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Abstract

We study classes of Banach spaces where every set-valued mapping from a complete metric space into
subsets of the Banach space which satisfies certain minimal properties, is single-valued and norm upper
semi-continuous at the points of a dense Gs subset of its domain. Characterisations of these classes
are developed and permanence properties are established. Sufficiency conditions for membership of
these classes are defined in terms of fragmentability and a-fragmentability of the weak topology. A
characterisation of non membership is used to show that lx(t>l) is not a member of our classes of generic
continuity spaces.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46B22; secondary 46B20, 58C20.

0. Introduction

Considerable recent research has developed about the problem of determining classes
of Banach spaces where the continuous convex functions have desirable differentiabil-
ity properties. The significance of this research was established when it was seen that it
is closely allied to the problem of determining classes of Banach spaces which possess
the Radon-Nikodym Property. It was shown [2] that a Banach space has the Radon-
Nikodym Property if and only if every continuous weak * lower semi-continuous
convex function on an open convex subset of the dual is Frechet differentiable on a
dense Gs subset of its domain. Recently it has been shown [8] that there is a class of
Banach spaces larger than the class of spaces with the Radon-Nikodym Property where
every continuous convex function on an open convex subset of the dual possessing
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a weak * continuous subgradient at the points of a residual subset of its domain is
Frechet differentiable on a dense Gs subset of its domain.

The differentiability of a continuous convex function is associated with single-
valuedness and continuity properties of the subdifferential mapping of the function
which is a set-valued mapping from the domain into the set of subgradients of the func-
tion. This association suggests a generalisation into the study of single-valuedness and
continuity properties of certain set-valued mappings which we call minimal mappings.
In this regard this paper can be considered as a sequel to the paper [8] developing this
generalisation and answering some of the questions raised by that paper.

Fragmentability conditions are an important tool in determining differentiability
properties. In particular, a Banach space has the Radon-Nikodym Property if and only
if every non-empty bounded subset has slices of arbitrarily small diameter. In the
paper [8] it was shown that a Banach space belongs to our class if it satisfies an ap-
propriately weaker fragmentability condition by a metric whose topology on bounded
sets is stronger than the weak topology. Recently, in papers [10, 11] there has been
considerable development of the more general concept of a -fragmentability and we
show that a Banach space belongs to our class if it satisfies similar a-fragmentability
conditions.

Variants of the Banach-Mazur game technique are now more widely used, especially
since the spectacular success achieved in the paper [17]. The technique was used in
paper [8] to find a space which does not belong to our class and here we use the
technique in association with Namioka's work on a -fragmentability to show that

does not belong to our class.

1. Minimal and hyperplane minimal mappings

An important class of set-valued mappings consists of the upper semi-continuous
mappings. A set-valued mapping <p from a topological space A into non-empty subsets
of a topological space X is upper semi-continuous at t G A if for every open set W such
that 0(f) c W there exists an open neighbourhood U of t such that <j>(U) c W. Such
mappings with compact images are called uscos and when X is a linear topological
space and the mappings have convex compact images they are called cuscos.

Within these classes of mappings special attention is given to the minimal mappings,
which are those whose graph does not contain the graph of any other from the class
with the same domain. The following characterisation of minimality for uscos and
cuscos is well known, [5, p. 252]. A usco (cusco) <p from a topological space A into
subsets of a Hausdorff space (separated locally convex space) is minimal if and only if,
for every open set (open half space) W and open set U in A such that <p{U) n W ^ 0
there exists a non-empty open set V c U such that </>( V) C W.
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Often when considering questions such as the generic single-valuedness and con-
tinuity of such mappings it is the minimality condition rather than the upper semi-
continuity which plays the significant role. This suggests that we isolate the minim-
ality condition and consider such questions for the class of what we will call minimal
mappings.

We say that a set-valued mapping <p from a topological space A into non-empty
subsets of a topological space X is minimal if for any open set W in X and open set
U in A such that <p(U) n f f / 0 there exists a non-empty open set V c U such
that 0(V) c W. We say that a set-valued mapping (p from a topological space A
into non-empty subsets of a linear topological space X is hyperplane minimal if for
any open half-space W and open set U in A such that <p(U) f)W ^ & there exists a
non-empty open set V c U such that </>(V) c W. It is easily verified that when X is
a topological space (locally convex space) <f> is minimal (hyperplane minimal) if and
only if for every open set U in A and closed (closed and convex) set K in X such that
4>(U) 2 K there exists a non-empty open set V c (/ such that 0(V) 0 ^ = 0.

We observe that these definitions lose the initial connotation of minimal because any
set-valued mapping from a topological space A into non-empty subsets of a topological
space (linear topological space) X whose graph is contained in the graph of a minimal
(hyperplane minimal) mapping on A is also minimal (hyperplane minimal). But also
for a minimal (hyperplane minimal) mapping from a topological space A into subsets
of a topological space (linear topological space) X, the restriction to any non-empty
open subset of A or to any dense subset of any open subset of A is also minimal
(hyperplane minimal). In particular, any selection from a dense subset of an open
subset of A is still minimal (hyperplane minimal) and when the range space is a regular
Hausdorff space (separated locally convex space) we can often determine continuity
properties of a minimal (hyperplane minimal) mapping from continuity properties of
such a selection.

THEOREM 1.1. Consider a minimal (hyperplane minimal) mapping </> from a topo-
logical space A into subsets of a topological space (locally convex space) X, and a
selection a on A and a dense subset D of A.

(i) For any open set U in A, <p(U) C a(U n D), (cp(U) c coo(U f~l D)).
(ii) If X is a regular Hausdorff space (separated locally convex space) and o\o

is continuous at to e D then (p is single-valued and upper semi-continuous at to-

PROOF, (i) Suppose </>(U) g a(U n D), (4>(U) £ coa(U n D)). Then since 4>
is minimal (hyperplane minimal) there exists a non-empty open set V c U such that

(p(V)Da(U HD) = 0, (4>(V)r\coa(U HD) = 0).

But this contradicts the density of D.

https://doi.org/10.1017/S1446788700000677 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000677


[4] Minimal set-valued mappings 241

(ii) As X is a regular Hausdorff space, a (t0) has a base of closed (closed and
convex) neighbourhoods whose intersection is a {to). Given one such neighbourhood
yV0 of a(r0) there exists an open neighbourhood U of t0 such that a(U D D) c No.
Then by (i),

<p(U) c o(U n D) C //„, (0(f/) c co"or(£/ fl D) c No).

So we conclude that 0 is single-valued and upper semi-continuous at t0.

It is convenient to have on hand elementary algebraic properties of minimal and
hyperplane minimal mappings which we will use in the subsequent development of
our theory.

THEOREM 1.2. Consider a minimal (hyperplane minimal) mapping </> from a topo-
logical space A into subsets of a linear topological space X.

(i) Given a continuous (continuous linear) mapping T from X into a linear
topological space Y, then T o </> is a minimal (hyperplane minimal) mapping from A
into subsets of Y.

(ii) Given a continuous real valued function g on A, then g.((> is a minimal
mapping from A (hyperplane minimal mapping from A \ g~x (0)) into subsets ofX.

(iii) Given a continuous mapping T from A into X, then T + </) is a minimal
(hyperplane minimal) mapping from A into subsets ofX.

PROOF, (i) Consider an open set (open half space) W in Y and an open set U in A
such that (To<p)(U)r\W ^ 0. Since T is continuous on X, T~l(W) is an open set (open
half space) in X. Since <p is minimal (hyperplane minimal) and </>(£/) n T~l(W) ^ 0
there exists a non-empty open set V c U such that (j>(V) c (f>(U) n r ' ( f f ) . Then
T o<t>(V) c W.

(ii) In the case when <j> is a minimal mapping, g.<p is the composite of the
continuous mapping T from I x X into X defined by T(t, x) = t.x with the minimal
mapping t \-> (g(t), <t>(t)) from A into I x X and so by (i) g.(j> is minimal.

In the case when </> is a hyperplane minimal mapping, consider an open set U in
A \ g- '(0) and an open half-space W such that g.<p(U) n W ^ 0 . Now there exists
an / e X* and a real a such that W = {x 6 X : f(x) > a}. Consider t0 e U such
that / (g(to).xo) > a for some x0 G 4>(ta). Then there exists an € > 0 such that
g(to)f(xo) > a + €. Since g is continuous at t0 there exists a neighbourhood U' of
to, U' c U such that g(?)/Oo) > a + e for all t € £/'. Consider the case when
g(t0) > 0. Then we may choose U' such that g(t) > 0 for all t € [/'. Then

f(xo)>M = sup{a/g(t):teU'}.
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Since 0 is hyperplane minimal there exists a non-empty open set V c {/' such that
/ (0(0) > M for all t G V. Therefore g ( 0 / (0(0) > a for all t e V. Consider the
case when g(?0) < 0. Then we may choose U' such that g(t) < 0 for all / e U'. Then

Again, since 0 is hyperplane minimal there exists a non-empty open set V c (/' such
that / (0(0) < m for all ? e V. Therefore g(t)f (0(0) > a for all t € V. In both
cases, g.0( V) c W and we conclude that g.<p is hyperplane minimal on A \ g~l (0).

(iii) The mapping <I> from A into X x X denned by <J>(0 = (T(t), 0(0) is also
minimal (hyperplane minimal). Since T+0 is the composite with <J> of the continuous
linear mapping from X x X into X defined by (x, y) i-» * + y, we deduce from (i)
that T + 0 is minimal (hyperplane minimal).

We should note that in Theorem 1.2 (ii) the mapping g.<p is not necessarily hyper-
plane minimal on any domain which includes the set g~l (0). For example, consider
the hyperplane minimal mapping 0 on IR defined by

t = 0,

and the continuous mapping gonR denned by g(t) = t. Then

which is not hyperplane minimal.
Our principal interest is in norm continuity properties of weakly minimal (hyper-

plane minimal) mappings from a complete metric space into subsets of a Banach space.
We say that a Banach space X is a general generic continuity space (GGC space) if
every weakly minimal mapping 0 from a complete metric space A into subsets of X
is single-valued and norm upper semi-continuous at the points of a dense Gs subset
of A. We say that a Banach space is a generic continuity space (GC space) if every
hyperplane minimal mapping 0 from a complete metric space A into subsets of X is
single-valued and norm upper semi-continuous at the points of a dense Gs subset of
A.

Since very weakly minimal mapping 0 from a complete metric space A into subsets
of a Banach space X is also hyperplane minimal, it is clear that the class of GGC
spaces contains the class of GC spaces. However, the subdifferential mapping of the
modulus function on R is hyperplane minimal but not minimal, and so the further
relation between the classes is open to investigation.
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In this paper we study the class of GGC spaces and the class of GC spaces. In paper
[8] the class of GC spaces was introduced but geometrical conditions of a particular
type implying membership of the class had been given in papers [13], [5, 6, 7] and
[14]. It was shown that all separable, all weakly compactly generated spaces and
those with the Radon-Nikodym property belong to this class as do those which can be
equivalently renormed to be weakly locally uniformly rotund or whose dual belongs
to Stegall's class 5?. In paper [8] it was shown that ^oo(r) where F is uncountable
is not a GC space. Subsequently, in private communication, Namioka showed that
^oo(^) is not a GGC space, and it was at his suggestion that we began to examine the
class of GGC spaces.

We begin with characterisations of the class of GGC and GC spaces which link
them to earlier work and which make them more amenable to study. We then examine
hereditary and three space properties for the classes. In paper [8], fragmentability
conditions were given sufficient for a Banach space to be a GC space. To show that
^oo(N) is not a GGC space, Namioka used recent work on a -fragmentability. This
suggested that we study a -fragmentability conditions sufficient for a Banach space
to be a GGC space. Finally we give a characterisation for non-membership of our
classes in terms of a Banach-Mazur game and use this to present Namioka's example.

We are indebted to Professor Isaac Namioka for his interest and discussions on the
subject of this paper and for providing the example which motivated our research.

2. Characterisations of the classes of GGC and GC spaces

The study of GC spaces began as an investigation of the differentiability properties
of continuous convex functions on open convex subsets of the dual of a Banach space.
The subdifferential mapping of a continuous convex function on an open convex subset
of a Banach space is a minimal weak * cusco into subsets of the dual of the space,
[16, p. 105], and it is well known that the convex function is Fre'chet differentiable at
a point of its domain if and only if its subdifferential mapping is single-valued and
norm upper semi-continuous at the point, [16, p. 19]. So naturally interest focused
on single-valued and norm upper semi-continuous properties of certain minimal weak
* cuscos from a complete metric space into subsets of the second dual. However, it
can be seen that manipulation of the theory is made considerably simpler by studying
minimal mappings into subsets of the original space. The basis of this connection is
given in Theorems 2.5 and 2.8.

We begin by developing particularly useful properties for hyperplane minimal
mappings into subsets of a Banach space similar to those which hold for minimal
weak * cuscos into the dual of a Banach space, [13, p. 471]. Given a normed linear
space X we will denote by r the weak topology on X, or when X is a dual space the

https://doi.org/10.1017/S1446788700000677 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000677


244 W. B. Moors and J. R. Giles [7]

weak or weak * topology on X.

LEMMA 2.1. Given a x-hyperplane minimal mapping <j>from a Baire space A into
subsets of a Banach space X there exists a dense Gs subset D of A where for each
t e D, the real valued function defined on A by p(t) = inf {||JC|| : x € <t>(t)} is
continuous and<f>(t) lies in the face of a sphere ofX of radius pit).

PROOF. Given a e K consider the set Aa = {t e A : p(t) > a}. Since the norm
on X is r-lower semi-continuous the set W = {x e X : \\x\\ > a] is r — open in X.
Since </> is r-hyperplane minimal on A, for to e Aa and neighbourhood U of t0 there
exists a non-empty open set V c U such that </>(V) c W, so p(t) > a for all ( e V .
Since A is a Baire space, we deduce that p is continuous at the points of a dense Gs

subset D of A, [4, Theorem 1.5].

Suppose that for some t0 e D there exists an x0 e 0(fo) such that ||JCO|| > p(fo)-
Then given ||jto|| > r > p(f0), since p is continuous at f0 there exists an open
neighbourhood U of t0 such that p(r) < r for all f e [/. But 0 ( t / ) £ B[0; r] and
since </> is r-hyperplane minimal and B[0; r] is r-closed there exists a non-empty open
set V c [/ such that 0(V) D S[0; r] = 0. But then p(t) > r for all f e V which is a
contradiction. So we conclude that ||JC|| = p(t) for all t e D.

This result important in itself, has a significant consequence.
A set-valued mapping <p from a topological space A into subsets of a Banach space

X is said to be locally bounded on a subset D of A if for each t e £> there exists a
neighbourhood £/ of f and a AT > 0 such that ||x|| < K for all x e

COROLLARY 2.2. A r-hyperplane minimal mapping <\> from a Baire space A into
subsets of a Banach space X is locally bounded at the points of a dense open subset
of A.

PROOF. We show that <p is locally bounded at the points of the subset D of A where
p is continuous. Consider f0 € D and e > 0. Since p is continuous at f0 there exists a
neighbourhood U of t0 such that

</>(Onfl[0;p(f0) + e] ^ 0 for each teU.

Suppose that <j>(JJ) % B [0; p(ta) + e]. Since <j> is r-hyperplane minimal and
B [0; p(t0) + e] is T-closed there exists a non-empty open set V c U such that

n B [0; p(*o) + e] = 0, which is a contradiction.

The next lemma relates locally bounded weakly minimal and hyperplane minimal
mappings into subsets of a Banach space to minimal weak * uscos and minimal weak
* cuscos into subsets of the second dual of a Banach space.
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LEMMA 2.3. Consider a Banach space X with second dual X**.
(i) Given </> a locally bounded weakly minimal (hyperplane minimal) mapping

from a topological space A into subsets ofX, the set-valued mapping <t>from A into
subsets ofX** defined by

<$>(t) = P j !</>([/)"' : U is a neighbourhood oft \

(<t>(t) — P | [cow'<p(U) : U is a neighbourhood of t}j

is a minimal weak * usco (minimal weak * cusco), [1, p. 472].
(ii) Given <t> a minimal weak * usco (minimal weak * cusco) from a topological

space A into subsets of X** where the set D = [t G A : <i>(t) ( 1 X ^ 0 } is dense in
A, the set-valued mapping <\> from D into subsets ofX defined by (j>(t) = <f>(t) flX is
weakly minimal (hyperplane minimal) on D.

The continuity property we are interested in is deduced from Theorem 1.1 and
Namioka's result [15, p. 525].

LEMMA 2.4. Given a weakly minimal (hyperplane minimal) mapping <f> from a
complete metric space A into subsets of a Banach space X, if there exists a dense
Gs subset D of A and a selection a where a\D is weakly continuous on D then (j> is
single-valued and norm upper semi-continuous at the points of a dense Gs subset of
D.

Corollary 2.2 and Lemmas 2.3 and 2.4 enable us to establish our first characterisa-
tion of the classes of GGC and GC spaces and to show that our definition is consistent
with that given for GC spaces in [8, p. 423].

THEOREM 2.5. A Banach space X is GGC space (GC space) if and only if every
minimal weak * usco (minimal weak * cusco) Qfrom a complete metric space A into
subsets ofX** where the set {t e A : <t>(t) n X ^ 0} is residual in A is single-valued
and norm upper semi-continuous at the points of a dense Gs subset of A.

We will find it useful to have a characterisation for these spaces in terms of minimal
mappings into the unit sphere of the space. We do this by using Lemma 2.1.

Given a weakly minimal (hyperplane minimal) mapping <f> from a Baire space A
into subsets of a Banach space X, using the dense Gs subset D of A given in Lemma
2.1, when D \ p~'(0) ^ 0 w e define the mapping 4> from D \ p" '(0) into subsets
of S(X) by (j)(t) = <j>(t)/p(t). The mapping <j> on D \ p~l(0) inherits minimality
properties from the mapping <j> which generates it.
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LEMMA 2.6. Given a weakly minimal (hyperplane minimal) mapping <p from a
Baire space A into subsets of a Banach space X, when D\p~l(O) ^ 0 , the associated
mapping 4> from D \ p~'(0) into subsets of S(X) is weakly minimal (hyperplane
minimal).

PROOF. NOW <p restricted to the dense subset D is still weakly minimal (hyperplane
minimal). Since p~'(0) is a closed subset of D, then D \ p~'(0) is an open subset
of D and we see that <j> restricted to D \ p~'(0) is still weakly minimal (hyperplane
minimal). Clearly, 0 is the product of the continuous real-valued function 1/p on
D \ p~'(0) with 4> restricted to D \ p"'(0) so by Theorem 1.2 (ii), 4> is a weakly
minimal (hyperplane minimal) mapping on D \ p~l(0).

LEMMA 2.7. Consider a hyperplane minimal mapping <pfrom a Baire space A into
subsets of a Banach space X where D \ p~' (0) ^ 0. If the associated mapping <pfrom
D \ p~'(0) into subsets of S(X) is single-valued and norm upper semi-continuous at
the points of a dense G$ subset D' o/D\p~'(0) thencf) is also single-valued and norm
upper semi-continuous at the points of D' U (p~l (0) Pi D) which is a residual subset
of A.

PROOF. Since p is continuous at the points of D and 4> is single-valued and norm
upper semi-continuous at the points of D\ then <P\D\P-<(0) is single-valued and norm
upper semi-continuous at the points of D'. Since D \ p"1 (0) is a relatively open subset
of D, <j>\D is single-valued and norm upper semi-continuous at the points of D'.

For t0 e p~'(0) fl D, since p is continuous at /0 there exists a neighbourhood U of
t0 such that p{t) < € for all t e U. Then </»(f) c B(0; e) for all / e U n D, so <j>\D

is single-valued and norm upper semi-continuous at the points of D' U (p"1 (0) D D).
But again since D is dense in A and <\> is hyperplane minimal on A, by Theorem 1.1,0
is single-valued and norm upper semi-continuous at the points of D' U (p~' (0) n D).

We should note that if D c p~'(0) then <p is single-valued and maps to 0 on D.
Then <f>\D is norm continuous on D and by Theorem 1.1, $ is single-valued and norm
upper semi-continuous at the points of D.

Consider the case when A is a complete metric space. Since D is a Gs subset of
A it is completely metrisable and since D \ p~'(0) is an open subset of D it is also
completely metrisable. So we have the following characterisation for GGC and GC
spaces.

THEOREM 2.8. A Banach space X is a GGC space (GC space) if and only if every
weakly minimal (hyperplane minimal) mapping </> from a complete metric space A
into subsets of S(X) is single-valued and norm upper semi-continuous at the points
of a dense Gs subset of A.
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We will use the characterisations Theorem 2.5 in Section 3 and Theorem 2.8 in
Section 4. It will often be convenient to work with selections as in Theorem 3.7. It
will also be useful to consider mappings into subsets of the closed unit ball as we
do in Theorem 3.9 and Section 5. For convenience we list these easily established
subsidiary characterisations.

THEOREM 2.9. For a Banach space X, the following are equivalent:
(i) X is a GGC space (GC space).
(ii) Every minimal weak * usco (minimal weak * cusco) 4> from a complete

metric space A into subsets of B(X**)(or into subsets of S(X**)) where the set
\t e A : <$>(t) fl X ^ 0} is residual in A, is single-valued and norm upper semi-
continuous at the points of a dense Gs subset of A.

(iii) Every weakly minimal (hyperplane minimal) mapping <p from a complete
metric space A into subsets of B(X)(or into subsets of S(X)) is single-valued and
norm upper semi-continuous at the points of a dense Gs subset of A.

(iv) Every single-valued weakly minimal (hyperplane minimal) mapping a from a
complete metric space A into X(or into B(X), or into S(X)) is weakly continuous at
the points of a dense Gs subset of A.

3. Properties of the classes of GGC and GC spaces

In Section 1 we mentioned that the class of GGC spaces contains the class of GC
spaces. We use the characterisation in Theorem 2.5 to show that when we restrict
ourselves to Banach spaces satisfying a particular geometrical property, the two classes
coincide.

The following relation between minimal weak * cuscos and weak * uscos gives us
some insight.

LEMMA 3.1. In a Banach space X which can be equivalently renormed to have
every point of S(X) an extreme point of B(X**), for any minimal weak * cusco <$>from
a Baire space A into subsets of X** and minimal weak * usco ty from A whose graph
is contained in that of 4>, the set

{t e A : * ( 0 n X # 0} \ [t € A : *(r) n X # 0}

is first category in A.

PROOF. Consider X so renormed. Given? € A,<t>(t) = cow'ty(t) [l,p.462]. Since
0 ( 0 is weak * compact, ext 4>(r) c V(t). Write E = {t e A : 4>(/) f l f ^ 0 } . Now
the set T = {t e A : <!>(/) lies in the face of a sphere of X**} is residual in A. So for
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t € T n E, any point F e $(r)nX is an extreme point of ||F|| B(X**) so is an extreme
point of <J>(0 and therefore lies in *(?)• Hence the set | t e A : *(r) n X # 0} 2
7T1£. B u t F \ 7 c A\T which is first category in A, so £\{f e A : * ( ( ) f l X ^ 0 )
is also first category in A.

Using Lemma 2.3, and noting in the above proof that for every t e T D E, we
have 4>(f)HX = *(/) n X a singleton, this result has the following consequences
for minimal mappings.

COROLLARY 3.2. In a Banach space X which can be equivalently renormed to have
every point ofS(X) an extreme point ofB(X**), given a hyperplane minimal mapping
4> from a Baire space A into subsets of a Banach space X, there exists a dense Gs

subset D of A and a weakly minimal mapping ijf from D into subsets of X whose
graph is contained in that of<f>\p.

Lemma 3.1 enables us to identify a class of Banach spaces where the two classes
of generic continuity spaces coincide.

THEOREM 3.3. A Banach space which can be equivalently renormed to have every
point of S(X) an extreme point of B(X**), is a GC space if and only if it is a GGC
space.

A Banach space X is said to be weakly mid-point locally uniformly rotund if for
each x e S(X) and / e X*, \\f\\ = 1, given e > 0 there exists a S(e, x,f)>0 such
that for a l ly ,z 6 X, \\y\\, \\z\\ < 1, when ||y + z-2;c | | < S we have \f(y-z)\ < €. It
has been shown [19] that the space being weakly mid-point locally uniformly rotund is
equivalent to the space possessing the geometrical properties we require for Theorem
3.3. The original proof used the Principle of Local Reflexivity but here we give a
proof using Goldstine's Theorem.

PROPOSITION 3.4. A Banach space X is weakly mid-point locally uniformly rotund
if and only if every point ofS(X) is an extreme point of B(X**).

PROOF. Suppose there exist F,, F2 € X**, F{ ^ F2, | |F, | | = ||F2|| = 1 such
that x = (F, + F2)/2 and ||jr|| = 1. Then there exists an / e X*, \\f\\ = 1 and
real r > 0 such that F, e W, = {F e X** : f(F) > f(x) + r) and F2 e W2 =
{F e X**^f(F) < f(x) - r}. Consider the convex set W = (W, D B(X)) /2 +
(W2 n B(X)) /2. We will show that x eW. Every weak neighbourhood of 0 in X
can be considered to be of the form NDX where N is a weak * neighbourhood of 0 in
X**. Given a weak * open convex neighbourhood AT of 0 in X**, consider x + N n X
a weak open neighbourhood of x in X. By Goldstine's Theorem B(X) is weak *
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dense in B{X**) so there exists y e (F, + N) n Wx and z e (F2 + N) f) W2 where
\\y\\,\\z\\ < landthenJj + z)/2 6(F1 + F2)/2 + ./V. So (y + z)/2 € x + JV nx ,and
we conclude that x e W since W is convex. So given 8 > 0 there exist y e V^nfitX)
and zeW2C\ B(X) such that \\y + z - 2x\\ < 8. But | / (y - z)\ > 2r for all y e W,
and z e W2. Therefore X is not weakly mid-point locally uniformly rotund.

Conversely, suppose that X is not weakly mid-point locally uniformly rotund.
Then for some x e S(X) there exists an / € X*, | | / | | = 1 and r > 0 and sequences
{yn}, {zn} in B(X) such that \\yn +zn - 2x\\ -» 0 as n - • oo but |/(yn - zn)| > 2r for
all « e N. Then \f(yn — x)\ > r and |/(zn — JC)| > r for sufficiently large n e N.
Consider the weak * compact convex sets

Cl = {FeB(Xt*):F(f)>f(x)+r} and C2 = {Fe B(X") : F(f) < f(x)-r}.

Now co (Ci U C2) is weak * closed. We may suppose that yn e Ci and zn € C2 for
all n e N. So * € co (C, U C2) but * ^ Cx U C2. So we conclude that x is not an
extreme point of B(X**).

So within the class of Banach spaces which can be equivalently renormed to be
weakly mid-point locally uniformly rotund, the two classes of generic continuity
spaces coincide.

We now show that the classes of GGC spaces and GC spaces are invariant under
topological isomorphisms.

THEOREM 3.5. A Banach space X is a GGC space (GC space) if it is topologically
isomorphic to a closed linear subspace of a GGC space (GC space)Y.

PROOF. Consider a weakly minimal (hyperplane minimal) mapping <j) from a com-
plete metric space A into subsets of X and a topological isomorphism T of X into Y.
From Theorem 1.2 (i) we see that T o <j) is a weakly minimal (hyperplane minimal)
mapping from A into subsets of Y. But since Y is a GGC space (GC space) there
exists a dense Gs subset D of A at the points of which T o <j> is single-valued and norm
upper semi-continuous. Since T is a topological isomorphism, <p is single-valued and
norm upper semi-continuous at the points of D and we conclude that X is a GGC
space (GC space).

As an immediate application we have that the GGC and GC properties are heredit-
ary.

COROLLARY 3.6. A closed linear subspace of a GGC space (GC space) is also a
GGC space (GC space).
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We mentioned in Section 1 that Namioka has proved that ^ ( N ) is not GGC
space. It follows from Theorem 3.5 that any Banach space which contains a subspace
topologically isomorphic to £oo(N) is not a GGC space. In [8, Section 3] it was shown
that ^oo(r) where F is uncountable, is not a GC space. It now follows that ^ ( F )
where F is infinite is not a GGC space.

We now explore the GGC space and GC properties of a Banach space whose image
under a continuous linear mapping is a GGC or GC space.

THEOREM 3.7. Consider a continuous linear mapping T from a Banach space X
onto a GGC space (GC space) Y. If ker T is a GGC space (GC space) then X is a
GGC space (GC space).

PROOF. By Theorem 2.9 (iv), it is sufficient to consider a single-valued weakly
minimal (hyperplane minimal) mapping <p from a complete metric space A into X.
Consider the mapping T o <f> from A into Y. Since T is continuous, by Theorem 1.2
(i), T o 4> is weakly minimal (hyperplane minimal) on A and since Y is a GGC space
(GC space) there exists a dense Gs subset D of A where T o 0 is norm continuous.
Now D is completely metrisable and T o (j)\D is norm continuous on D. By the
Bartle-Graves Theorem there exists a continuous mapping x from Y into X such that
T o x is the identity on Y. Consider the mappings 5 from D into X defined by
5 = <p\D — x ° (T o <p\D)- NOW </> is weakly minimal (hyperplane minimal) on D and
since x°(To(f>\D)is continuous on D we have from Theorem 1.2 (iii) that 5 is weakly
minimal (hyperplane minimal) on D. Furthermore, we note that S(D) c ker T. Since
ker T is a GGC space (GC space) it follows that there exists a dense Gs subset D' of
D at the points of which S is norm continuous. But since <p\D = S + x o (T o <j>\D)
then 4>\D is norm continuous at the points of D'. By Theorem 1.1 this implies that <j>
is norm continuous at the points of D' and we conclude that X is a GGC space (GC
space).

The following three-space property is immediate.

COROLLARY 3.8. Consider a Banach space X with a closed linear subspace M
which is a GGC space (GC space). Then X is a GGC space (GC space) ifX/M is a
GGC space (GC space).

Again using the fact that (-odT) where F is infinite, is not a GGC space, it follows
from Corollary 3.8 that any quotient of ^oo(F) by a GGC space is not a GGC space.
In particlar, £oo(F)/c0(r) is not a GGC space.

The mapping property associated with that given in Theorem 3.7 holds only for a
special case.
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THEOREM 3.9. Consider a continuous linear mapping T from a GGC space (GC
space) X onto a Banach space Y. If ker T is reflexive then Y is a GGC space (GC
space).

PROOF. By Theorem 2.9 (ii), it is sufficient to consider a minimal weak * usco
(minimal weak * cusco) <t> from a complete metric space A into subsets of B(Y**)
where the set {t e A : 4>(0 H Y ^ 0} is residual in A. Since T maps X onto Y then
the second conjugate T" maps X** onto Y**. Since T" is an open mapping there exists
an r > 0 such that T" (rB(X**)) D B(Y**). We define a mapping 0 from A into
subsets of rB{X**) by

0(0 = (7"')"1 (*(0) n rB(X**).

Now for each"? e A, 0(0 is non-empty, weak * compact (and convex). Further, since
O is weak * upper semi-continuous and T" is weak * to weak * continuous, then
9 has closed graph. But 9(A) c rB{X**) so 9 is weak * upper semi-continuous.
By Zorn's Lemma there exists a minimal weak * usco (minimal weak * cusco) 9'
whose graph is contained in that of 9. But further, we see that for each t e A,
T"9'(t) c T"9{t) c $(0- Since O is a minimal weak * usco (minimal weak *
cusco), then T"9' = <i>.

To show that <t> is single-valued and norm upper semi-continuous at the points of
a residual subset of A we need only show that 8' is single-valued and norm upper
semi-continuous at the points of a residual subset of A.

Consider t0 e {t e A : <D(r) n ? ^ 0} and y e d ) ( t o ) n f and F e 0'(*o) such that
T"(F) = y. Since 7 is onto there exists x € X such that 7";t = y so F — £ e ker 7"'.
But ker T" = (ker T Y 1 ^ W*-C/ keiT in X". Since ker T is reflexive iu*-c/ ker7 =
kerT. Then F e x + ker7" c X. So we conclude that {f e A : <J>(0 n F ^ 0} c
j / e A : 9(t) n x ^ 0 } which is therefore residual in A. Since X is a GGC space
(GC space), then 8' is single-valued and norm upper semi-continuous at the points of
a residual subset of A and we conclude that Y is a GGC space (GC space).

So the associated conditional three-space property holds.

COROLLARY 3.10. Consider a GGC space (GC space) X with a closed linear
subspace M. Then X/M is a GGC space (GC space) if M is reflexive.

In general the quotient of a GGC space (GC space) is not a GGC space (GC space).
In particular, ^(P1) where F is infinite, can be represented as the quotient of a GGC
space. To show this we need the theory we develop in Section 4.
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4. Conditions sufficient for membership of the classes of GGC and GC spaces

In [8, p. 424] a general fragmentability condition was given for a Banach space to
be a GC space. Here we give a similar sufficiency condition for both GGC and GC
spaces but restrict ourselves to the topology of the unit sphere.

Given a topological space X we say that a function k : X x X —>• Risa premetric
onXif

(i) k(x, y)>0 for all x, y e X, and
(ii) k(x, y) = 0 if and only if x = y.
We define the k-topology on X as follows. A subset U of X is said to be k-open if

for every x0 e U there exists an r > 0 such that {x e X : k(x, x0) < r] c U. Given
x0 € X and e > 0, a subset of the form {x e X : k(x, x0) < €} is fundamental in
defining the A-topology but is not necessarily A-open. For a non-empty subset E of
X we define

A-diamZs = sup{A(;c, y) : x, y e E].

We note that the A-topology on a subset E of X is stronger than the relative topology
on E if for every x0 e E and open set W containing x0 there exists a S > 0 such that
{x e E : k(x, x0) < 8} c W n £.

Our sufficiency conditions depend on the following general fragmentability proper-
ties for topological and linear topological spaces. Given a set £ in a linear topological
space X and an open half-space W in X where E fl W ^ 0, we call the set E n W a

of £.

LEMMA 4.1. (i) Consider a minimal mapping (pfrom a Baire space A into subsets
of a topological space X and a premetric konX whose topology on X is stronger than
the given topology on X. If every non-empty subset of X has relatively open subsets
of arbitrarily small k-diameter then (f> is single-valued and upper semi-continuous at
the points of a dense Gs subset of A.

(ii) Consider a hyperplane minimal mapping (pfrom a Baire space A into subsets
ofXa subset of a linear topological space and a premetric k on X whose topology
on X is stronger than the relative linear topology on X. If every non-empty subset
of X has slices of arbitrarily small k-diameter then <p is single-valued and upper
semi-continuous at the points of a dense G$ subset of A.

PROOF. Given e > 0, consider the set

Of = ( J {open sets V in A such that k-dianup(V) < e].

Now Oe is open; we show that it is dense. Consider any non-empty open set U in A.
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(i) Now there exists an open set W in X such that X-diam(W n </>(£/)) < e.
But since </> is minimal there exists a non-empty open set V c U such that <j>(V) c
W n </>(f/) so X-diam</>(V) < e.

(ii) Similarly, there exists a slice of </>( V) with A-diameter less than e. Since </>
is hyperplane minimal there exists a non-empty open set V c (/ such that <£(V) lies
inside this slice so A.-diam</>(V) < e.

In both cases O€ is dense in A. Then 0 is single-valued on fXLi ^'/« anc* s m c e m e

A-topology is stronger than the given topologies, 0 is upper semi-continuous at the
points of |XLi Ox/n.

Our first sufficiency condition follows directly from Lemma 4.1 and Theorem 2.9
(iv).

THEOREM 4.2. A Banach space X is a GGC space (GC space) if there exists an
equivalent norm on X and a premetric X on S(X) where the X-topology on S(X) is
stronger than the weak topology on S(X) and every subset ofS(X) has relatively weak
open subsets of arbitrarily small X-diameter, (slices of arbitrarily small X-diameter).

A Banach space X is said to be locally uniformly rotund if given x0 e S(X)
and e > 0 there exists a S(e,x0) > 0 such that ||JC0 — y\\ < e when y e S(X)
and ||JC0 + y\\ > 2 — 5. This theorem implies that all Banach spaces which can be
equivalently renormed to be locally uniformly rotund which includes all separable
and weakly compactly generated spaces are GC spaces [8, p. 426]. Furthermore a
Banach space X is said to have a Kadec norm if the norm and weak topologies agree
on S(X). So this theorem implies that all Banach spaces which can be equivalently
renormed to have a Kadec norm are GGC spaces. Interestingly it is known that not
all Banach spaces with a Kadec norm can be equivalently renormed to be locally
uniformly rotund, [3, p. 325].

We now introduce fragmentability conditions more general than those used in
Theorem 4.2. A topological space X is said to be a -fragmentable by a premetric X
if for each e > Owe can write X = Utli ^* where for each k e N, Xk has the
property that for each non-empty subset Ek of Xk there exists a non-empty relatively
open subset Uk of Ek such that X-diam Uk < e. We say that Xk is fragmentable down
to €. We say that a subset X of a locally convex space is a-slice fragmentable by a
premetric X if for each e > 0 we can write X = Utli ^* where for each k e H, Xk

has the property that for each non-empty subset Ek of Xk there exists a slice of Ek of
A-diameter less than e. We say that Xk is slice fragmentable down to e.

We now establish general properties for these a -fragmentability conditions similar
to those for fragmentability given in Lemma 4.1.

LEMMA 4.3. (i) Given a minimal mapping <j>from a Baire space A into a regular
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Hausdorff space X which is a -fragmented by a premetric X whose topology on X
is stronger than the given topology on X, then (p is single-valued and upper semi-
continuous at the points of a dense Gs subset of A.

(ii) Given a hyperplane minimal mapping </> from a Baire space A into subsets
ofXa subset of a separated locally convex space which is a -slice fragmentable by a
premetric A whose topology on X is stronger than the relative locally convex topology
on X, then (j> is single-valued and upper semi-continuous at the points of a dense Gs
subset of A.

PROOF. By Theorem 1.1, it is sufficient to consider a single-valued minimal (hyper-
plane minimal) mapping <j) from a Baire space A into X. We show that <j> is continuous
at the points of a residual subset R of A. Given n e N, consider X = Utli ^* where
for each k e N,

(i) Xk is fragmentable down to l/n, and we define the set Rn in A by

\ t e A : there exists an open neighbourhood V of t such that
" = 1

1
J '<j>(V)Q{xeX:X(x, 4>(t))< l/n}

(ii) Xk is slice fragmentable down to l/n, and we define the set Rn in A by

f t e A : there exists an open neighbourhood V of t suchch that 1

Suppose that Rn is not residual in A. Then S = A \ Rn is second category in A.
Writing Dk = 4>~l (Xk) for each i t e N w e have

A = | J ~ , {(intO, n Dk) U (Dk \ int~Dk)\.

So
5 = _ _

* n 5> n int^*) U (LCi(£)* \ int^*} n 5 ) •
Now the second term is of the first category so the first term is of the second category.
Furthermore, for some k € N, (Dk f) S) n int Dk is of second category in A.

Consider the set

Ol/n = [ J { open sets V c intl)* : A.-diam0(V n Dk) < l/n}.

Now O]/n is open; we show that it is dense in int Dk. Consider a non-empty open set
U c int~Dk. Then U D Dk ^ 0.

(i) There exists a non-empty relatively open subset Uk of <j>(U Ci Dk) in Xk such
that X-diam Uk < l/n. Since (j) is minimal on A it is minimal on Dk which is dense
in int Dk, so there exists a non-empty open set V c U such that </>( V D Dk) c Uk so
X-diam<p(V Ci Dk) < l/n.
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(ii) There exists a slice of <j>{U n Dk) with A.-diameter less than 1/n. Since 4> is
hyperplane minimal on A it is hyperplane minimal on Dk which is dense in intD*,
so there exists a non-empty open set V C U such that (p(V (1 Dk) lies in the slice so
A.-diamtf>(V n Dk) < 1/n.

In both cases we conclude that O\/n is dense in int Dk and so is residual in int Dk.
However, (DkD 5) Dint Dk is second category in int Dk, and so we have that (Dk n 5PI
intDjt)nC>1/n ^ 0. This implies that for any t0 e ( D t n S n i n t D t ) n 0 1 / n there exists
an open neighbourhood V of t0 such that V c int Dk and A.-diam0(V D Dk) < 1/n.
Since D* is dense in V we have, using Theorem 1.1,

(i) when <j> is minimal, <p(V) c. {x e X : k(x, </>(?<>)) < 1/n}
(ii) when 4> is hyperplane minimal, 0(V) c co" {* e X : A. (*, 0(fo)) < l / i}-
In either case this implies that f0 £ Rn and so /?„ f~l 5 ^ 0 which contradicts the

definition of S. So we conclude that Rn is residual in A. Then /? = H^=i ^« ^s

residual in A.
We now show that </> is continuous at points of R.
(i) Consider t0 £ R and IV an open neighbourhood of (j>{to) and since X is

regular, an open neighbourhood U of </>(̂ o) such that U c {/ c W. Since the
A-topology is stronger on X than the regular topology on X there exists an n 6 N
such that {x e X : k(x, 4>(t0)) < 1/n} c U. Now t0 e Rn so there exists an open
neighbourhood V of /„ such that 4>{ V) c [x e X : X(x,^>(t0)) < 1/n} c y c i y .

(ii) Consider t0 £ R and W an open neighbourhood of 4>(t0) and since the
locally convex space is regular, a convex neighbourhood U of (j)(t0) such that (/ c
U c IV. Since the A.- topology on X is stronger than the relative locally convex
topology on X there exists an n € N such that [x e X : k (x, <t>(t0)) < 1/n} c U.
Now t0 6 /?„ so there exists an open neighbourhood V of t0 such that </>(V) c
co" {x € X : A. (x, 0Oo)) < 1/n} c t7 c W.

Our second sufficiency condition follows from Lemma 4.3 and Theorem 2.9 (iv).

THEOREM 4.4. A Banach space X is a GGC space (GC space) if there exists an
equivalent norm on X and a premetric k on S(X) where the k-topology on S(X) is
stronger than the weak topology on S(X) and S(X) is o -fragmentable by k, (S(X) is
a-slice fragmentable by k).

In [ 11, p. 207] it is shown that if K is any compact Hausdorff space then every odd
dual of ^(K), ^{Kfk) with its weak topology and k odd, is a -fragmentable by the
norm. Theorem 4.4 implies that such spaces are GGC spaces.

In particular, for F infinite, tf (B (^oo(O). weak*)* is a GGC space and we
can use this result to show that in general the quotient of a GGC space is not
necessarily a GGC space. Consider T the isometric embedding of ^i(F) into
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weak*)). The conjugate T maps tf (B ( ^ (H) )* onto i*(T) =
4o(r) . So <*? (B (^oc(r)))* / ker T = ^ ( D .

Using the fact that t^iT), where T is infinite, is not a GGC space, it follows from
Theorem 4.4 that ^oo(r) is not a-fragmentable. We showed after Corollary 3.4 that
^oo(r)/c0(r) is not a GGC space. Again from Theorem 4.4 we can deduce that this
space is not a-fragmentable.

5. Spaces which are not GGC spaces or GC spaces

In their paper [10, p. 201] the authors showed that a Banach space which possesses
a family of subsets satisfying particular properties, cannot be a -fragmented by the
norm. Using such an idea, Namioka has been able to show that such spaces are not
GGC spaces. In the paper [12, p. 214} they showed that ̂ oo(N) possesses such a family
of subsets and so Namioka has deduced that ^ ( N ) is not a GGC space. In paper [8,
Section 3] it was shown that ^ ( D where T is uncountable, is not a GC space and to
do this a counter-example was constructed using the Banach-Mazur game. Here we
exploit the similarity of both techniques to give a characterisation of non-membership
of our generic continuity classes and derive Namioka's result.

Given a Banach space X and a family <£ of non-empty open subsets of B(X),
we denote by y a non-empty family of non-empty subsets of B(X) which satisfy
properties:

(i) if 5 e y and W € <£ such that S n W ^ 0 then there exists a T e y such
that T c 5 n W,

(ii) inf {diam S : S e y\ > 0,
(iii) \J{S :Sey}ey.
We now define what we will call an y — Sf game on B(X). This is a game between

two players or and p. Player a begins by choosing S| — [J[S : S e y\ and player p
responds by choosing Vi e <S such that Vi n S\ ^ 0 . Then a chooses 52 e y such
that 52 c V, n 5, c S{ and p responds by choosing V2 e $ such that V2 n 52 ^ 0.
Continuing in this way, the sequence of sets

Si 2 V, n 5, 2 S2 2 V2 n S2 2 • • • Sn 2 Vn n Sn 2 • • •

is called a play and is denoted by p = (S,, V))°^,. We say that a wins this play if
p)*j 5, 9̂  0. A strategy s for the player or is a mapping (or rule) by which a assigns
to every partial play

(Si, V^=i = 5, 2 Vi n S, 2 S2 2 S2 2 V2 n S2 2 • • • 2 Sn 2 Vn D Sn

an element Sn+, e ^ such that Sn+, c y . n S , ; that is, 5n+1 = s ((5,, Vi-)"=1). We say
that the play p = (S,, K)~, is an s-play if a plays according to strategy s; that is, for
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each n € N, Sn+1 = s ((S,-, V,)"=,). The strategy s is said to be an a-winning strategy
if every 5-play is won by a.

Given an a-winning strategy 5 for the y — <$ game, we can define a metric d on
the set P of all s-plays, similar to that in [8, Lemma 3.2]. For any p = (5,, V))~i e P
we define d(p, p) = 0 for each p e P and if /?' = (S'n V!) ^ (5", V;.") = p" then
d(p'> P") = 1 /" where « is the first natural number i where 5,' 7̂  5" or V- ^ V".

LEMMA 5.1. The metric space (P,d) is complete.

PROOF. Consider the Cauchy sequence {pn = (Sf, V)")~,} in P . Then for every
i € H there exists some n, > / such that the sequence {«,} is increasing and such that
S"k' = Sn

k and Vk"' = Vk" for all k e {1, 2, . . . , i] and n > «,-. So we define a new play

/j* = ( s ; , v;*)~, where S? = S? and V? = V,1".

Now for each i e N, 5* = Sf' = s ((^"', Vt"')i=i) = s ((s*k> y**)l=i) s o P* i s a n

^-play, and we conclude that d(p", p*) —> oo as n —*• oo.

Given a Banach space X, the particular family Sf of non-empty open subsets of
B(X) which relate to the GGC property is the family W of non-empty weak open
subsets of B(X). We will call a game associated with the family W an 5? — W
game. The particular family <0 which relate to the GC property is the family J ^ of
non-empty open half-space subsets of B(X). We will call a game associated with the
family Jf? an y - JF game.

We are now ready to give our characterisation theorem in terms of y — <S games.

THEOREM 5.2. A Banach space X is not a GGC space (GC space) if and only if
there exists an y — W game (y — Jf? game) where there is an a-winning strategy.

PROOF. Suppose that X is not a GGC space (GC space). Then there exists a weakly
minimal (hyperplane minimal) mapping 0 from a complete metric space A into non-
empty subsets of B(X) which is not single-valued and norm upper semi-continuous
on any dense Gs subset of A. It follows that for some e > 0, the set

O( = [ J {open sets U in A such that diam<j)(U) < e}

is not dense in A, and so for some non-empty open set W C A, Of D W = 0.
We define the family

y = {</>([/) : U is a non-empty open subset of W].
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Since (p(W) e 5? then 5? is not empty and condition (iii) is satisfied. Furthermore,
condition (i) is satisfied for the W family by the weak minimality of 0 (and for the
Jf? family by the hyperplane minimality of 0). Clearly condition (ii) is satisfied
since diam<p(U) > e for all non-empty open subsets U of W. We need to show
that there is an or-winning strategy for the 5? — "W game (& — 3V game). Player a
begins by choosing 5] = 0(W) e 5?. Player $ responds by choosing a non-empty
V! € W (V, e 3V) where VXV\SX c Sx. Then a chooses a non-empty open set
f/2 ^ Z72 c W with diamt/2 < 1/22 and <p(U2) c V, n S,, this being possible
because of the minimality property of 0, and setting S2 = 4>(U2) e 5?.

At the beginning of the nth stage of this process we have a sequence of non-empty
open sets with their closures in A,

W 2 U2 2 U2 2 • • • 2 £/„_, 2 f/B-i

and a sequence of non-empty sets from the W family (Jtf family) and sets from £?,

S\ 2 V! n 5, 2 s2 2 v2 n s2 2 • • • 2 sn_, 2 vn_, n 5n_,

such that for each i e {2, 3 , . . . , n - 1}, diam (7, < 1/2' and (/>([/,) ^ Vi_, n S,-_,
with Sj = 4>(Ui) e y . Player a then chooses a non-empty open set Un c {/„ c (/„_,
with diamt/n < 1/2" and <p{Un) c Vn_, n 5n_i, this being possible because of the
minimality property oi<p, and setting 5n =<p(Un) e ^ . Nowf|~2 Ut = f | ~ 2 ^ ^ 0

by Cantor's Intersection Theorem, so f |~i $ 2 f|~2 0 W ) 2 ^(07=2 u>) ± ®- W e

conclude that this is an a-winning strategy.
Conversely, suppose that there exists an 5? — W game {5? — Jf game) on B(X)

with an a-winning strategy s. We consider (P,d) the complete metric space from
Lemma 5.1 and the mapping <p from P into subsets of B (X) defined for p = (5,, V,•) ~,
by <l>(p) = D~i ^i- P°r e a c n P e P< 0(p) 5̂  0 since p is an s-play.

To show that at 0 is weakly minimal (hyperplane minimal) consider a non-empty
open set U in P and W e W (W e Jf) such that </>(U) n W ^ 0. For p =
(Si, V,)~, € U where (j>(p) n W ^ 0 we have 5, n W ^ 0 for all i e N. But
also there exists an n e N such that B(p; \/n) c [/. Consider ^! a continuation
of the partial 5-play where S]

n+l = Sn+, = s ((S,, Vi)?=1) and Vn'+1 = W. Then
V = B(pu \/{n + 1)) c fl(p; 1/n) c [/ and <p(V) c W.

Suppose that inf {diam 5 : S e ^ } = r > 0. To show that 0 is nowhere single-
valued and norm upper semi-continuous it is sufficient to show that each p e P
and n e N, diam0(S(p; l/n)) > r. Consider p = (S,-, V,)~, and n e N. By the
definition of r, diamSn+i > r, so there exists an / e X*, | | / | | = 1 and x, y € Sn+l

such that \f(x — y)\ > r. Therefore there exist open half-spaces Wi and W2 defined
by / such that x € W, and y e W2 with the property that d(Sn+l D Wx, Sn+] n W2) > r.
Consider px a continuation of the partial s-play where 5^+l = Sn+1 = s ((5,, V )̂"=1)

https://doi.org/10.1017/S1446788700000677 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000677


[22] Minimal set-valued mappings 259

and Kn'+1 = W\ and p2 a continuation of the partial s-play where S*+l = Sn+1 =
s ((Sit V,)U) a n d K+i = W2. Now Pu p2 6 B(p; 1/n). Therefore,

> sup{||* - y\\ : x e<t>(pi),y e

>d(sn+lnwl,sn+]nw2)>r.

We conclude that X is not a GGC space (GC space).

As an application of this characterisation theorem we establish Namioka's result.

COROLLARY 5.3. The Banach space £oo(N) is not a GGC space.

PROOF. Following Theorem 5.2 we need to show that there exists a family y of
subsets of B{lx) and an y — W game where there is an a-winning strategy. Given
x = x{n) e fi(^co) and set M c N with H\M infinite consider the subset S of
defined for y = y(n) by

S(x, M) = {ye S ( O : x(m) = y(m) for all m e M]

and the family

y = {S(x, M) : x e £ ( 0 and M c N with N \ M infinite}.

It is proved in [12, p. 214] that the family satisfies property (i) of an y - W
family. Since N \ M ^ 0 and S(x, M) has more than one element, diam S(x, M) >
2 for every S(x, M) e y , so property (ii) is clearly satisfied. Furthermore, for any
x e fi^oo), S(x, 0) = B(€oo) = U ( 5 • S e y} so property (iii) is satisfied.
Playing an y — W game with the family y we need to show that there exists
an a-winning strategy. Consider any decreasing sequence {S(xiy M,)} in y; that
is, S(Xj,Mi) 2 S(xi+i, Af,-+i) for all i e N. This means that Mt c M,+1 and
*iU, = JCZ+IIA/,. for each/ e N. Consider x a common extension of *,|M, for each/ e N
to U~i Mi and zero elsewhere. Then x e fXli 5(Jt :" M ' ) a n d s o fl~i 5 ( x " M<) ^ 0-
So if a follows any strategy 5 then it will be an a-winning strategy. We conclude that

is not a GGC space.

In [18, p. 19], it is shown, assuming the continuum hypothesis, that if K is an
infinite compact Hausdorff /^-space then ^(K) contains a subspace topologically
isomorphic to £X(H). In [11, p. 197] it is shown unconditionally that such a tf(K) is
not a-fragmented by the norm. The following corollary strengthens this result using
Theorem 3.5.

COROLLARY 5.4. If K is an infinite compact Hausdorff F-space then ̂ (K) is not
a GGC space.
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In the definition of a GGC space (GC space) we require our minimal (hyperplane
minimal) mappings to have a complete metric space domain. However, we should
note that in the characterisation Theorem 5.2 we only used the fact that the domain
space is a-favourable; that is, there exists an a-winning tactic for the game. So a more
general form of this theorem is available.

6. Problems arising

There are several significant problems which remain from this investigation.
(1) Can every GC space be equivalently renormed to be locally uniformly rotund?
Of course, a positive solution to this problem would solve several outstanding

problems. It would imply that every Banach space with the Radon-Nikodym property,
all Banach spaces which can be equivalently renormed to be weakly locally uniformly
rotund, or whose dual can be equivalently renormed to be smooth or whose dual
belongs to Stegall's class y , could be equivalently renormed to be locally uniformly
rotund. So there is every reason to believe that if there is a positive solution to the
problem it will be difficult to achieve. In papers [13], [5, 6, 7] and [14], sufficiency
conditions for a Banach space to be a GC space were given in terms of a variety of
denting point properties of the unit ball. However, it has been shown that two of these
properties, that every point of the unit sphere is a denting point (a-denting point) of the
unit ball, imply that the space can be equivalently renormed to be locally uniformly
rotund, [20, p. 306], [21, p. 179].

(2) Can every GGC space be equivalently renormed to to have a Kadec norm?
Although the papers [9, 10, 11] give conditions sufficient for a Banach space with

its weak topology to be cr-fragmentable by its norm, including that there exist an
equivalent Kadec norm, yet no example has been given which has been shown to
possess no equivalent Kadec norm.

(3) Is the class of GGC spaces identical to the class of GC spaces?
Theorem 3.3 defined a class of Banach spaces on which the classes are the same.

We should note again that there is an example of a Banach space with a Kadec norm
which cannot be equivalently renormed to be locally uniformly rotund, [3, p. 325].
So if there is a positive solution to Problem 1 then there is a negative solution to
Problem 3 and if there is a positive solution to Problem 3 then there is a negative
solution to Problem 1.

In [13], a class of differentiability spaces was defined. A Banach space X is a dual
differentiability space (DD space) if every continuous convex function 0 on an open
convex subset A of X* possessing a weak * continuous subgradient at the points of a
residual subset of A, is Frechet differentiable on a dense Gs subset of A. The class of
DD spaces contains the class of GC spaces.
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(4) Is the class of DD spaces identical to the class of GC spaces?
So far no example has been given of a Banach space which is not a DD space.

Professor Namioka's result that ^ ( N ) is not a GGC space suggests that we determine
whether ^oo(^) is a DD space. However, the construction of a convex function of
the special type which does not satisfy the required properties would be much more
difficult than the construction of minimal mappings given so far. Furthermore, the
problem is somewhat the same as the outstanding problem of the relation between the
class of weak Asplund spaces and those from Stegall's class 5?.
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