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AN ANALOGY BETWEEN PRODUCTS OF TWO CONJUGACY
CLASSES AND PRODUCTS OF TWO IRREDUCIBLE

CHARACTERS IN FINITE GROUPS

by ZVI ARAD and ELSA FISMAN*

(Received 10th August 1985)

Introduction

It is well-known that the number of irreducible characters of a finite group G is equal
to the number of conjugate classes of G. The purpose of this article is to give some
analogous properties between these basic concepts.

We present the following theorems:

Theorem A. / / C and D are non-trivial conjugacy classes of a finite group G such that
either CD = mC + nD or CD = mC~l + nD, where m,n are non-negative integers, then G is
not a non-abelian simple group.

Theorem B. / / x and ^ are non-trivial irreducible characters of a finite group G such
that either x*l> = ™X + nty or /i/> = mx + ni^, where m,n are non-negative integers, then G is
not a non-abelian simple group.

Analogous theorems between products of conjugacy classes and products of charac-
ters were studied in [1-4]. For example a finite group G is isomorphic to Jx (the first
Janko group) iff C2 = G for every non-trivial conjugacy class C of the finite group G [1].
The analogous theorem is that a finite group G is isomorphic to J , iff Irr(x2) = Irr(G)
(i.e., all the irreducible characters of G are constituents of x2) f° r every non-trivial
irreducible character x of the finite group G [4].

The proofs of Theorems A and B are elementary; chapters 1-4 of [5] suffice for
background.

Our notation is standard and is taken mainly from Isaacs [5].

Proofs of theorems

Let N be the set of all positive integers and set N* to be W u {0}.
Let Irr(G) = {x i , . , x*} be the set of all irreducible characters of a finite group G. It is

well known that x is a character if and only if 0 =£ x = Z*= i niXi> w n e r e nt are elements of

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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8 Z. ARAD AND E. FISMAN

Î J* for lg ig/c . If x = YH=iniXi ' s a character then those x, with «,->0 are called the
irreducible constituents of x-

Let x a r |d $ be characters of G. The fact that x + ^ is a character is a triviality. We
may define a new class function x4> o n G by setting {xxl/){S)~X(s)ll'(s)- It is true but
somewhat less trivial that ^ is a character.

It is well known (see Theorem 4.1 of [5]) that if the C[G]-modules V and W afford
characters x and t//, respectively, then the tensor product V ® W affords the character
x4> and is independent of the choice of bases of V and W.

Thus as a consequence of Theorem B we have that for irreducible C[G]-modules V
and W of a finite non-abelian simple group

K® W £V®---@V® W@---®W, where m, n e ÎJ *.

We can state Theorem B as follows:

Theorem 1. Let G be a finite non-abelian simple group, {nl,n2}<=N and

(a) #^2 ^n^i and

(b)

(C)

P r o o f o f (a ) . By t h e F i r s t O r t h o g o n a l i t y R e l a t i o n t h e r e ex is t s g e G — {1} s u c h t h a t
. M g W T h e s i m p l i c i t y of G i m p l i e s t h a t Z ( i / , 2 ) = 1. T h e r e f o r e | | | | | | | |
a n d t h e i n e q u a l i t i e s of (a ) h o l d .

Proof of (b). Let G be a counterexample with t/'ii/'2 = «il/'i +n2ll/2 then clearly
i//l =fctp2jzi]/l. We will show:

Proof. Since nt = C«Ai jA2>'/'ill = C<A i, «A i ̂ 2] and «2 = [^1^2.^2] = [^1^2.^2] then:
with [a,i/'1] = 0 for ie{l,2}. Since «!»Ai(l)+ n2'/'2(1) = «i«Ai(

? then a(l) = 0. So a = 0.

b(ii). ^ = fc/or ie{1,2}.

Proof. By b(i) we get that:

and

Since *f2('l
/ilJ/2) = (*p2'Pi)ll/2 then il/2 = $2 a n d similarly \pl = \j/l.
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AN ANALOGY BETWEEN PRODUCTS 9

b(iii). i/'? = l c + nii/'2 + s i | / ' i + a i . iAi = 1G + "2</ ' I+S2I / '2 + a2> where s.e^J*, a.^O and

Proof. By b(ii) 1 = [ ^ , ^ J = [^?,1G] for ie{l,2> and n 1 = [^1^2 ,^1] = [^?,^2] then:
i/>i = l c + n1i/'2 + s1i/ 'i+a1. Since I / ' 1 ( 1 ) > 1 then by Burnside's theorem ([5] (3.15)) there
exists geG such that <Pi(g) = O. Hence 0 = 1̂ i(g)ilJ2(g) = n1ipii,g) + n2^i2(g) = n2\jj2{g). So
iA2(g) = 0. It follows that 0 = ip1(g)2 = lG + n1il/2(g)+s1ilil(g) + <xl(g)=l+<xl{g) and then
<*!=£0. Similarly i/ |̂ = l c + n2

|/'i + s2|/'2 + a

(iv). (1) «1a1=M1a2 + a 1 ^ 2 - [ a 1 , a 2 ] ^ 2 and

(2)

Proof. By b(iii) we get that:

Since Vi4>2 = ̂ \{^\^2) then: nlcci = nla2 + cilil/2-[_alip2,tp2]il/2. Since [a1i/'2>"/'2] =
[ai,i/ ' |] = [a1,a2] then (1) holds and similarly also (2).

b(v). Final contradiction.

Proof. Let us multiply b(iv)(l) by n2 and b(iv)(2) by nt. By adding these equations
we get that

Hence nl<x2\p1 + n2<xlil/2 = [txl,a2'](nl\l/i + n2ij/2). It follows that [ct2^>i,P]=0 for every
Pelrr(G)-{il/uil/2}. Moreover, since {.*2ifil,ij/2] = [:<x2,ilr1il>2] = [ci2,nlil/1 +n2</'2] = 0 then
a2tl/i — l>Pi w ' th l eN. Let ^ be an irreducible constituent of a2 then x^\—^i w ' th
which contradicts (a).

Proof of (c). Let G be a counterexample with I/ ' )I/ '2 = HI<?I + n2^2- By (b) $i
We consider the following two cases:

i/'2 = '?2 and

c(2) ^ 2 ^ ^ 2 .

Casec(l)(i). ^J +
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Proof. Since ^i>p2 =
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+ n2ll/2 t n e n

and

then

Case c(l)(ii).
/or 1.2}, and

= lG + n2(i/'i a2 witfi a,=a,-, [a,-,z]=0

Proof. Since nl =

i +n2>J/i = l

Now

then ^2 = nltp2 + lill/i •+'2l?i + a i w'th
n1(A2+(n2 + /2)^1 + /1^1+a1 =

a, =a! and /j =/2+n2-

and

SO

Since [<AI«?I,I/'2] = CI/ ' I | / '2>I/ ' I]=0 then «2/2 = 0. So /2 = 0. Moreover D/'ii?i,</'2]
implies that [i/'2,i/'2] = 0 = [a1i/'2,i/'2]. Since «2 = [^1^2.1A2] = [^2.^1] t h e n <A2 =

Case c(l)(iii). a,=0.

Proof. Byc(l)(ii)

and

We get that n\n2\lil =n\n2}lil + [nl<x2il/2 + <xl^2,il/1]il/i and then
But a,i/'2 = a1(lc + n2i/'1 +n2i]}l +a2); so in particular

[a , ,a^. Thus a, =0.
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Case c(l)(iv). tfr2^2.

Proof. By c(l)(ii) and c(l)(iii) i/^t?, = 4i\. So

and

Hence

Then n?i/'i=(l+M2)i/'i+a2^i implies that <x2i/fl = lipl which contradicts (a). Then a2 = 0
and nf = 1 +n|. So \p2 is not a real character.

Case c(2). In this case 0 = [^,^2,^1] = [^1^,,^2] = [^1 ,^1^2] , 0 = [^l(A2,^2] =
bl>h<?i]> "1 = DAi^."?i] = DA?><?2] and «2 = [I/'1I/'2, 1A2] = [<Ai,^2^2] = DAi^, W -

Denote by /, = [^,^2,^i] = [^?,^2]. by /2 = [^i^2,^2] = [^i ,^ i ] , by J1 = [^?,^,] =
[^1^1.1A1]. by y2 = ['/'i«/'2] = [«/'2^2>'/'2], by <ii = C«/'f,«?iD and by d2 = [i/'ii?2]. So we
have the following table:

1 G \p{ {Jil \p2 $ 2

ipiip2 0 0 «! n2 0

0 0 /x l2 n2 a1 2

0 j , d, /, n, a,!

0 /2 0 j 2 d2 a2 2

1 Ji 7i 0 0 ^ ,

! «2 «2 72 J2 Pi

where /?,- is real and [y,5]=0 for y£{al7,/yi ^i'g2,1 ^yg2} and 6 E { 1 G , I

Casec(2)(i). n,i?1i?2 = /2i/'| + a12^2) /, =0

Proof. Since

and

then «,!?ii?2 = /1^ii/'2 + /2i/'! + a12i/'2. Since C«?î 2»"AzD = ° then 0=/1[i?1^2,i/>2] = /1n2, so
/ ,=0 and 0 = [a12^2,«/'2] = [ai2,^2].

Case c(2)(ii). a12i/'2 = [ai2,a12]i/'1 + [a12,a22]i?2.
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12 Z. ARAD AND E. FISMAN

Proof. Since [
[a12)a22] and 0 =

2 )^1] = [a12,a,2], [a12i/'2,i?1] = [a12,i?1i?2] =
2,x] for xeIrr(G)-{^,,(£2} then by c(2)(i)

Case c(2)(iii). [a1 2 ,ou] = 0.

Proof. By c(2)(ii) 0 = [a12i/'2,i/'ii/'2] = [a12i^1,i ]. Hence, in particular 0 =

Ji=n2.

Case c(2)(vi). ^ =

Proof. Since [<]/1^

Case c(2)(iv). y2 = 0, [a1 1 ;a2 2]=0 and

Proof. By c(2)(i)
M2I/'2). Since [iAii?i,i
and 0 = [a11i/^2,^2] = [

Casec(2)(v). y ^ / i j

Proof. Since [^1^2

t n e n w e obtain that 0 = [i/'2i?2,i/'2]=y2

= 0 = [^i^2»^i]. [>?il/'2;'/'i] = 'i = 0 then c(2)(iv) yields that
] [_alual2] = n1n2 by c(2)(iii). So

[a11,y?2]=0.

— ̂  ji = n2 t n e n c(2)(iv) yields that n2\^/i^/2^2\ =

i"/'2.'/'2]- Hence 0 = rf1[i?1^2>2] = <i1«2 so dt=0 and

Case c(2)(vii). niPi=nip2+0Lllip2.

Proof. By c(2)(iii), c(2)(iv) and c(2)(vi) [«1

c(2)(iv) that
= 0. It follows from

Case c(2)(viii). a i l = / ? 2 = 0.

Proof. By c(2)(iv)

Since OJ2*1,#2] = [ /? 2 ,M 2 ]=0, W2^i,^i] = [^2,«ii]=0 by c(2)(vi),
[^2,«i2] = 0 by c(2)(i) then (*) and (**) yield that n^^n&n +
[^2^i.^i]^i- Multiplying this equation by «j and using c(2)(vii) we get:

(**)

So a , , = 0 and so by (a) (as in b(v)) /?2 = O.
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Case c(2)(ix). Final contradiction.

Proof. By c(2)(vii) and c(2)(viii) /?!=0. It follows by c(2)(iv) and c(2)(v) that i/'1i?1 =
I). So

and

So

and then 1 +n2 = nf, a contradiction.

Proof of Theorem A. The proof of Theorem A is similar to the proof of Theorem B
with a few changes.

Let gi,...,gk be representatives of the conjugacy classes of a finite group G. Let K =
Z?=i«,C/fe) with n,eN* for l^igfc. Define: (K,Cl(gi)) = nt. Clearly, (Cl(gi),CKgJ)) = SiJ.
So «,=(K,C/fe,)) = XJ=1n/C/(g^ C/(g,)). Let L = £*„, m.-C/fe) with m(eN*, we extend
the above definition by:

(K, L) = t m,<K, C/fe)) = t nm = (L, K).
i = i i = i

Lety,-6{l,...,fc} for 1^/^s and let

Clearly, nteN* and it is known that

n \cngd\ z jfe^i)1"1 n z(g«)-
i = j , xe'"(G) i=J,

In particular, if Du D2, D3 are conjugacy classes then:

(i) (D1D2)D3) = (Dr1D2-
1,D3-

1).

It is easy to compute that:

(ii) (D,D2, D3) = \D2\ \D3\- '{D^ \D2-»).

For Dt=D3 we get that:

(iii) (D1D2,D1) = \D2\\Dl\-
i(D1DTi,D2-

i) = (D2D;i,

It is appropriate to introduce here the following:
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14 Z. ARAD AND E. FISMAN

Definition. The covering number, cn(G), of a group G is the smallest positive integer
n, such that C = G for all non-identity conjugacy classes, C, of G. If no such integer
exists we say that the covering number is infinite. The notion of a covering number was
mentioned in [3] where it is shown:

Lemma. A finite group has a finite covering number if and only if it is a nonabelian
simple group.

(In [4] we proved the analogous lemma for character covering numbers.)

Now we can state Theorem A as follows:

Theorem 2. Let D1,D2 be conjugacy classes of a finite nonabelian simple group G
with D^Cl(\)i-D2 and {nun2}cN. Then

(a) DiD2j=nlDl and DlD2j=nlDil.

(b) DlD2^nlDl+n2D2.

(c) DjDj^n^r'+njDj .

Proof of (a). Let DlD2 = nlDl be a counterexample then DlDl = nlDlD2 = n2
lDl. By

induction DlD
s
2 = n\Dl for every s e N which contradicts the lemma.

Similarly, if D1D2 = n1D1"1 then D^D2D2
l =nlD^lDll =n\Dv By induction

Di(D2
1)sDs

2 = n2sDl, the same contradiction.

Proof of (b). Let DlD2 = nlDl+n2D2 be a counterexample. We will show:

b(i). DlD2
l=niDl+n2D2

l.

Proof. By (iii) ni=(DlD2,Dl) = (DlD2\Dl) and n2 = (D1D2,D2)=(DlD2
 l,D2

l). So
DlD2

i=nlDi + n2D2
1 + T with (T,L) = 0 for Le{DuD2

1}. Since

then T = 0.

b(ii). D—Df1 for l^i^2.

Proof. By b(i)

So D1D2
l=DlD2 or equivalently nlDl-»rn2D2

l =nlDi +n2D2 then D2 = D2
l and

similarly £>,=Dr'-

https://doi.org/10.1017/S0013091500017922 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017922


AN ANALOGY BETWEEN PRODUCTS 15

and

here s^N*, M,=£0 and (M,-,C) = 0 for Ce{Cl(l),Dj}, i,je{1,2}.

Proof. Since

and by (ii)

then Dj^DilaW + nilDiWD^-^i + SiDi+M^ If M,=0, by the lemma G =
I U D I U D 2 which contradicts the assumption that G is a nonabelian simple group.
S o M ^ O . Similarly for D\.

and

«2M2 = n2|D2||D1|

Proof. By b(iii)

D1(D1D2) = D,(«1D1+n2D2) =

+ n2(nlDl+n2D2)

and

+ s1(nlDi+n2D2) + MlD2.

Since DX(DXD2) = D\D2, 0 = (M,D2,C/(l)) and (M1D2,D1) = |Mi||D1|-I(^i.O1D2)=
then nlMl=nl\D1\\D2\-

iM2 + MlD2-{MlD2,D2)D2. Similarly /i2M2 = «2|D2||D1|"1M1 +

b(v). Final contradiction.
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16 Z. ARAD AND E. FISMAN

Proof. By b(iv)

= n2\D2\\Di\-
l(nl\D1\\D2\-

1M2

It follows that n2 |D2| |D1|~IM1D2 + /i1M2D1 = / 1D1+/2D2 for {/j,/2}c=N*. In particular,
MlD2 = mlDl + m2D2 for {m1,m2}c=M*. Since (M1D2,D,) = 0 the MlD2 = m2D2. Let
M, =YJ= i diCl(gi), choose C/(g;) for dj>0 then Cl(gj)D2 = mD2 which contradicts (a).

Proof of (c). Let D1D2 = n1D1"1+«2£>2 be a counterexample. By (b) D ^ D j " 1 . We
consider the following two cases:

case c(l) D2 = D2
l and case c(2) D2J=D2

l.

Case c(l)

c(l)(i). ( D r ^ + n ^ ^ ^ + n .Dr 1 .

Proof. Since (D1D2,D,)=(Dr1£>2>Oj~
1) then

and

It follows that (Dii)2 + n2Di=D\ + n2D;1.

c(l)(ii). D2
1=nl\Di\\D2\-

1D2 + n2D1 + M with M = M~\ 0 = (M,C) for

Proof. Since nl=(DlD2,D;l) = \D2\\Di\~1(D2
uD2) then D? = n1|D1||D2|"1D2

with { /L/JJCTN*. By c(l)(i)

So M =
Now

and /1 = /2

= (n1|D1| |D2|-1D2+(/2

= nADil \D2\ -
 lD2

2 iDi"' +«2D2) + l^n^D^ + n2D2) + MD2
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and

Dl(DlD2) = D1(nlD;l+n2D2) = nlDlDil+n2(nlD;l+n2D2).

Since D?D2 = 0,(0,02) then

n ^ ^ 1=n1\Dl\\D2\~
lDl + l2nl(Dl + D," l) + 2l2n2D2 + MD2.

Since 0 = (DlD;\D2) then (DiD2) = 0and /2 = 0 thus li = n2.

c(l)(iii). D | = |Z>2|C/(l) + n2|£>2||D1|-
1(£>1 + Dr1) + ^ with L=L~l and O = (L,C) for

Proof. Since (D2
2,D;1) = \D2\\D1\-

1{D2DuD2) = n2\D2\\Dl\-
1 and by c(l)(ii) 0

(D2
2,D2) then D | = |D2|C/(l) + n2 |D2 | |D1 | -1(D1+Dr1) + L.

(iv). M = 0, |D,| = | D |

Proof. By c(l)(ii) and c(l)(iii)

= nx\D 1\D2 + nln2(n1Dt +ntDi * +2n2D2) + n1\DiWD^'lD2L+ MD\

and

So

Hence
Since MDl = M[|D2|C/(l) + /i2|D2||D,|-1(JDi+^rl) + ^] then (MDlDJ^ implies, in

particular, that 0 = (MDil
yDl) = \M\\Dl\-\D

2,M) = \M\\Dl\-
l(M,M). So M=O and

then by c(l)(ii) D , D r ' = |D1 | |D2 | - 1Di Hence l/?^2 = |D1||£>f *j = |£>,| |D2|~ ̂ Dz^ =
|D,||D2|. Thus |D,| = |D2|.

(iv). L=0.

Proof.
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18 Z. ARAD AND E. FISMAN

and

D2(DiD1) = D2(n1D;i+n2D2) = nl(nlD1 + n

So

|D2|£>! + n2{nlD2 + n2Di) + LDl =n\

Thus (\D2\ + nl)Di + LDi=n2
iDl. Hence LDl = kDl and by (a) L=0.

Proof. Since L = 0 = M then D2 = a(n)Cl(\) + f}(n)Dl + 5{n)D7l +y(n)D2 where
{(x(ri),P(n),5(n),y(n)}cN* for every nsN. By the lemma we get that G =
1 U D J U D J " 1 uD 2 . Since |Dr1| = |D1| = |D2| then i G ^ l + SlD^ which contradicts a
consequence of Lagrange's theorem that |O,|/|G|.

Case c(2). In this case we have

jx =(Di,D1) = (DjD1
 1,Dl), j2=(D2

[,D2) = (D2D2
l,D2

l), dl=(D\,D1
l) and i

(D\, D2
l). Therefore we have the following table:

Dj D7l D2 D2
l

0 n, n2 0

0 I, l2 n2 M 1 2

fzlDzIlD,!"1 0 j2 d2 M22

7, ;, 0 0 N,

where N—Nr1 and (L,C) = 0 for Ce{C/(l),/)t,Dt-
1}, Le{My,JV,} for every

ye{l,2}.
We will show:

D,D2

D\

D\
D,D7l

D2D2
l

0
0

0

0

|D,

ID2
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AN ANALOGY BETWEEN PRODUCTS 19

Proof. Since (DlD2,D;iD2
l) = 0 then

0 = (DUD2
i)2) = dil2\D2\\Dl\-

1+d2l1\Dl\\D2\-
1+j2n1\D1\\D2\-

l+(MluM22
1)

then, in particular j 2 = 0 = (M11,M22
1).

(ii). ll=0and(Ml2,N2) = 0.

Proof. By c(2)(i) (DlD2,D
2
1) = 0 thus 0 = (DlD2

1,D2D2
1) = lln2\D2\\Di\-1 +(M12)W2).

It follows that / 1 = 0 = (M12,;V2).

(iii). /2M22 = 0, M12D2=(n{-ll\D2\\Dl\-
l)Dl+(nln2-l2d2)D2-

1 and 0 =
(M12,MU).

Proof. We compute

and (DlD2
1)D2 = (l2D2 + n2D2

1 + Ml2)D2. Hence n^^D^1 =12D
2

2 +Ml2D2. This
means that

In particular Mi2D2 = (n\-l2
2\D2\\Dl\

 l)Dl+{nln2-l2d2)D2
 ! and /2M22 = 0. Moreover

(Ml2D2,DlD2) = 0 so 0 = (Ml2Di\D2D2
l). Hence, in particular, 0 = (M12D1"

1,D1)
which implies that 0 = (M12,Di) = (M12,Mu).

c(2)(iv). ji=n2 and n^D^D^1 =dlDil\

Proof. Since

and (DID2,D1) = 0 = (D2Di"1,£)1) then by c(2)(ii) and c(2)(iii) we get that

So ji=n2.

c(2)(v). dl=0and(Mll,N2) = 0.

Proof. Since (D;lDuD2) = 0 then by c(2)(iv)

0 = d1(D,-1D2,D2) + «1|D1||D2|-1(/>J1O2,

We conclude that dl=0 = (Mll,N2).
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c(2)(vi). n ^ ^ l D j

Proof. By c(2)(i), c(2)(iii) and c(2)(v), (MnD2,D, + D,"1 + D2 + D2~
1) = 0. It follows

from c(2)(iv) that ntNl = n1\D1\\D2\-
iN2 + MnD2.

Proof. By the above

(**)

Since (N2,DlD2) = 0, (N2,Ml2) = 0 by c(2)(ii), and (Af2,Mn) = 0 by c(2)(v) then
{N2Di,D2

l+D2 + D;1) = 0. So(*) and (**) yield that

By c(2)(vi)

Therefore M , , = 0 and N2Di=(N2Di,Di)Dl. By (a) we conclude that N2 = 0 and then
by c(2)(vi) Nt=0.

1\~
lMu + n2\D2\\Dl\''

l(nl\Dl\\D2\'
1N2

lN2D1-n1(N2Di,D1)D1.

ii). |£>,| = |D2| and D ^ f 1 = D2D2
l.

Proof. By c(2)(vii) D2D2
 1 = \D2\\Dl\-

lDlD;1. Then

Thus j£)1| = |£)2|.

and |M12|=(1

Proof. Since (n1

Also (n,+n2)|D1| = |
|Di"1| = |D,|(l+2n2), therefore n, = l + n2.
nJlDj + lM^l Hence |M12| = (Nl -/2)|D,|.

c(2)(x). |D1| =

Proof. We compute
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Since

then (n2
1+n2

2)\Dl\=(DlD2D^1D2\Cl(l)) = \D1\
2 + 2n2

2\D1\. Thus |D1| = l + 2n2.

c(2)(xi). !2 + d2 = \+2n2and M22 = 0.

Proof. By c(2)(iii) and c(2)(ix), (1 +« 2 - / 2 ) |D 1 | 2 = | M 1 2 | | D 2 | = ( ^ -| | | | | | | |
Therefore, by c(2)(ix) and c(2)(x), (1+ n 2 - / 2 ) ( l + 2 n 2 ) = ( l+2n 2 + n 2 - / l + n 2 + n 2 - / 2 d 2 ) .
Then I+2n2 = l2+d2. Since « 1 +/ i 2 = l + 2 n 2 and (n, + M 2 ) | £ > I | = l ^ i l l ^ l = | D i | =

| | | |

c(2)(xii). /2 = n2> Ml2 = M;2
l, D\ = D\ and

Proof. Since

and

DtDr 'D2 = £>2D2-
 : D 2 = DfD2"' =(/2D, H-

=/2( '2D2+«2o2- 1 + M12)+d2(i2D;»

then

Since (M12,D,) = 0=(M 1 2 ,Dr 1 ) for l ^ / g 2 then /2 = «2, M 1 2 = M1"2
1 ( M 1 2 f 0 by the

same arguments as in c(l)(v). Therefore d2 = nx and D\ = D\ and by c(2)(iii) M12D2 =

c(2)(xiii). Fina/ contradiction.

Proof. Let us compute

+ 2n2(M 12D2 + M 12D2
l) + Mj2

Since (DlD2
l)2 = D2

l{D2
l)2 = D2

l(D;1)2 = (DlDi1)2 then by (***) M\2 = |Di|2C/(l), which
contradicts the lemma.
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