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The paper considers the electron transport in toroidal systems taking into account
relativistic effects for electrons. The treatment is based on the relativistic drift-kinetic
equation with the thermodynamic equilibrium given by the relativistic Maxwell–Jüttner
distribution function. The definition of relativistic fluxes is given in a classic-like form
using the same set of thermodynamic forces as in the classical (non-relativistic) approach.
Such a formulation allows us to apply the currently used non-relativistic solvers for
calculation of relativistic mono-energetic transport coefficients. As an example, the
procedure for calculating electron fluxes is proposed, in which relativistic effects are
taken into account using the DKES code. The model can be easily implemented in various
transport codes, developed for the non-relativistic limit, making them accurate also for hot
plasmas with non-negligible relativistic effects.

Keywords: fusion plasma

1. Introduction

Relativistic effects in astrophysical objects and fusion plasmas do not necessarily
require extremely high temperatures and energies. They can be non-negligible at electron
temperatures Te of the order of tens of keV, i.e. when Te � mec2 � 511 keV. In kinetics
and transport physics, these effects appear due to macroscopic features of relativistic
thermodynamic equilibrium given by the Maxwell–Jüttner distribution function (Beliaev
& Budker 1956; de Groot, van Leewen & van Weert 1980).

In fact, the role of relativistic effects for electron transport in hot plasmas is well studied
(Dzhavakhishvili & Tsintsadze 1973; Braams & Karney 1989; Mettens & Balescu 1990;
Pike & Rose 2016). At the same time, the direct implementation of these results into
transport codes for toroidal plasmas is not a trivial task, especially for those obtained
in the covariant formalism.

In fusion devices such as ITER (Doyle et al. 2007) and DEMO (Ward 2010), where the
expected plasma temperature is in the range of 20–50 keV, relativistic effects for electron
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transport are no longer negligible. Moreover, for D+3He fusion with an optimum plasma
temperature of approximately 70 keV (Stott 2005), the relativistic correction makes the
thermal energy, We = ( 3

2 + R)neTe (Marushchenko, Azarenkov & Marushchenko 2013),
where ne is the electron density and R is the relativistic correction, approximately
15 % higher than the classical (non-relativistic) definition, W(nr)

e = 3
2 neTe, while for the

aneutronic p+11B scheme with Te � 300 keV (Putvinski, Ryutov & Yushmanov 2019) the
difference is approximately 45 %.

In addition, the relativistic features of electrons affect the neoclassical radial electron
fluxes (Marushchenko et al. 2013; Kapper et al. 2018), changing them not critically, but
noticeably, compared with those calculated in the non-relativistic limit for both tokamaks
and stellarators. In particular, it has been shown that the non-relativistic modelling is
acceptably accurate only for Te < 10 keV, while for the range of temperatures expected for
ITER and DEMO, the classical definitions overestimate electron fluxes of particles, energy
and heat. Similar conclusions follow from the relativistic consideration of electron–ion
collisional coupling (Marushchenko, Azarenkov & Marushchenko 2012). At the same
time, standard models, that are routinely used for predictive simulations of the fusion
scenarios, do not account for these effects, like in the tokamak code CRONOS (Artaud
et al. 2010) and the stellarator code NTSS (Turkin et al. 2011).

The main purpose of the present work is to formulate a relativistic transport model
for electrons in a form acceptable for implementation in any non-relativistic transport
code. The fluxes and transport equations for hot electrons in a toroidal plasmas are
formulated in a classic-like form without the covariant 4-vector formalism. This approach
is valid when Vflow � vTe, where Vflow is the characteristic flow velocity. In this case, the
relativistic transport equations mathematically have a form similar to the corresponding
non-relativistic equations and the relativistic corrections are transparent for physical
interpretation. As a practical recipe, it is shown how to make a non-relativistic transport
model based on the mono-energetic approach (see, for example, Beidler et al. 2011) be
valid for arbitrary high temperatures.

It is also known that the mono-energetic approach is not sufficient for the parallel
transport, where a parallel momentum conservation in the Coulomb operator is required.
In the non-relativistic limit, the problem can be solved by the momentum correction
technique (Sugama & Nishimura 2008; Maassberg, Beidler & Turkin 2009). A similar
problem was also considered in the relativistic approach (Marushchenko, Beidler &
Maassberg 2009). Since in all versions of this technique the corresponding mono-energetic
transport coefficient is used, only the mono-energetic approach is considered in this paper.

2. Relativistic kinetics of electrons
2.1. Relativistic drift-kinetic equation

The relativistic equations of motion for the electron guiding centre, X gc, can be written as
follows (Littlejohn 1984):

Ẋ gc = v‖B̂ + vdr, (2.1a)

vdr = c
B2

[E × B] − mecu2(1 + ξ 2)

2eB3γ
[B × ∇B] ≡ vE + v∇B. (2.1b)

Here, u = pe/me = vγ is the electron momentum per unit mass and γ = √
1 + u2/c2 is

the relativistic factor; E and B are the electric and magnetic field; v‖ = u‖/γ and u‖ =
(u · B̂) with B̂ = B/B as the unit vector and ξ = u‖/u the pitch; the drift velocities vE and
v∇B correspond in the toroidal plasma to the poloidal precession due to E × B and the
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vertical drift due to ∇B, respectively. The adiabatic invariance of the magnetic moment,
λ = meu2

⊥/2B, is also taken into account. Here and below, the sign of electron charge is
taken into account explicitly, i.e. e = |e|. All other notations are standard.

Using the pair of variables (u, ξ), one can write also

u̇ = − eγ
meu

(Ẋ gc · E) = − eξ
me

E‖ + cu(1 + ξ 2)

2B3
(E · [B × ∇B]), (2.2a)

ξ̇ = (1 − ξ 2)

[
− e

meu
E‖ + cξ

2B3
(E · [B × ∇B]) − u

2γ B2
(B · ∇B)

]
, (2.2b)

where E‖ is the inductive electric field. With these variables the relativistic drift-kinetic
equation (rDKE) can be written as

∂fe

∂t
+ ∇ · (Ẋ gc fe) + 1

u2

∂

∂u
(u2u̇fe) + ∂

∂ξ
(ξ̇ fe) = Ce( fe), (2.3)

which has practically the same form as in the classical approach. The collision operator
in the right-hand side, Ce = Cee + Cei, describes Coulomb collisions of electrons with
themselves and with ions, where ions are considered as non-relativistic particles. The
fully relativistic formulation for Ce is taken from Beliaev & Budker (1956) and Braams
& Karney (1989). The source and loss terms are omitted since they do not play any role in
the present consideration. Below, the case of low characteristic velocities of the electron
flows, Vflow � vTe, is considered, while the temperature is assumed to be arbitrarily high.

The distribution function can be assumed to be a perturbed thermodynamic equilibrium,
fe = fe0 + fe1. The relativistic thermal equilibrium, fe0, is given by the Jüttner distribution
function, also called the relativistic Maxwellian (de Groot et al. 1980; Braams & Karney
1989)

fe0 = neme

4πcTeK2(μe)
exp(−μeγ ), (2.4)

where Kn(x) is a modified Bessel function of the second kind, and μe = mec2/Te (typically,
μe � 10–20 for D+T fusion plasmas, while for a p+11B (Putvinski et al. 2019) aneutronic
scheme it can be approximately μe � 1.7).

It seems more convenient to represent the Maxwell–Jüttner distribution function in
classic-like form

fe0 = CMJ
ne

π3/2u3
Te

exp[−μe(γ − 1)], (2.5)

with uTe = √
2Te/me. Note that uTe only formally coincides with the classical thermal

velocity vTe, while its physical meaning is different: it is the thermal momentum per unit
mass, uTe ≡ pTe/me with pTe = √

2meTe, which, unlike vTe, is not limited by the speed of
light. It is also possible to find a simple relation

μe(γ − 1) = u2

u2
Te

2
γ + 1

, (2.6)

that is particularly useful for numerical calculations.
Since the Maxwellian is normalized by density, ne = ∫

fe0 d3u, the normalizing factor
can accordingly be written as

CMJ(μe) =
√

π

2μe

e−μe

K2(μe)
= 1 − 15

8μe
+ 345

128μ2
e

− 3285
1024μ3

e

+ O(μ−4
e ), (2.7)

where the asymptotic series for K2(x) is applied (Abramowitz & Stegun 1972).
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2.2. Moments of distribution function and fluxes
Here, the necessary set of moments for fe is given in the relativistic formulation. As
usual, we assume that the first two even moments, density and thermal energy, are given
by the zeroth order of the distribution function, fe0, while the particle and heat fluxes
come from the linear perturbation, fe1, which must be found by solving the linearized
rDKE.

In classical transport theory, the energy balance is usually written for thermal energy
as W = 3

2 nT , while in the relativistic approach the use of this definition makes the energy
balance equation non-divergent.

In the literature devoted to relativistic kinetics (Dzhavakhishvili & Tsintsadze 1973; de
Groot et al. 1980; Mettens & Balescu 1990), the total energy is typically used. For the
relativistic Maxwellian, it can be written as

Etotal =
∫

mec2γ fe0 d3u = nemec2 K3(μe)

K2(μe)
− neTe. (2.8)

Alternatively, it is convenient to represent the thermal energy, We = Etotal − nemec2, in the
classic-like form (Marushchenko et al. 2013)

We = ( 3
2 + R)neTe, (2.9)

where R is the relativistic correction

R(μe) = μe

(
K3(μe)

K2(μe)
− 1

)
− 5

2
= 15

8μe
− 15

8μ2
e

+ 135
128μ3

e

+ O(μ−4
e ), (2.10)

This is a monotonic function increasing with Te. One can find that, for the range Te from
25 to 75 keV, the correction term R varies from 0.09 to 0.24.

As usual in neoclassical transport theory, we assume that even moments defined only by
the zeroth order of the distribution function, fe0, give quantities such as ne and We, while
odd moments defined by fe1 give fluxes

ΓΓΓ e =
∫

Ẋ gcfe1 d3u, (2.11a)

Qe =
∫

Ẋ gcmec2(γ − 1)fe1 d3u, (2.11b)

where ΓΓΓ e and Qe are the fluxes of particles and energy, respectively. It follows that the
heat flux can also be written in the classic-like form (Marushchenko et al. 2013)

qe = Qe − ( 5
2 + R)TeΓΓΓ e. (2.12)

This expression can also be obtained from the 4-vector formalism (see Appendix A).
Again, the difference from the standard non-relativistic definition (Hinton & Hazeltine
1976; Helander & Sigmar 2002) consists of the presence of the relativistic correction
term R.
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2.3. Relativistic transport equations for toroidal plasmas
To obtain the equations of radial transport in toroidal plasmas, the standard procedure of
flux-surface averaging is applied (Hinton & Hazeltine 1976; Helander & Sigmar 2002)

〈F〉 = 1
V ′

∫∫
F
√

g dθ dφ, (2.13)

with θ and φ as the poloidal and toroidal angles, respectively, V ′ ≡ dV/dρ and V =∫∫
dθ dφ

∫ ρ

0
√

g dρ as the volume enclosed within the magnetic surface labelled ρ and
where

√
g = (∇ρ · ∇θ × ∇φ)−1 is the Jacobian.

It seems convenient to interpret the flux-surface label ρ as the effective radius reff,
making ∇ρ a dimensionless quantity. The geometric factor 〈|∇ρ|〉, which formally should
be present in the equations for the averaged moments, plays no role here and is omitted for
simplicity.

In order to obtain the continuity equation, one needs to integrate (2.3) with averaging
over the magnetic surface

∂ne

∂t
+ 1

V ′
∂

∂ρ
(V ′Γ ρ

e ) = 0, (2.14)

where the radial flux is defined as

Γ ρ
e =

〈∫
(v∇B · ∇ρ) fe1 d3u

〉
. (2.15)

Although the continuity equation has the same form as in the non-relativistic limit, the
radial flux contains the relativistic corrections (Marushchenko et al. 2013; Kapper et al.
2018).

The next equation is the power balance, which can be obtained by integrating (2.3) with
weight mec2(γ − 1) and using (2.9)

∂

∂t

[(
3
2

+ R
)

neTe

]
+ 1

V ′
∂

∂ρ
(V ′Qρ

e ) = Pei + PE, (2.16)

where the radial energy flux is

Qρ
e =

〈∫
(v∇B · ∇ρ)mec2(γ − 1)fe1 d3u

〉
= qρ

e +
(

5
2

+ R
)

TeΓ
ρ

e . (2.17)

On the right-hand side of (2.16), Pei is the rate of heat exchange between electrons and
ions (Marushchenko et al. 2012)

Pei =
〈∫

mec2(γ − 1)Cei( fe0, fi0) d3u
〉

= CMJ(μe)

(
1 + 2

μe
+ 2

μ2
e

)
P(nr)

ei , (2.18)

where both electrons and ions are assumed to be Maxwellian (relativistic and classical,
respectively) and P(nr)

ei is the non-relativistic expression (Braginskii 1965)

P(nr)
ei = −3

me

Mi

ne

τei
(Te − Ti), (2.19)

with τei = (3
√

π/4)(ne/niZ2
i )(ln Λe/e/ln Λe/i)ν−1

e0 and νe0 = 4πnee4 ln Λe/e/m2
eu3

Te as the
characteristic e/i collisional time and the simplest electron collision frequency,
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respectively. The formulation remains valid as long as the Landau approximation for small
scattering angles is valid.

The next term, PE, represents the work of the electric field

PE = −
〈∫

mec2(γ − 1)
1
u2

∂

∂u
(u2u̇fe) d3u

〉
= PE‖ + PEρ

, (2.20)

where u̇ is given by (2.2a). The terms PE‖ and PEρ
correspond to the work of the parallel

(inductive) and radial (ambipolar) components of the electric field, E‖B̂ and Eρ∇ρ,
respectively. Given that −eΓe‖ = j‖ (ion current is not considered here) with j‖/B = const
on the magnetic surface, these quantities can be written as

PE‖ = 〈 j‖B〉 〈E‖B〉
〈B2〉 and PEρ

= −eΓ ρ
e Eρ, (2.21a,b)

with Eρ = −Φ ′ and Φ(ρ) as plasma potential.
To close the (2.14) and (2.16), it is necessary to define the fluxes, Γ ρ

e , qρ
e and j‖, as

functions of the plasma parameters, their gradients and the electric field.

3. Fluxes and transport coefficients in a mono-energetic approach

The fluxes induced by gradients of plasma parameters and electric fields depend on fe1,
and to determine them it is necessary to solve the linearized kinetic equation

V( fe1) − Ce( fe1) = −v∇B · ∇fe0 + 1
u2

∂

∂u
(u2u̇fe0), (3.1)

where the last term on the right-hand side should be taken only with u̇ = −(eξ/me)E‖.
Using the standard mono-energetic approach (Hirshman et al. 1986; Beidler et al. 2011),
the operator V , traditionally called the Vlasov operator, can be approximated as follows:

V = v

(
ξ B̂ + cEρ

v〈B2〉∇ρ × B
)

· ∇ − v

2
(1 − ξ 2)(B̂ · ∇ ln B)

∂

∂ξ
, (3.2)

i.e. in the same form as in the non-relativistic approach.
In general case, the Coulomb operator Ce should be taken with parallel momentum

conservation. In particular, this is necessary for calculation of parallel fluxes, where
the momentum correction technique is usually applied (Sugama & Nishimura 2008;
Maassberg et al. 2009). However, the mono-energetic transport coefficients are also
required for this technique. For this purpose, the Coulomb operator can be taken in the
Lorentz form

Ce( fe) � νe
D(u)L( fe) = νe

D(u)
1
2

∂

∂ξ
(1 − ξ 2)

∂fe

∂ξ
, (3.3)

where νe
D(u) = νee

D (u) + νei
D(u) is the collision (deflection) frequency of electrons,

accounting for relativistic effects. Explicit expressions for νee
D (u) and νei

D(u), valid for
arbitrary high temperature, are given in Appendix B.

Thus, the linearized mono-energetic rDKE can be written as follows:

V( fe1) − νe
D(u)L( fe1) = −ρ̇[A1 + (κ − 5

2 − R)A2] fe0 − bv‖A3fe0, (3.4)

with κ ≡ μe(γ − 1) as the kinetic energy normalized by temperature, Te.
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On the right-hand side of (3.1), the radial drift velocity is represented as

ρ̇ ≡ (v∇B · ∇ρ) = vd(u)R0(1 + ξ 2)
1
b

[B̂ × ∇ ln B] · ∇ρ, (3.5)

where b = B/B0, R0 and B0 are the reference radius and magnetic field, respectively, and

vd(u) = − mecu2

2eγ R0B0
, (3.6)

is the normalized drift velocity.
Expressions for thermodynamic forces, A1, A2 and A3, are the same as in the

non-relativistic approximation (Helander & Sigmar 2002; Sugama & Nishimura 2008)

A1 = d ln pe

dρ
+ eEρ

Te
, (3.7a)

A2 = d ln Te

dρ
, (3.7b)

A3 = e
Te

B0
〈E‖B〉
〈B2〉 , (3.7c)

with pe = neTe as the electron pressure. Please note that the use of ∇ne and ∇Te instead of
∇pe, similar to Hirshman et al. (1986), Maassberg et al. (2009) and Beidler et al. (2011),
automatically leads to appearance of the relativistic correction term in A1 (Marushchenko
et al. 2013; Kapper et al. 2018)

A∗
1 = d ln ne

dρ
−
(

3
2

+ R
)

d ln Te

dρ
+ eEρ

Te
. (3.8)

This choice of thermodynamic force with explicit dependence on the absolute value of
temperature seems less natural.

Following Beidler et al. (2011), we seek the solution of rDKE as a decomposition

fe1 = vdR0

v

[
A1 +

(
κ − 5

2
− R

)
A2

]
fe0χρ + R0A3fe0χ‖, (3.9)

where χρ and χ‖ refer to the radial and parallel fluxes, respectively, and R0 is the reference
radius.

Then, (3.1) can be separated into two independent dimensionless equations

R0

v
V(χρ) − νe

D(u)R0

v
L(χρ) = − ρ̇

vd
, (3.10a)

R0

v
V(χ‖) − νe

D(u)R0

v
L(χ‖) = −bξ, (3.10b)

where the ratio ρ̇/vd depends only on the pitch and geometry; see (3.5).
It can be seen that these equations have the same form as the non-relativistic ones.

However, due to the relativistic effects, electrons from the tail of the distribution function
become more collisional as the temperature increases. This can be seen in figure 1, where
the normalized collisionality, νe

D(u)/v · (uTe/νe0), is plotted for a set of temperatures. It
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FIGURE 1. (Colour online) The normalized collisionality, νe
D(u)/v · (uTe/νe0), is plotted for

different temperatures as a function of the normalized momentum, u/uTe. The case with Te =
1 eV, which corresponds to the non-relativistic limit, is shown as the reference line. Calculations
were performed for Zeff = 1.5.

is shown, in particular, that the non-relativistic limit is valid only for temperatures of the
order of several keV.

Using the definition of fluxes as a linear response to thermodynamic forces

Ii = −ne

3∑
j=1

LijAj, (3.11)

consider the particles and heat fluxes obtained above. Following (2.15), the radial particle
flux is

I1 = Γ ρ
e =

〈∫
ρ̇fe1 d3u

〉
, (3.12)

the radial heat flux, from (2.17), is

I2 = qρ
e

Te
=
〈∫ (

κ − 5
2

− R
)

ρ̇fe1 d3u
〉
, (3.13)

and the parallel flux is

I3 = 〈 j‖B〉
eB0

=
〈
b
∫

v‖ fe1 d3u
〉
. (3.14)
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Assuming that the mono-energetic solutions χρ and χ‖ are known, the matrix transport
coefficients can be written as follows:

Lij = CMJ
2√
π

∫ ∞

0

(
1 + κ

μe

)(
1 + κ

2μe

)1/2

hihj
√

κ e−κDij(κ) dκ, (3.15)

with h1 = h3 = 1 and h2 = κ − 5/2 − R. Again, for the non-relativistic limit, with μe →
∞ and κ → mev

2/2Te, (3.15) coincides exactly with the classical expression; see Beidler
et al. (2011).

The relativistic mono-energetic transport coefficients, Dij, are also represented in the
classic-like form

D11 = D12 = D21 = D22 = −v2
d(u)R0

2v

〈∫ 1

−1

ρ̇

vd
χρ dξ

〉
, (3.16a)

D13 = D23 = −vd(u)R0

2

〈∫ 1

−1

ρ̇

vd
χ‖ dξ

〉
, (3.16b)

D31 = D32 = −vd(u)R0

2

〈
b
∫ 1

−1
ξχρ dξ

〉
, (3.16c)

D33 = −vR0

2

〈
b
∫ 1

−1
ξχ‖ dξ

〉
. (3.16d)

To integrate over κ in (3.15), one can use the following relations: γ = 1 + κ/μe, u2/u2
Te =

κ(1 + κ/2μe), which are related to the drift velocity vd(u) and the parameters for χρ and
χ‖ – the collisionality, νe

D(u)/v, and the normalized electric field, Eρ/v. It is also useful to
emphasize here that the relation between the normalized energy, κ , and velocity, v = u/γ ,
is different from the simple classical relation.

4. Summary

The paper considers electron transport in toroidal plasmas with relativistic effects taken
into account. The approach is based on the rDKE for electrons with the thermodynamic
equilibrium given by the relativistic Maxwell–Jüttner distribution function. The relativistic
fluxes correspond to the set of relativistic transport coefficients, which are defined
as a proper convolution of the relativistic mono-energetic transport coefficients. In
turn, the relativistic mono-energetic transport coefficients can be calculated using the
non-relativistic solvers.

As an example, the procedure for calculating relativistic electron fluxes is described
for the code DKES (Hirshman et al. 1986) and other similar mono-energetic transport
codes. Similar to the classical approach, the solutions of the rDKE (3.10) are defined
by two parameters, the collisionality, νe

D(u)/v, and Eρ/v, which differ noticeably from
the classical values for temperatures above several keV. As the temperature rises,
electrons from the tail of the distribution function become more collisional than in the
non-relativistic limit.

Finally, the classic-like definitions of the fluxes as well as of the thermal energy
can be used for solving the system of radial transport equations for the arbitrarily high
temperatures expected in a fusion reactor.
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Appendix A. Relativistic heat flux in covariant formulation

It is shown here that the definition of the relativistic heat flux introduced above in (2.12)
agrees perfectly with the standard definition adopted in relativistic kinetics in the covariant
formalism. Below we use the definitions from the book de Groot et al. (1980).

In the relativistic covariant formalism with 4-vector momentum, pα = ( p0, p) with α =
0, 1, 2, 3 and p0 = √

m2c2 + p2, all quantities needed for the transport equations (such as
fluxes of particles, energy and heat) are usually defined in terms of the 4-vector particle
flux

Nα = c
∫

d3p
p0

pαf (x, p), (A1)

and the 4-tensor of energy-momentum

Tαβ = c
∫

d3p
p0

pαpβ f (x, p). (A2)

(We do not need higher-order moments here.) Note that Tαβ naturally contains the rest
energy and its flux, while the transport equations do not require these quantities. Since v =
cp/p0 (by definition), the spatial flux of particles has the form Ni ≡ Γ i with i = 1, 2, 3,
and the time-like flux is related to the density as N0 = cn.

For the relativistic Maxwellian, a zeroth component of the energy–momentum tensor
can be written as

T00 = nT
(

μ
K3(μ)

K2(μ)
− 1

)
, (A3)

with Kn(μ) as a modified Bessel function of the second kind and μ = mc2/T . It follows
that introducing

R(μ) = μ

(
K3

K2
− 1

)
− 5

2
, (A4)

one can easily express the internal thermal energy in classic-like form

W = T00 − nmc2 = ( 3
2 + R)nT. (A5)

The energy and heat fluxes, Qi and qi, respectively, can be defined in the same way

Qi = cT0i − mc2Ni, (A6a)

qi = cT0i − hNi, (A6b)
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where cT0i is the total energy flux, Ni ≡ Γ i is the particle flux and h = T00/n + T is the
enthalpy, which for the relativistic Maxwellian is given by h = mc2K3/K2. Rewriting the
heat flux (A6b) as

qi = Qi − μ

(
K3

K2
− 1

)
TΓ i, (A7)

and, again, using the definition for R, one can obtain an expression for the heat flux in
classic-like form

qi = Qi − ( 5
2 + R)TΓ i, (A8)

which is identical to (2.12).

Appendix B. Coulomb deflection frequency for relativistic electrons

Explicit expressions for the Coulomb deflection frequency for relativistic electrons
are reproduced here for convenience. These expressions are valid for arbitrary high
temperature. The general definitions for pitch-scattering diffusion coefficients (Braams &
Karney 1989) are applied, νab

D (u) = (2/u2)Dab
ϑϑ(u), where ϑ = arccos (u‖/u) is the pitch

angle with respect to the direction of the magnetic field.
Substituting into the expressions for Dee

ϑϑ the relativistic Maxwellian in the form (2.5),
one obtains the following:

νee
D (u) = νe0CJM(μe)

4√
π

×
(

γ

x3

∫ x

0

[(
γ ′ − x′2

3x2
j̃′0[2]02

)
− 2

3μ

x′2

γ 2

(
j̃′0[2]02 − x′2

5x2
j̃′0[3]022

)]
x′2

γ ′ e−κ ′
dx′

+ 1
x2

∫ ∞

x

[(
γ ′2 − γ

3
j̃0[2]02

)
− 2

3μ

x2

γ

(
x′2

x2
j̃0[2]02 − x2

5
j̃0[3]022

)]
x′

γ ′ e
−κ ′

dx′
)

,

(B1)

where x = u/uTe, γ = √
1 + z2 with z = u/c and κ = x2(2/(γ + 1)). The specific

functions j̃l[k]∗(z) (Braams & Karney 1989) are given by

j̃0[2]02(z) = 3(zγ − σ)/2z3 = 1 − 3z2/10 + O(z4), (B2a)

j̃0[3]022(z) = 15[−3zγ + (3 + 2z2)σ ]/4z5 = 1 − 9z2/14 + O(z4), (B2b)

where σ(z) = ln(z + γ ) and γ = √
1 + z2 with z = u/c. Here, νe0 = 4πnee4 ln Λe/e/m2

eu3
Te

is the simplest electron collision frequency.
From here the first two terms of the expansion by μ−1

e can be obtained

νee
D (x) � νe0

1
2x3

{[(
2 − 1

x2

)
erf(x) + erf′(x)

x

]

+ 1
μe

[(
5

2x2
− 3 + 2x2

)
erf(x) + (3x2 − 5)

erf′(x)
2x

]}
, (B3)

where the first term corresponds to the non-relativistic limit (Hinton & Hazeltine 1976;
Helander & Sigmar 2002).
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For νei
D , the ion background can be assumed to be a non-relativistic Maxwellian. Taking

into account that Mi/me � 1, for x � vTi/uTe it is sufficient to apply the high-speed-limit

νei
D(x) = νe0Zeff

γ

x3
. (B4)

Again, the non-relativistic limit for this expression coincides exactly with the well-known
classical approximation.
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