets in (W, C) are precisely the direct images of feasible sets from (U,D).

We can lift the notion of a morphism to models in the standard way. That is, f :
W →W ′ is a morphism fromM = (W, C, V ) toM ′ = (W ′, C′, V ′) if f is a morphism
from (W, C) to (W ′, C′) and V (p) = f–1(V ′(p)) for all p ∈ Prop. We call f from M to
M ′ strong if it is strong as a morphism between the underlying convex geometries.

Propositions 10 and 12 from [30] entail that in the finite case strong morphisms
preserve and reflect the truth of conditionals. Because this result is central for our
approach we restate the result in our terminology and provide a self-contained proof.

1 In [30] we made the false claim that the strong morphism between posets are the order
preserving and surjective functions.
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Theorem 5.2. Let f be a strong morphism from a finite modelM = (W, C, V ) to a finite
modelM ′ = (W ′, C ′, V ′) then it holds for all ϕ ∈ L1 that

M |= ϕ iff M ′ |= ϕ.

Proof. First observe that because taking preimages is a Boolean homomorphism
between powerset algebras it is clear that the condition that V (p) = f–1(V ′(p)) for
all p ∈ Prop entails that [[ϕ]]V = f–1([[ϕ]]V ′) for all ϕ ∈ L0.

To prove the preservation of true formulas in L1 one uses a standard induction on
the complexity of formulas. We only consider the case for the conditional. Because
we are in a finite setting we can use the equivalent formulation of the semantics from
Proposition 3.5, stating that ϕ � � is true in a model iff [[ϕ]] ⊆ co([[ϕ]] ∩ [[�]]).

Assume first that [[ϕ]]V ′ ⊆ co([[ϕ]]V ′ ∩ [[�]]V ′) holds in C′. To show that
then f–1([[ϕ]]V ′) ⊆ co(f–1([[ϕ]]V ′) ∩ f–1([[�]]V ′)) holds in C consider any w /∈
co(f–1([[ϕ]]V ′) ∩ f–1([[�]]V ′)). This means that there is some convex C ∈ C such
that f–1([[ϕ]]V ′ ∩ [[�]]V ′) = f–1([[ϕ]]V ′) ∩ f–1([[�]]V ′) ⊆ C and w /∈ C . Because f
is a morphism it then follows that f∀(C ) ∈ C′ and because f∀ is right adjoint to
f–1 we get [[ϕ]]V ′ ∩ [[�]]V ′ ⊆ f∀(C ). Thus, co([[ϕ]]V ′ ∩ [[�]]V ′) ⊆ f∀(C ) and with
the assumption that [[ϕ]]V ′ ⊆ co([[ϕ]]V ′ ∩ [[�]]V ′) it follows that [[ϕ]]V ′ ⊆ f∀(C ).
From w /∈ C we have that f(w) /∈ f∀(C ) and so f(w) /∈ [[ϕ]]V ′ , which means that
w /∈ f–1([[ϕ]]V ′).

For the other direction assume f–1([[ϕ]]V ′) ⊆ co(f–1([[ϕ]]V ′) ∩ f–1([[�]]V ′)).
We show [[ϕ]]V ′ ⊆ co([[ϕ]]V ′ ∩ [[�]]V ′) by contraposition. Thus consider any w′ /∈
co([[ϕ]]V ′ ∩ [[�]]V ′). There then is some convexC ′ ∈ C′ such that [[ϕ]]V ′ ∩ [[�]]V ′ ⊆ C ′

and w′ /∈ C ′. Because f is a strong morphism there exists a C ∈ C such that
C ′ = f∀(C ). Because f∀ is right adjoint to f–1 we obtain f–1([[ϕ]]V ′ ∩ [[�]]V ′) ⊆ C
from [[ϕ]]V ′ ∩ [[�]]V ′ ⊆ C ′ = f∀(C ). With f–1([[ϕ]]V ′ ∩ [[�]]V ′) = f–1([[ϕ]]V ′) ∩
f–1([[�]])V ′ it follows that co(f–1([[ϕ]]V ′) ∩ f–1([[�]]V ′)) ⊆ C . Combining with the
assumption f–1([[ϕ]]V ′) ⊆ co(f–1([[ϕ]]V ′) ∩ f–1([[�]]V ′)) yields f–1([[ϕ]]V ′) ⊆ C .
Since w′ /∈ f∀(C ) it must be the case that f–1({w′}) � C , and hence w /∈
[[ϕ]]V ′ .

§6. Representation of convex geometries in the plane. In this section we show that
the representation from Theorem 5 in [33] gives rise to a strong morphism of convex
geometries. It would be possible to show that any such representation of a finite convex
geometry with polygons that have disjoint extreme points yields a strong morphism.
Thus, we could just use Theorem 5 from [33] as a black box, without disassembling the
inner workings of the construction in its proof. But because this construction is at the
heart of our completeness result, we give a detailed exposition of the representation
in this section. Figure 2 contains an example of this representation for the convex
geometry from Example 3.7.

6.1. Decomposition of finite convex geometries. It is shown in [14] that every finite
convex geometry can be decomposed into a family of convexities arising from linear
orders. Using these decompositions is crucial for the results in [33].

The relevant notion of decomposition is the join in the semi-lattice of all convex
geometries over some fixed finite set W, ordered by the inclusion between sets of sets.
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Fig. 2. In the upper right corner is a decomposition of the convex geometry from Example 3.7
into linear orders. The main picture contains the representation of this convex geometry in the
plane. In the lower right corner is the formula α from Example 3.7 that is true in this convex
geometry.

From Theorem 2.2 in [13] it follows that the join C ∨ D of convex geometries C and D
over W can be defined concretely as

C ∨ D = {C ∩D | C ∈ C and D ∈ D}.

Recall that a partial order ≤ on W is linear if x ≤ y or y ≤ x holds for all x, y ∈W .
The decomposition result, which is Theorem 5.2 in [14], can be formulated in our
notation as follows:

Theorem 6.1. Let C be a convex geometry over a finite set W such that ∅ ∈ C. Then there
is a finite family of linear orders (≤j)mj=1 such that

C =
m∨
j=1

U(≤j). (1)
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Note that from the definition of the join it follows that if the posets (≤i)ki=1 are
a decomposition of a convex geometry C according to (1) then some set X ⊆W is
convex if and only if it can be written as

X =
m⋂
j=1

X↑j , (2)

where X↑j = {w ∈W | x ≤j w for some x ∈ X} denotes the upward closure of X in
the order ≤j .

6.2. The representation by Richter and Rogers. This subsection contains the proof
of Theorem 5 in [33]. For this paper we need the following formulation of the
representation result:

Theorem 6.2. Let C be a convex geometry over a finite set W such that ∅ ∈ C. Then there
is a finite set U ⊆ R2 and a strong morphism of convex geometries r from (W, C) to U
with the relative convexity from R2.

We first describe how to construct the set U and the function r. Fix a convex geometry
(W, C) such that ∅ ∈ C and let n be the number of elements in W. By Theorem 6.1 there
exists a decomposition ofC into linear orders (≤i)mi=1. Assume without loss of generality
that m ≥ 2, otherwise just duplicate one of the linear orders. For every w ∈W and
j ∈ {1, ... , m} let rj(w) ∈ N ⊆ R be the rank of w in the linear order ≤j starting from
the top. This means that if≤j iswn <j wn–1 <j ··· <j w1 then rj(w) = i for the unique
i with wi = w.

We then choose m-many points on the unit circle that are equally distributed among
all directions. Thus, set dj = (cos(2�j/m), sin(2�j/m)) ∈ R2 for every j ∈ {1, ... , m}.
Define s ∈ R as

s = max
{

0,
n cos(2�/m)

1 – cos(2�/m)

}
.

For every w ∈W and j ∈ {1, ... , m} define the point

u(j,w) = (s + rj(w))dj ∈ R2,

and for every w ∈W define the setUw = {u(1, w), ... , u(m,w)}. Clearly we have that
Uw ∩Uu = ∅ whenever w �= u. Define U ⊆ R2 as U =

⋃
w∈W U

a and r : U →W
such that r(u) is the unique w ∈W with u ∈ Uw . Note that r–1({w}) = Uw for all
w ∈W .

The idea behind the definition of U is to spread out the linear orders in the
decomposition of C along separate rays that move outward from the origin. On each
ray this happens at distance s away from the origin. This safety distance ensures that
every point on some ray is further out from the origin than the intersection of the ray
with any line segment between points on neighboring rays.

Theorem 6.2 then follows from the following two lemmas.

Lemma 6.3. r is a morphism of convex geometries.

Proof. We need to show that whenever C ⊆ U is convex in the relative convexity of
U inR2 then r∀(C ) ∈ C. Thus fix such a C and letD = r∀(C ). To show that D is convex
in C we use the characterization (2) and show that D =

⋂m
j=1D↑j . For the non-trivial
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⊇-inclusion consider any w such that for all j ∈ {1, ... , m} there is some wj ∈ D such
that wj ≤j w. To prove w ∈ D = r∀(C ) we need to show that Uw ⊆ co(C ).

First observe that the origin (0, 0) is in the convex hull co(C ) of C in R2. This is
a little technical but not very interesting: If n is even then the origin can be written
as a convex combination of the points u(wm,m) and u(wm/2, m/2) in C because both
points have 0 in their second coordinate, and the former has a positive but the latter a
negative first coordinate. If n is odd then n ≥ 3 and the points u(wj, j) and u(wk, k), for
j = (m – 1)/2 and k = (m + 1)/2, are in C. They both have a negative first coordinate
and a different signum in their second coordinates. Thus there is some point s ∈ co(C )
that has a negative first coordinate and 0 in the second coordinate. The origin is then
a convex combination of s and u(wm,m).

Consider then any point in Uw , which must be of the form u(w, j) for some
j ∈ {1, ... , m}. Because D = r∀(C ) and wj ∈ D we have that u(wj, j) ∈ Uwj =
f–1({wj}) ⊆ C . Moreover, from wj ≤ w it follows that rj(w) ≤ rj(wj) and hence
u(w, j) = (s + rj(w))dj is on the line segment from the origin to u(wj, j) = (s +
rj(wj))dj . It follows that u(w, j) ∈ co(C ) and thus that u(w, j) ∈ C , since C is convex
in the relative convexity.

Lemma 6.4. r is a strong morphism of convex geometries.

Proof. To show that r is strong consider any D ∈ C. We show that D = r∀(C )
for C = co(r–1(D)) ∩U . That D ⊆ r∀(C ) follows immediately from r–1(D) ⊆ C . To
show D ⊇ r∀(C ) consider any w /∈ D. We show that w /∈ r∀(C ).

Because D is convex we can apply the characterization from (2) and conclude that
there is some j ∈ {1, ... , m} such that w <j u for all u ∈ D. We then assume that
j = m. This is without loss of generality because one can apply a rotation to turn any
ray for j until it comes to lie on the positive x-axis. Because rotations are isomorphism
with respect to the convex sets this does not influence our reasoning.

To show that w /∈ r∀(C ) it suffices to show that u(w,m) /∈ co(r–1(D)). To this aim
we show that the first coordinate of u(w,m) = (s + rm(w))dk is strictly larger than the
first coordinate of any u(v, k) = (s + rk(v))dk for v ∈ D and k ∈ {1, ... , m}, meaning
that u(w,m) cannot be written as the convex combination of such points. If k = m
then this is clear because dm = (1, 0) and rm(w) > rm(v), as w <m v. In the other case
where k �= m first consider the case where cos(2�/m) ≥ 0. Then 0 ≤ n cos(2�/m)

1–cos(2�/m) = s

and we can estimate the first coordinate of u(v, k) as follows:

(s + rk(v)) cos(2�k/m) ≤ (s + n) cos(2�k/m)

≤ (s + n) cos(2�/m)

≤
(
n cos(2�/m)

1 – cos(2�/m)
+ n

)
cos(2�/m)

=
(

n

1 – cos(2�/m)

)
cos(2�/m)

≤ s
< s + rm(w).

Because s + rm(w) is the first coordinate of u(w,m) this is the needed inequality. In
the other case where cos(2�/m) < 0 we get that m ≤ 3. Thus, k/m is either 1/3, 2/3
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or 1/2 and so cos(2�k/m) is negative. It follows that the first coordinate of u(v, k) is
also negative and therefore it is smaller than the first coordinate of u(w,m).

§7. Completeness for Euclidean convexity. In this last section we put the results
from this paper together to prove the completeness of preferential conditional logic
with respect to convexity between points in the plane. We also show that this result
cannot be improved to a completeness result with respect to convexity on the real line.

The following is the main result of this paper:

Theorem 7.1. Every one-step formulaϕ ∈ L1 that is consistent in preferential conditional
logic is true in a model of the formM = (W, C, V ), whereW ⊆ R2 is a finite set of points
and C is the relative convexity of W in R2.

Proof. From Theorem 4.1 we obtain a finite modelM ′′ = (W ′′, C′′, V ′′) such that
M ′′ |= ϕ. From Proposition 5.1 we get a finite convex geometry (W ′, C′) with ∅ ∈ C′

and strong morphism of convex geometries r′′ from (W ′, C′) to (W ′′, C′′). We can then
apply Theorem 6.2 to obtain a finite setW ⊆ R2 together with a strong morphism r′

from (W, C) to (W ′, C′) such that C is the relative convexity of W in R2.
Let r = r′ ◦ r′′ be the composition of r′′ with r′. Clearly, this is also a strong

morphism of convex geometries from (W, C) to (W ′′, C′′). Then define the model
M = (W, C, V ) such that V (p) = r–1(V ′′(p)) for all p ∈ Prop. This turns r into a
strong morphism from the model M to the modelM ′′ and thusM |= ϕ follows with
Theorem 5.2.

Remark 7.2. To adapt this completeness result to nested preferential conditional logic
one would need to consider models (W,U,V ) whereW ⊆ R2 andU :W → PW . The
function U fixes a finite set of pointsU (w) for every worldw ∈W . At a worldw ∈W
a conditional is then evaluated in the relative convexity of U (w) in R2. Completeness
with respect to such models can be obtained by starting from a model in the semantics
from Remark 3.3 and then applying Theorem 7.1 locally to C(w) for every world w. By
suitably translating the points in the setsU (w) one can ensure thatU (w) ∩U (w′) = ∅
wheneverw �= w′. Thus, the valuationV : Prop → PW can be defined globally on W.

The completeness result from Theorem 7.1 cannot be improved to a completeness
with respect to models based on subsets of the real line. The reason is that such models
validate additional formulas that are not provable in preferential conditional logic. As
a first example consider the formula

2 = (p ∨ q ∨ r � p ∨ q) ∨ (p ∨ q ∨ r � p ∨ r) ∨ (p ∨ q ∨ r � q ∨ r).

It can be seen as a generalization of the formula 1 = (p ∨ q � p) ∨ (p ∨ q � q),
which is valid over linear orders. Using soundness of the semantics over posets it is
easy to see that 2 is not derivable in preferential conditional logic. However, one can
show that 2 is true in all models of the form (W, C, V ), where W ⊆ R is finite and
C is the relative convexity of W in R. The argument is roughly that we just need to
consider the two propositional letters among p, q and r that are true at the at most two
extreme points of [[p ∨ q ∨ r]]. Note that these extreme points are simply the minimal
and maximal elements of [[p ∨ q ∨ r]] in the standard order of the reals.

Surprisingly, 2 can be invalidated if we allow W to be an infinite subset of R. This
shows that the conditional logic of finite sets of points on the real line is different from
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the logic of the whole real line. To invalidate 2 it suffices to consider a model (R, C, V ),
where C is the standard convexity on R and V is such that for every propositional
letter in {p, q, r} there are arbitrarily large and arbitrarily small reals at which the
propositional letter is true.

The logic of infinite subsets of the real line is still stronger than preferential
conditional logic. To see this consider the formula

�2 = (p ∨ q ∨ r � s) → (p ∨ q � s) ∨ (p ∨ r � s) ∨ (q ∨ r � s).

This formula is a generalization of the formula �1 = (p ∨ q � s) → (p � s) ∨ (q � s)
expressing disjunctive rationality, which is valid over interval orders. Using the order
semantics it is not hard to show that �2 is not derivable in preferential conditional logic.
But �2 is valid in models that are based on the real line:

Proposition 7.3. The formula �2 is valid in all models of the form (W, C, V ), where
W ⊆ R is any set of points on the line and C is the relative convexity of W in R.

Proof. Consider a model M = (W, C, V ) such that W ⊆ R and C is the relative
convexity of W in R. To show that �2 is valid assume thatM |= p ∨ q ∨ r � s .

Define pr ∈ {p, q, r} such that for all u ∈ [[p ∨ q ∨ r]] there is some v ∈ [[pr ]] with
u ≤ v. Such a pr must exist. Otherwise, we have for all a ∈ {p, q, r} a ua ∈ [[p ∨ q ∨ r]]
such that v < ua for all v ∈ [[a]]. This leads to a contradiction by considering the
maximum of up, uq and ur , which is in [[p ∨ q ∨ r]], but cannot be in any of [[p]], [[q]]
and [[r]]. Analogously, we define pl ∈ {p, q, r} such that for all u ∈ [[p ∨ q ∨ r]] there
is some v ∈ [[pl ]] with v ≤ u. Let A = {a1, a2} be one of {p, q}, {p, r}, or {q, r} such
that {pr, pl} ⊆ A.

We claim that then M |= a1 ∨ a2 � s . To see this consider any convex set C ∈ C
such that [[a1 ∨ a2]] � C . Thus, there is some world u ∈ [[a1 ∨ a2]] such that u /∈ C .
Because C is convex it follows that the worlds in C are either all to the left or are all to
the right of u. Assume without loss of generality that all worlds of C are to the left of
u, that is, v < u for all v ∈ C . Let C ′ = (– ∞, u) be the convex set of all worlds that
are strictly to the left of u. Clearly C ⊆ C ′ and u /∈ C ′. From the latter it follows that
[[p ∨ q ∨ r]] � C ′, because u ∈ [[a1 ∨ a2]] ⊆ [[p ∨ q ∨ r]].

From the assumption thatM |= p ∨ q ∨ r � s it follows that there is some convex set
D with C ′ ∩ [[p ∨ q ∨ r]] ⊆ D and [[p ∨ q ∨ r]] � D such that [[p ∨ q ∨ r]] ⊆ D ∪ [[s]].
FromC ′ ∩ [[p ∨ q ∨ r]] ⊆ D it follows thatC ∩ [[a1 ∨ a2]] ⊆ D and from [[p ∨ q ∨ r]] ⊆
D ∪ [[s]] it follows that [[a1 ∨ a2]] ⊆ D ∪ [[s]]. It thus only remains to be seen that
[[a1 ∨ a2]] � D. Because [[p ∨ q ∨ r]] � D there is some u′ ∈ [[p ∨ q ∨ r]] such that u′ /∈
D. Observe first that u ≤ u′ because (– ∞, u) = C ′ ⊆ D. By the choice of pr there is
then a v′ ∈ [[pr ]] such that u′ ≤ v′. Clearly v′ ∈ [[a1 ∨ a2]]. We also have v′ /∈ D because
D is convex, u′ /∈ D, u – 42 ∈ C ′ ⊆ D and u – 42 < u ≤ u′ < v′.

§8. Conclusion. We have shown that preferential conditional logic is complete with
respect to convexity over finite sets of points on the plane. Because of the validities
discussed in Section 7 this result cannot be strengthened to convexity on the real line.
There seem to be two natural directions to continue this line of research. First, one
might ask what is the logic of finite sets of points on the line and what is the logic of
the real line. As our examples also show these logics are not the same. Second, one
might try to strengthen our completeness result. Most interesting would be to show
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completeness with respect to convexity over the complete plane, analogously to the
completeness of S4 with respect to the standard topology on the full real line:

Problem 8.1. Is preferential conditional logic complete with respect to models of the
form (R2, C, V ), where C is the standard convexity and V any valuation?

It might be simpler to first show completeness with respect to bounded regions in
the plane. A plausible conjecture of this kind is the following:

Problem 8.2. Is preferential conditional logic complete with respect to models of the
form (U, C, V ), where U ⊆ R2 is regular, compact and convex, C is the relative convexity
of U in R2, V is a valuation that sends all propositional letters to regular closed sets, and
the propositional connectives are interpreted over the Boolean algebra of regular closed
sets?

Note that by the Krein–Milman Theorem compact sets are in the closure of their
extreme points. Thus, one might hope that for the semantics of the conditional they
still behave similar to finite sets.

Another question for further research is how conditional logic relates to other
modal logics that have been developed to reason about convexity or lines in space.
Examples are the bimodal logics of lines and points from [6, 42] or the logics of the
one-step convexity and betweenness modalities in [4]. It seems that the expressivity of
the conditional is weak compared to the modalities in these logics. Thus, one might
hope to find interpretations of preferential conditional logic into some of these more
expressive logics.

In this paper we have investigated the connections between conditional logic and
convexity from a purely formal perspective. It would be interesting to see whether
this new geometric semantics can lead to new insights about applications such as the
meaning counterfactual conditionals in natural language or the structure of defeasible
reasoning.
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