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Abstract
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what
it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the
nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient
Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the
degree constraints on polynomials to be relaxed.
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1. Introduction
Given a polynomial f ∈ F[X1, . . . , Xn] and a finite grid A1 × · · · ×An ⊆ Fn, where F is a field,
some natural questions arise:

• can f vanish at all the grid points or maybe at all but one of the grid points?
• what can be said about the number of zeroes of f in the grid?
• can f be recovered from its values over the grid?

Besides their intrinsic algebraic interest, such questions can have striking applications in num-
ber theory, combinatorics, and graph theory. The polynomial method is by now an established,
though occasionally elusive, technique in these subjects (cf. [20]).

A celebrated result concerning multivariate polynomials over finite grids is the Combinatorial
Nullstellensatz. It was crystallized by Noga Alon [1]; however, premonitions of this result can
be detected in earlier works by Alon and collaborators. Incidentally, [1] also offers an excellent
glimpse into the power of the polynomial method.

Theorem 1.1 (Combinatorial Nullstellensatz). Let A1, . . . ,An be finite subsets of a field F. Assume
that a polynomial f ∈ F[X1, . . . , Xn] contains a monomial Xk1

1 . . . Xkn
n with non-zero coefficient,

such that k1 < |A1|, . . . , kn < |An| and
deg(f )= k1 + · · · + kn.

Then f (a) �= 0 for some grid point a ∈A1 × · · · ×An.

By the degree of a multivariate polynomial we always mean its total degree.
Algebraic aspects of the broader theme, polynomials over finite grids, have been investigated

in many recent papers [3, 6, 7, 10, 13, 18]. We may also refer to [12, 15] for alternate approaches
to the Combinatorial Nullstellensatz.
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In this paper we take a closer look at the tension between a polynomial and the grid it is
evaluated on. Typical results, such as the Combinatorial Nullstellensatz, are formulated over an
arbitrary grid; the degree restrictions on the polynomial reflect this freedom. Our starting point is
the idea that there should be more rigidity over a ‘structured’ grid, and this should translate into
weaker degree restrictions placed upon the polynomial. The following three results illustrate this
perspective.

Theorem 1.2 (Zero-sum grids). Let A1, . . . ,An be zero-sum finite subsets of a field F. Assume that
a polynomial f ∈ F[X1, . . . , Xn] contains a monomial Xk1

1 . . . Xkn
n with non-zero coefficient, such

that k1 < |A1|, . . . , kn < |An| and
deg(f )≤ k1 + · · · + kn + 1.

Then f (a) �= 0 for some grid point a ∈A1 × · · · ×An.

Theorem 1.3 (Multiplicative grids). Let A1, . . . ,An be subsets of a field F, each of which is a coset of
a finite multiplicative subgroup. Assume that a polynomial f ∈ F[X1, . . . , Xn] contains a monomial
Xk1
1 . . . Xkn

n with non-zero coefficient, such that k1 < |A1|, . . . , kn < |An| and
deg(f )≤ k1 + · · · + kn +min{|A1|, . . . , |An|} − 1.

Then f (a) �= 0 for some grid point a ∈A1 × · · · ×An.

Theorem 1.4 (Additive grids). Let F be a field of characteristic p. Let A1, . . . ,An be subsets of F,
each of which is a coset of a finite additive subgroup. Assume that a polynomial f ∈ F[X1, . . . , Xn]
contains a monomial Xk1

1 . . . Xkn
n with non-zero coefficient, such that k1 < |A1|, . . . , kn < |An| and

deg(f )≤ k1 + · · · + kn + (1− p−1) min{|A1|, . . . , |An|} − 1.

Then f (a) �= 0 for some grid point a ∈A1 × · · · ×An.

Let us clarify that, in the latter two theorems, the subsets A1, . . . ,An need not have the same
underlying subgroup. A very minor additional hypothesis on the subsets A1, . . . ,An, left out for
readability’s sake, is that neither one is allowed to be a singleton.

The main issue is how to give meaning to the informal idea of a ‘structured’ grid. Rather
straightforwardly, we think of a finite grid A1 × · · · ×An as being structured when each one of
its sides, A1, . . . ,An, is structured. This boils down the main issue to that of defining ‘structure’
for a finite subset of a field. We do so by means of a certain parameter – the nullity. We interpret
increased nullity as increased structure: an arbitrary finite subset has the lowest possible nullity,
whereas finite subsets with genuine arithmetical structure have high nullity.

The notion of nullity, a key insight of this paper, is introduced in Section 2. In Section 4 we
discuss an alternate perspective on nullity, in the language of symmetric polynomials. Results
on polynomials over structured grids appear in Sections 3 and 6. The first main result is a
structured Combinatorial Nullstellensatz (Theorem 3.1). Consequences include the above-stated
Theorems 1.2, 1.3, and 1.4, as well as a structured enhancement of the Cauchy–Davenport inequal-
ity (Theorem 3.2). The second main result is a Complete Coefficient Theorem (Theorem 6.2),
which extends the Coefficient Theorem due, independently, to Uwe Schauz [18], Michał Lasoń
[13], Roman Karasev and Fedor Petrov [11]. In Section 4 we look at another possible inter-
pretation of ‘structure’ for a finite subset of a field, in terms of a Vandermonde parameter. We
compare it to nullity, and we explore some results on polynomials over Vandermonde-structured
grids.
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2. Null subsets
We introduce the nullity of a finite subset of a field as the lacunarity of an associated polynomial.
Let it be agreed that, throughout the paper, subsets are always understood to be non-empty.

Let F be a field, and let A⊆ F be a finite subset. The characteristic polynomial of A is the
polynomial �A ∈ F[X] given by

�A(X)=
∏
a∈A

(X − a).

Definition 2.1. Let λ ∈ {0, . . . , |A|}. We say that A is λ-null if, in the characteristic polynomial
�A(X), the coefficients of X|A|−1, . . . , X|A|−λ vanish.

Being 0-null is a void condition, so any finite subset satisfies it. A 1-null set is commonly known
as a zero-sum set. Clearly, the condition of being λ-null gets stronger as λ increases.

In the next result, we collect several observations on the calculus of null sets. The straightfor-
ward arguments are left to the reader.

Lemma 2.2. The following hold.

(i) Nullity is invariant under scaling: if A is λ-null and c ∈ F∗, then cA is λ-null.
(ii) Nullity is invariant under adjoining or removing the zero element: A is λ-null if and only if

A∪ {0} is λ-null.
(iii) Nullity is preserved by disjoint unions: if A and B are disjoint and λ-null, then A∪ B is λ-null.

We interpret nullity as structure. There is a two-way correlation supporting this conceptual
point. On the one hand, subsets with arithmetic structure exhibit high nullity. On the other hand,
subsets with very high nullity tend to be rather constrained.

Example 2.3. A subset A is λ-null for λ = |A| if and only if A= {0}.
Example 2.4. Let Fq be a finite field. ThenA= Fq has characteristic polynomial�A(X)= Xq − X,
and A= F

∗
q has characteristic polynomial �A(X)= Xq−1 − 1. Thus both A= Fq and A= F

∗
q are

(q− 2)-null.

Example 2.5. LetA be a coset of a finite multiplicative subgroup. ThenA is λ-null for λ = |A| − 1.
Indeed, let us first assume that A⊆ F∗ is a finite multiplicative subgroup. As each element of

A is a root of the polynomial X|A| − 1, it follows that �A(X)= X|A| − 1. Therefore A is λ-null for
λ = |A| − 1. By scaling, this remains true if A is a coset of a finite multiplicative subgroup of F∗.

Conversely, assume a finite subset A to be λ-null for λ = |A| − 1. This means that �A(X)=
X|A| − c for some c ∈ F. The degenerate case c= 0 corresponds to A= {0}, which is in fact λ-
null for λ = |A|. Consider now the case c �= 0. Since a|A| = c for each a ∈A, we deduce that A⊆
F∗. Furthermore, picking some a0 ∈A, we see that a−1

0 A is contained in μ|A|, the multiplicative
subgroup of F∗ which collects the roots of unity of order |A|. Note that μ|A| has at most |A|
elements. Hence, by counting, it must be that a−1

0 A= μ|A|, that is A= a0μ|A|. Therefore A is a
coset of a multiplicative subgroup.

Example 2.6. Let F be a field of positive characteristic p. Let A be a coset of a finite additive sub-
group; discard the degenerate case when A is a singleton, that is, a coset of the additive subgroup
{0}. Then A is λ-null for λ = (1− p−1)|A| − 1.

Indeed, note first that |A| = pe for some positive integer e; this is due to the fact that A can
be viewed as an affine space over the prime subfield of F. The key point about the characteristic
polynomial of A is that it takes the form

�A(X)= Xpe + ce−1Xpe−1 + · · · + c1Xp + c0X + c−1. (1)
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This fact is due to Oystein Ore [16]; see also [2], as well as [14, Thm.3.57] for the finite field
case. We present another argument, which we believe to be new, in Example 4.2. The form of
�A(X) immediately implies that A is λ-null for λ = pe − (pe−1 + 1)= (1− p−1)|A| − 1.

This nullity level cannot be increased, in general, as the following example shows. Let Fq be
a finite field with q= pe+1 elements. Consider the trace map Tr : Fq → Fp, given by Tr(a)= a+
ap + · · · + ape . The subset A= {a ∈ Fq : Tr(a)= 0} is an additive subgroup of size pe. It is readily
seen that its characteristic polynomial is �A(X)= Xpe + Xpe−1 + · · · + Xp + X.

Example 2.7. Let Fq be a finite field, with q> 3. If a subset A⊆ Fq is 1
2 (q− 1)-null, then A= Fq,

or A= F
∗
q .

Indeed, consider the polynomial f = Xq−|A|�A(X). Then f is monic of degree q, and it is fully
reducible, that is, it has q roots counted with multiplicity. By Rédei’s theorem [17], one of the
following holds: (a) f = Xq − X, or (b) f ′ = 0, or (c) f − Xq has degree at least 1

2 (q+ 1).
Case (c) is ruled out by the nullity hypothesis on A. Indeed, in the polynomial Xq−|A|�A(X),

the coefficients of Xq−1, . . . , Xq−(q−1)/2 = X(q+1)/2 vanish. In case (b), no root of f is simple. As
every non-zero element of A is a simple root of f = Xq−|A|�A(X), we deduce that A= {0}. In
this case f = Xq, and f ′ = 0 does hold. However, A= {0} is merely 1-null, whereas 1

2 (q− 1)> 1
by our assumption on q. Therefore case (b) is ruled out as well. We are left with case (a). From
Xq − X = Xq−|A|�A(X), we easily deduce that either A= Fq, or A= F

∗
q .

3. The structured Combinatorial Nullstellensatz
The following is our first main result.

Theorem 3.1. Let A1, . . . ,An be λ-null finite subsets of a field F. Assume that a polynomial
f ∈ F[X1, . . . , Xn] contains a monomial Xk1

1 . . . Xkn
n with non-zero coefficient, such that k1 <

|A1|, . . . , kn < |An| and
deg(f )≤ k1 + · · · + kn + λ.

Then f (a) �= 0 for some grid point a ∈A1 × · · · ×An.

The usual Combinatorial Nullstellensatz, Theorem 1.1, corresponds to the case λ = 0 of the
above theorem.

Theorems 1.2, 1.3, and 1.4 from the Introduction are immediate applications of the above the-
orem. If each one of A1, . . . ,An is a zero-sum subset, then they are jointly 1-null. If each one
of A1, . . . ,An is a coset of a finite multiplicative subgroup then, by Example 2.5, they are jointly
λ-null for λ =min{|A1|, . . . , |An|} − 1. If each one of A1, . . . ,An is a coset of a finite additive sub-
group and the ambient field F has characteristic p, then, by Example 2.6, they are jointly λ-null for
λ = (1− p−1) min{|A1|, . . . , |An|} − 1.

We give a proof of Theorem 3.1 by exploiting an algebraic result of Alon [1, Thm.1.1] which is
closely related to the Combinatorial Nullstellensatz. This algebraic result also goes under the name
of Combinatorial Nullstellensatz, though it is much less used, and it is indeed a Nullstellensatz
in the sense this term is employed in algebraic geometry; see [7] for more on this point. In a
subsequent section, we will also obtain Theorem 3.1 as a consequence of Theorem 6.2.

Proof. Arguing by contradiction, let us assume that f (a)= 0 for all grid points a ∈A1 × · · · ×An.
Then by [1, Thm.1.1], the following holds: there are polynomials h1, . . . , hn ∈ F[X1, . . . , Xn] so
that

f = h1 · �A1(X1)+ · · · + hn · �An(Xn), (2)
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and, furthermore, the total degree of each polynomial hi satisfies
deg(hi)≤ deg(f )− deg(�Ai)= deg(f )− |Ai|. (3)

From (2), we deduce that the monomial Xk1
1 . . . Xkn

n appears with a non-zero coefficient in
some product hi · �Ai(Xi). Now we use the hypothesis that Ai is λ-null: �Ai(Xi) has the lacunary
form

�Ai(Xi)= X|Ai|
i +

|Ai|−λ−1∑
r=0

crXr
i .

In the product hi · �Ai(Xi), the monomial Xk1
1 . . . Xkn

n cannot arise from X|Ai|
i , the leading term

of �Ai(Xi), since ki < |Ai|. Therefore a term of much lower order, Xr
i for some r < |Ai| − λ, is

involved. This means that the monomial Xk1
1 . . . Xki−r

i . . . Xkn
n appears with a non-zero coefficient

in hi. But then
deg(hi)≥ k1 + · · · + (ki − r)+ · · · + kn

> k1 + · · · + kn + λ − |Ai| ≥ deg(f )− |Ai|
in contradiction with (3). �

As an illustration, we prove a structured version of the well-known Cauchy–Davenport
inequality. (Let us recall it: if Fp is a finite field with p elements, where p is a prime, and A, B⊆ Fp,
then the sumsetA+ B= {a+ b : a ∈A, b ∈ B} satisfiesA+ B= Fp, or |A+ B| ≥ |A| + |B| − 1.) At
this point, we need to introduce a natural notation: given a subset A⊆ F, we put

λ(A)=max{λ :A is λ-null}.
Theorem 3.2. Let Fp be a finite field with p elements, where p is a prime, and let A, B⊆ Fp. Then
the sumset A+ B⊆ Fp satisfies

λ(A+ B)≥min{λ(A), λ(B)},
or

|A+ B| ≥ |A| + |B| + λ(A+ B).

Informally, this says that a sumset of structured sets is either fairly structured, or else not too
small.

Proof. We adapt the argument of [1, Thm.3.2]. Put C := A+ B, and consider the polynomial

f =
∏
c∈C

(X + Y − c) ∈ Fp[X, Y].

Then f vanishes over the grid A× B.
Arguing by contradiction, let us assume that λ(C)<min{λ(A), λ(B)} and |C| < |A| + |B| +

λ(C). Setμ := λ(C)+ 1. Thenμ ≤min{λ(A), λ(B)} and |C| ≤ |A| + |B| + λ(C)− 1= (|A| − 1)+
(|B| − 1)+ μ. Choose non-negative integers k and � satisfying k≤ |A| − 1, � ≤ |B| − 1, and |C| =
k+ � + μ.

We may apply Theorem 3.1 since A and B are μ-null, and deg(f )= k+ � + μ, where k< |A|
and � < |B|. As f vanishes over the grid A× B, it follows that the coefficient of XkY� in f is zero.
Now let us find, explicitly, the coefficient of XkY�. Suppose that the characteristic polynomial of
C expands as �C(Z)= ∑|C|

r=0 erZ|C|−r. Then

f = �C(X + Y)=
|C|∑
r=0

er(X + Y)|C|−r.
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The monomial XkY� appears in the expansion of (X + Y)k+�, which corresponds to r = μ.
Hence, the coefficient of XkY� equals (

k+ �

k

)
eμ.

Recall that μ = λ(C)+ 1, which implies that eμ �= 0. Also k+ � < |C| ≤ p, which implies that
the above binomial coefficient is non-zero in Fp. We have therefore obtained a contradiction. �

In principle, the key instance of Theorem 3.1 is when k1 = |A1| − 1, . . . , kn = |An| − 1. If one
knows this particular case, then one can generalize to arbitrary k1 < |A1|, . . . , kn < |An|. The sim-
plest way would be to trim the grid, as in [1], which would be legitimate if we worked over arbitrary
grids. Over structured grids, the germane idea is to adapt the polynomial by a degree-raising trick
– namely, consider the polynomial

X|A1|−k1−1
1 . . . X|An|−kn−1

n f (X1, . . . , Xn).

The general form of Theorem 3.1 is more flexible in applications, and the proof of
Theorem 3.2 above is a case in point. Moving forward, in Section 6, it will be convenient to
adopt the case k1 = |A1| − 1, . . . , kn = |An| − 1 as the main case of interest; this will simplify the
formulas appearing therein. However, one should keep in mind the degree-raising trick.

4. Nullity and symmetric moments
We now turn to a different viewpoint on nullity. Again, let F be a field and let A⊆ F be a finite
subset. If A hasm elements, and g(X1, . . . , Xm) is a symmetric polynomial inm variables, then we
may evaluate g on A by setting

g(A)= g(a1, . . . , am)

where a1, . . . , am is an enumeration of A. This is unambiguous: the evaluation g(A) depends only
on the set A, and not on the actual enumeration of A, since the polynomial g is symmetric.

The elementary symmetric polynomials and the complete symmetric polynomials of degree r
inm variables are given by

er(X1, . . . , Xm)=
∑

1≤i1<...<ir≤m
Xi1 . . . Xir ,

hr(X1, . . . , Xm)=
∑

k1+···+km=r
Xk1
1 . . . Xkm

m .

By convention, e0(X1, . . . , Xm)= 1 and h0(X1, . . . , Xm)= 1. Note, in addition, that
er(X1, . . . , Xm)= 0 when r >m.

By evaluating the elementary symmetric polynomials and the complete symmetric polynomials
on A, one obtains the elementary moments er(A), respectively the complete moments hr(A). We
may give an alternate description of the nullity of A, in terms of these symmetric moments.

Lemma 4.1. Let λ ∈ {0, . . . , |A|}. Then the following are equivalent:

(i) A is λ-null;
(ii) the elementary moments of A vanish up to degree λ, that is, er(A)= 0 for all 1≤ r ≤ λ;
(iii) the complete moments of A vanish up to degree λ, that is, hr(A)= 0 for all 1≤ r ≤ λ.

The zeroth moments cannot partake in vanishing, as e0(A)= h0(A)= 1.
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Proof. The equivalence of (i) and (ii) is immediate from Viète’s formula:

�A(X)=
∏
a∈A

(X − a)=
|A|∑
i=0

(−1)iei(A) X|A|−i. (4)

The elementary and the complete symmetric polynomials are entwined by the identity
r∑

i=0
(−1)ier−i(X1, . . . , Xm) hi(X1, . . . , Xm)= 0.

Evaluating on a finite subset A gives
r∑

i=0
(−1)ier−i(A) hi(A)= 0. (5)

This relation bridging the two types of moments implies, in particular, the equivalence of (ii)
and (iii). The argument uses an obvious induction. �

As the proof shows, it is evident that the nullity of A is reflected in the vanishing of elementary
moments of A. The purpose of the above lemma is to uncover the less evident link between the
nullity of A and the vanishing of complete moments of A. This link will be of key importance for
an upcoming result, Theorem 6.2.

Example 4.2. Let F be a field of characteristic p, where p is a prime, and let A⊆ F be a coset of a
finite additive subgroup. We show that er(A)= 0 for all 1≤ r ≤ |A| − 2 such that |A| − r is not a
power of p. In view of (4), this precisely translates into the statement, made in Example 2.6, that
the characteristic polynomial �A(X) takes the form (1).

Let k≤ |A| − 1. Consider the polynomial

�k(X)= ek(X +A)− ek(A)

where X +A is the translate of the subset A by the indeterminate X. Then �k(X) has degree at
most k, and it admits |A| roots – namely, the elements of the finite additive subgroup underlying A.
Therefore �k(X) is the zero polynomial. Let us put �k(X) in standard form, so that we can equate
its coefficients to 0. We have

ek(X +A)=
∑

B⊆A, |B|=k

∏
b∈B

(X + b)=
∑

B⊆A, |B|=k

k∑
r=0

er(B) Xk−r .

As ∑
B⊆A, |B|=k

er(B)=
(|A| − r

k− r

)
er(A),

we deduce that

�k(X)= ek(X +A)− ek(A)=
k−1∑
r=0

(|A| − r
k− r

)
er(A) Xk−r .

Thus, in F, (|A| − r
k− r

)
er(A)= 0, 0≤ r ≤ k− 1. (6)
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Consider now some r ∈ {1, . . . , |A| −2} such that |A| − r is not a power of p. By a well-known
property of binomial coefficients, due to Fine [9], there exists j ∈ {1, . . . , |A| − r − 1} such that(|A| − r

j

)
�≡ 0 mod p.

Set k= j+ r. Note that r < k≤ |A| −1, so we are in position to invoke (6). We infer that
er(A)= 0, as desired.

Furthermore, we claim that e|A|−1(A) �= 0. We have e|A|−1(A)= e|A|−1(c+A) for all c ∈ F since
�|A|−1(X) is the zero polynomial. By definition, A is a translate of a finite additive subgroup A′.
Thus e|A|−1(A)= e|A|−1(A′). The advantage in replacing the coset A by its underlying subgroup
A′, is that we can easily compute

e|A|−1(A′)=
∑

B⊆A′, |B|=|A|−1

∏
b∈B

b=
∏

b∈A′\{0}
b

since all but one of the indexing subsets B contain 0. The latter product is evidently non-zero.
Let us point out that e|A|−1(A) is the coefficient of X in the characteristic polynomial �A(X).

Firstly, by (4), this coefficient equals (−1)|A|−1 e|A|−1(A). But (−1)|A|−1 = 1 in F; this is clearly
true if p= 2, whereas for p> 2 we recall that |A| is odd, being a power of p.

5. Vandermonde subsets
There is yet another fundamental family of symmetric polynomials, the power-sum polynomials

pr(X1, . . . , Xm)= Xr
1 + · · · + Xr

m.

By evaluating them on a finite subset A⊆ F, we obtain the power-sum moments pr(A). These
moments are actually classical, whereas the consideration of their elementary and complete
counterparts appears to be new.

Definition 5.1. Let λ ∈ {0, . . . , |A|}. A finite subset A⊆ F is λ-Vandermonde if the power-sum
moments of A vanish up to degree λ, that is, pr(A)= 0 for 1≤ r ≤ λ.

This terminology resonates with the notion of Vandermonde subset of a finite field, as studied
by Peter Sziklai and Marcella Takáts [19]. The Vandermonde condition shares some general fea-
tures with nullity: any finite subset is 0-Vandermonde; being λ-Vandermonde gets stronger as λ

increases; being λ-Vandermonde is stable under the operations indicated in Lemma 2.2.
Linking the power-sum polynomials to the elementary symmetric polynomials is Newton’s

formula:

rer(X1, . . . , Xm)+
r∑

i=1
(−1)ier−i(X1, . . . , Xm) pi(X1, . . . , Xm)= 0

for 1≤ r ≤m. Evaluating on a finite subset A gives

rer(A)+
r∑

i=1
(−1)ier−i(A) pi(A)= 0, 1≤ r ≤ |A|. (7)

While being λ-null and being λ-Vandermonde are not equivalent, the two notions can be
related by using (7).

Lemma 5.2. If A is λ-null, then A is λ-Vandermonde. The converse is true provided that char F = 0,
or that char F = p and λ < p.
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In the following example, we illustrate how the nullity and the Vandermonde parameter can be
rather different.

Example 5.3. Let F be a field of characteristic p, and let A⊆ F be a coset of a finite additive
subgroup. Recall from Example 2.6 that A is λ-null for λ = (1− p−1)|A| − 1, and this is best pos-
sible in general. On the other, we show that A is λ-Vandermonde for λ = |A| − 2, though not for
λ = |A| − 1.

Indeed, we know from Example 4.2 that er(A)= 0 whenever r ∈ {1, . . . , |A| − 2} is not a mul-
tiple of p. An inductive use of (7) yields pr(A)= 0 for 1≤ r ≤ |A| − 2. Thus A is λ-Vandermonde
for λ = |A| − 2.

For r = |A| − 1, (7) gives rer(A)+ (−1)rpr(A)= 0. This amounts to pr(A)= (−1)rer(A) since
r = −1 in F. We also know from Example 4.2 that er(A) �= 0, whence pr(A) �= 0. Thus A is not
λ-Vandermonde for λ = |A| − 1. Here is an alternate argument for this latter point, an argument
whose benefit is that it explains the ‘Vandermonde’ terminology. We have pr(A)= 0 for 1≤ r ≤
|A| − 2, but also for r = 0 since the size of A is a multiple of p. If we had pr(A)= 0 for r = |A| − 1
as well, then that would contradict the invertibility of the Vandermonde matrix associated to A.

Vandermonde subsets are not the main focus of this paper, but they are worth mentioning on
two accounts. Firstly, we believe that the power-sum moments are useful for a more systematic
study of nullity – a study that we do not attempt herein. For instance, the power-sum viewpoint
makes it obvious that, in formally real fields, one can only speak of 1-nullity. This observation
is not immediate from Definition 2.1. Secondly, Vandermonde subsets fit our main theme – the
interplay between polynomials and structured grids. To wit, we have the following pair of results.

Theorem 5.4. Let A1, . . . ,An be λ-Vandermonde finite subsets of a field F. Let f ∈ F[X1, . . . , Xn]
be a polynomial with the property that the degree of each variable is at most λ. Then∑

a∈A1×···×An

f (a)= f (0)|A1| . . . |An|.

Theorem 5.5. Let F be a field of characteristic p. Let A1, . . . ,An be λ-Vandermonde finite subsets
of F, such that p divides |A1|, . . . , |An|. Let f ∈ F[X1, . . . , Xn] be a polynomial whose degree satisfies
deg(f )< n(λ + 1). Then ∑

a∈A1×···×An

f (a)= 0.

Theorems 5.4 and 5.5 are closely related, and we give a joint proof below. But they work some-
what differently: in Theorem 5.5, the underlying grid is a bit more structured, allowing for the
degree requirement on f to be relaxed.

Proof of Theorems 5.4 and 5.5. Let fd1,...,dn denote the coefficient of X
d1
1 . . . Xdn

n in f . So

f =
∑

d1,...,dn

fd1,...,dn X
d1
1 . . . Xdn

n

where each of d1, . . . , dn runs over the non-negative integers. Then∑
a∈A1×···×An

f (a)=
∑

d1,...,dn

fd1,...,dn
( ∑
a1∈A1

ad11
)

. . .
( ∑
an∈An

adnn
)
. (8)

As A1, . . . ,An are λ-Vandermonde, we may restrict the summation on the right-hand side of
(8) to those tuples satisfying di = 0 or di > λ, for each i.

The degree assumption of Theorem 5.4 is that fd1,...,dn = 0, except possibly when di ≤ λ for
each i. Thus, on the right-hand side of (8), only the term corresponding to d1 = · · · = dn = 0
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remains. We obtain ∑
a∈A1×···×An

f (a)= f (0)|A1| . . . |An|.

Consider now the setup of Theorem 5.5. The cardinality assumption on the sets |A1|, . . . , |An|
means that the indexing on the right-hand side of (8) can be further restricted to those tuples
satisfying di > λ, for each i. On the other hand the degree assumption on f is that fd1,...,dn = 0
when d1 + · · · + dn ≥ n(λ + 1). Therefore∑

a∈A1×···×An

f (a)= 0

in this case. �
In light of Example 5.3, Theorem 5.5 applies when A1, . . . ,An are (cosets of) finite additive

subgroups. We deduce the following consequence.

Corollary 5.6. Let F be a field of characteristic p, and let A1, . . . ,An be finite additive subgroups of
F. Let f ∈ F[X1, . . . , Xn] be a polynomial whose degree satisfies

deg(f )< n
(
min{|A1|, . . . , |An|} − 1

)
.

Then ∑
a∈A1×···×An

f (a)= 0.

We strengthen the above corollary in the next section.

Remark (Pete Clark, personal communication). Anurag Bishnoi and Pete Clark have indepen-
dently obtained closely related results on polynomials over Vandermonde grids. Their work is
reported in [8], and has since appeared in preprint form [5].

6. The complete coefficient theorem
For the purposes of this section, it will be convenient to introduce a notation. Let F be a field. For
each point a= (a1, . . . , an) in a finite grid A1 × · · · ×An ⊆ Fn, put

wa = 1
�′A1(a1) . . . �′An(an)

.

In this formula, �′A1 , . . . ,�′An are the formal derivatives of the characteristic polynomials
of A1, . . . , An. Given a finite subset A⊆ F, we have �′A(a) �= 0 for each a ∈A since �A is, by
definition, a separable polynomial. We can actually write down an explicit formula:

�′A(a)=
∏

b∈A,b�=a
(a− b).

We can now state the following Coefficient Theorem.

Theorem 6.1 ([18, 13, 11]). Let A1, . . . ,An be finite subsets of a field F. Assume that f ∈
F[X1, . . . , Xn] is a polynomial whose degree satisfies

deg(f )≤ (|A1| − 1)+ · · · + (|An| − 1).

Then the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n in f equals∑
a∈A1×···×An

wa f (a).
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Our second main result is a generalization of Theorem 6.1, that we term the Complete
Coefficient Theorem.

Theorem 6.2. Let A1, . . . ,An be λ-null finite subsets of a field F. Assume that f ∈ F[X1, . . . , Xn] is
a polynomial whose degree satisfies

deg(f )≤ (|A1| − 1)+ · · · + (|An| − 1)+ λ.

Then the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n in f equals
∑

a∈A1×···×An

wa f (a).

The key role in the proof of the theorem is played by the following fact.

Lemma 6.3 (Sylvester’s identity, cf. [4]). Let A be a finite subset of a field F, and let d be a non-
negative integer. Then

∑
a∈A

ad

�′A(a)
=

{
0 if 0≤ d < |A| − 1,

hd−|A|+1(A) if d ≥ |A| − 1.

Proof of Theorem 6.2. Consider the monomial expansion

f =
∑

d1,...,dn

fd1,...,dn X
d1
1 . . . Xdn

n

where d1, . . . , dn run over the non-negative integers. We can then write

∑
a∈A1×···×An

wa f (a)=
∑

d1,...,dn

fd1,...,dn

⎛
⎝ ∑

a1∈A1

ad11
�′A1 (a1)

⎞
⎠ . . .

⎛
⎝ ∑

an∈An

adnn
�′An(an)

⎞
⎠ .

By Sylvester’s identity, the right-hand sum equals
∑

d1≥|A1|−1,...,dn≥|An|−1

fd1,...,dn · hd1−|A1|+1(A1) . . . hdn−|An|+1(An)

=
∑

r1≥0,...,rn≥0
fr1+|A1|−1,...,rn+|An|−1 · hr1(A1) . . . hrn(An).

We need to show that the latter sum equals f|A1|−1,...,|An|−1. This is precisely the contribution
of the multiindex (r1, . . . , rn)= (0, . . . , 0), as h0(A)= 1 for any finite subset A. Next, we check
that the contribution of a multiindex (r1, . . . , rn) �= (0, . . . , 0) vanishes. If r1 + · · · + rn > λ, then
fr1+|A1|−1,...,rn+|An|−1 = 0 by the degree hypothesis on f . If r1 + · · · + rn ≤ λ, then we argue that
some hri(Ai) vanishes. Indeed, let i be an index for which ri �= 0. Then 1≤ ri ≤ λ. It follows from
the λ-nullity of Ai, as interpreted through Lemma 4.1, that hri(Ai)= 0. �

Theorem 6.2 might seem daunting, due to the complicated formula of the weight function
w. On the one hand, here are two applications in which the weights’ formula is actually irrele-
vant. Firstly, keep the hypotheses of Theorem 6.2 and assume further that the coefficient of the
monomial X|A1|−1

1 . . . X|An|−1
n in f is non-zero; then f cannot vanish at each point of the grid

A1 × · · · ×An. This is the key case, k1 = |A1| − 1, . . . , kn = |An| − 1, of Theorem 3.1. Secondly,
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if we now assume the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n to be zero, we obtain the
following consequence.

Corollary 6.4. Let A1, . . . ,An be λ-null finite subsets of a field F. Assume that f ∈ F[X1, . . . , Xn] is
a polynomial whose degree satisfies

deg(f )≤ (|A1| − 1)+ · · · + (|An| − 1)+ λ.

If the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n in f is zero, then f cannot vanish at all but
one point of the grid A1 × · · · ×An.

Over finite fields, the previous corollary yields results in the spirit of Chevalley’s theorem. (Let
us recall it: if Fq is a finite field of characteristic p, and f ∈ Fq[X1, . . . , Xn] is a polynomial of
degree less than n, then f cannot have a single zero in F

n
q .) We illustrate the idea on the following

geometric example.

Example 6.5. Let A1, . . . ,An be subsets of a finite field Fq, not all singletons. We are interested in
the following slicing feature of the grid A1 × · · · ×An ⊆ F

n
q :

(PP) no plane in F
n
q intersects the grid in a single point.

A plane π ⊆ F
n
q has an associated polynomial fπ ∈ Fq[X1, . . . , Xn] of degree q− 1 whose sup-

port is π . Namely, if π is given by the equation c1x1 + · · · + cnxn = 0, then fπ = 1− (c1X1 + · · · +
cnXn)q−1 satisfies fπ (x) �= 0 if and only if x ∈ π . The intersection of π and the grid A1 × · · · ×An
consists of those points in the grid where fπ does not vanish. We aim to apply Corollary 6.4 to
polynomials of the form fπ . By requiring that (|A1| − 1)+ · · · + (|An| − 1) �= q− 1, we ensure
that the monomial X|A1|−1

1 . . . X|An|−1
n does not appear in fπ .

The unstructured outcome is the following: if the grid is large, in the sense that
(|A1| − 1)+ · · · + (|An| − 1)> q− 1,

then (PP) holds. The structured upshot of Corollary 6.4 deals with smaller null grids: ifA1, . . . ,An
are λ-null and

q− 1− λ ≤ (|A1| − 1)+ · · · + (|An| − 1)< q− 1,
then (PP) holds.

On the other hand, we can use Theorem 6.2 over structured grids whose weight function w
ends up having a much simpler form. Here are two key examples.

(i) Let A⊆ F∗ be a finite multiplicative subgroup. Then the characteristic polynomial of A is
of the form �A = X|A| − c, hence

�′A(a)= |A| a|A|−1 = |A| a−1

for each a ∈A. It follows that, for a grid A1 × · · · ×An defined by finite multiplicative
subgroups A1, . . . ,An ⊆ F∗, we have

wa = 1
�′A1 (a1) . . . �′An(an)

= a1 . . . an
|A1 × · · · ×An|

for each grid point a= (a1, . . . , an).
(ii) Let A⊆ F be a finite additive subgroup. Then

�′A(a)=
∏

b∈A,b�=a
(a− b)=

∏
b∈A\{0}

b
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for each a ∈A. Thus, for a grid A1 × · · · ×An defined by finite additive subgroups
A1, . . . ,An ⊆ F, we have

wa = 1
�′A1 (a1) . . . �′An(an)

=
⎛
⎝ ∏

b1∈A1\{0}
b−1
1

⎞
⎠ . . .

⎛
⎝ ∏

bn∈An\{0}
b−1
n

⎞
⎠

for each grid point a= (a1, . . . , an). The notable feature in this case is that the weights
are constant over the grid. This continues to hold when A1, . . . ,An ⊆ F are cosets of finite
additive subgroups.

We deduce the following high nullity instances of Theorem 6.2.

Corollary 6.6 (Multiplicative grids). Let A1, . . . ,An be finite multiplicative subgroups of F. Assume
that f ∈ F[X1, . . . , Xn] is a polynomial whose degree satisfies

deg(f )≤ (|A1| − 1)+ · · · + (|An| − 1)+min{|A1|, . . . , |An|} − 1.

Then the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n in f equals the averaged sum
1

|A1 × · · · ×An|
∑

(a1,...,an)∈A1×···×An

a1 . . . anf (a1, . . . , an).

Corollary 6.7 (Additive grids). Let F have characteristic p, and let A1, . . . ,An be cosets of finite
additive subgroups of F. Assume that f ∈ F[X1, . . . , Xn] is a polynomial whose degree satisfies

deg(f )≤ (|A1| − 1)+ · · · + (|An| − 1)+ (1− p−1) min{|A1|, . . . , |An|} − 1.

If the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n in f is zero, then∑
a∈A1×···×An

f (a)= 0.

Note that, in the above corollary, the assumptions on f are fulfilled when deg(f )< (|A1| − 1)+
· · · + (|An| − 1); we thus see that Corollary 6.7 significantly strengthens Corollary 5.6.

Over finite fields, Corollary 6.7 yields results in the spirit of Warning’s theorem. (Recall, this is
a refinement of Chevalley’s theorem, stating the following: if Fq is a finite field of characteristic p,
and f ∈ Fq[X1, . . . , Xn] is a polynomial of degree less than n, then the number of zeroes of f in F

n
q

is a multiple of p.) As a simple illustration, we discuss a variation on Example 6.5.

Example 6.8. Let A1, . . . ,An be additive subgroups of a finite field Fq of characteristic p. The
slicing feature of the grid A1 × · · · ×An ⊆ F

n
q that we are now interested in is

(PPp) the number of points in which each plane in F
n
q intersects the grid is a multiple of p.

Clearly, property (PPp) is stronger than property (PP), considered in Example 6.5; but the grid
is also assumed to be more structured.

Consider again the polynomial fπ ∈ Fq[X1, . . . , Xn] of degree q− 1 associated to a plane π ⊆
F
n
q . As fπ takes the value 1 on π , respectively the value 0 off π , we obtain∑

a∈A1×···×An

fπ(a)=Nπ · 1

where Nπ denotes the size of the intersection of π with the grid. We wish to apply Corollary 6.7
to fπ . To ensure that the monomial X|A1|−1

1 . . . X|An|−1
n does not appear in fπ , we require that

(|A1| − 1)+ · · · + (|An| − 1) �= q− 1. If, in addition, we also have that

q− 1< (|A1| − 1)+ · · · + (|An| − 1)+ (1− p−1) min{|A1|, . . . , |An|}.
then Nπ ≡ 0 mod p for each plane π , meaning that (PPp) holds.
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The coefficient theorem 6.1 is designed to determine the coefficient of a top-degree monomial.
The complete coefficient theorem 6.2 reaches into the lower-degree monomials of a polynomial.
In fact, all coefficients could be uncovered by an evaluation over a suitable structured grid. The
‘complete’ designation of Theorem 6.2 owes largely to this fact, but also to the crucial use of
complete symmetric polynomials in its proof.

We illustrate this ‘complete’ viewpoint by the following multivariable interpolation theorem.

Theorem 6.9. Let A1, . . . ,An be λ-null finite subsets of a field F, neither one a singleton. If f ∈
F[X1, . . . , Xn] is a polynomial of degree at most λ, then

f =
∑

k1+···+kn≤λ

( ∑
a∈A1×···×An

a|A1|−k1−1
1 . . . a|An|−kn−1

n wa f (a)
)
Xk1
1 . . . Xkn

n .

Proof. Let (k1, . . . , kn) be a tuple of non-negative integers satisfying k1 + · · · + kn ≤ λ; in partic-
ular, ki ≤ λ ≤ |Ai| − 1 for each i. We have to show that

fk1,...,kn =
∑

a∈A1×···×An

a|A1|−k1−1
1 . . . a|An|−kn−1

n wa f (a),

where fk1,...,kn denotes the coefficient of X
k1
1 . . . Xkn

n in f . We employ the degree-raising trick. Put

f̃ = X|A1|−k1−1
1 . . . X|An|−kn−1

n f .

Then fk1,...,kn is the coefficient of the monomial X|A1|−1
1 . . . X|An|−1

n in f̃ , and

deg(f̃ )= (|A1| − k1 − 1)+ · · · + (|An| − kn − 1)+ deg(f )

≤ (|A1| − 1)+ · · · + (|An| − 1)+ λ.
Hence, by Theorem 6.1, we have that

fk1,...,kn =
∑

a∈A1×···×An

wa f̃ (a).

Upon reverting to the original polynomial f , we obtain the desired formula. �
Corollary 6.10. Let A1, . . . ,An be λ-null finite subsets of a field F, neither one a singleton. Let
F ⊆ E be a field extension. Assume that f ∈ E[X1, . . . , Xn] is a polynomial of degree at most λ, with
the property that the values of f over the grid A1 × · · · ×An lie in F. Then f has coefficients in F.
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