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AN EXISTENCE THEOREM FOR NONLINEAR 
BOUNDARY VALUE PROBLEMS 

BY 

W. L. McCANDLESS* 

1. Introduction. Boundary value problems for ordinary differential equations 
have long been the subject of extensive research activity. In particular, questions 
concerning the existence and uniqueness of solutions for these problems have 
received much attention, and algebraic fixed-point theorems have served as im­
portant tools in such investigations. For example Picard [8] based his pioneering 
work in this area on the use of successive approximation techniques, and recently 
his classical methods have been refined and extended to more general nonlinear 
problems (see [1] and [4]). The standard procedure for applying these techniques 
requires that the boundary value problem under consideration first be converted 
into an equivalent integral equation through the choice of a suitable Green's 
function. The resulting theory is consequently limited to problems for which such 
a formulation is possible. 

Another approach that has been used lately is to work directly with the operators 
that result from the boundary value problems. No formulation as an equivalent 
integral equation is necessary, and hence very general boundary value problems 
can be treated. Although a large number of useful fixed-point theorems are available 
in the literature (see [3] and [7] for surveys), so far only the Newton iterative tech­
nique has been used in this connection. In [10] the so-called "modified" Newton's 
method is applied to the problem, and in [5] a generalization of the Kantorovich 
theorem on the convergence of Newton's method is utilized. In both cases existence 
and uniqueness criteria are established for solutions of nonlinear differential 
equations subject to broad classes of both linear and nonlinear boundary con­
ditions. 

This paper presents a new technique for establishing the existence of solutions 
for boundary value problems. We begin by reformulating the boundary value 
problem under examination as an operator equation between normed linear spaces. 
However, rather than use a Green's function to obtain an integral equation, we 
employ a method that allows very general boundary value problems to be con­
sidered. The desired existence criteria for solutions are then obtained by applying 
a well-known form of the contraction mapping principle. 
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Let C(I) denote the linear space of continuous functions from the compact 
interval / = [a, b] into «-dimensional real arithmetic space Rn, and let C'(I) be 
the subspace of continuously differentiable functions on /. We shall consider the 
boundary value problem for a first-order system of n ordinary differential equations 
on / given by 

(1.1) x'+F(x91) = 0, f(x) = 0. 
The function/is a mapping from a subset of C(I) into Rm, where m and n are not 
necessarily equal. The problem (1.1) will be referred to as a nonlinear boundary 
value problem. 

2. The equivalent problem. Boundary value problem (1.1) will now be formu­
lated as a nonlinear operator equation. We begin by making C(I) into a Banach 
space with the uniform norm defined by 

||x|| =max| |x(0l l , xeC(I). 
tel 

The linear space C'(I) will be regarded as a subspace of C(I) with the same norm. 
We shall also need to consider the product space Y= C(J) X Rm, which is a Banach 
space for the norm 

\\[y9v\\\ = m a x { M U M | } , [y,v]eY. 

In any normed linear space the open ball with centre at x and radius r is denoted by 
S(x, r) and the corresponding closed ball by S(x, r). The identity mapping on a 
linear space will be denoted by E. 

We shall assume that the function .Fin (1.1) is twice continuously differentiable 
on Uxl where U is a nonempty open subset of Rn. The domain of the operator/ 
is assumed to be a nonempty open subset D of C(I), and we require that x(t) e U, 
tel, for every choice o f x e D . Hence we can define an operator T: D-+C(I) by 

T(x)(t) = F(x(t), 0, a <t <b. 

Let Abeanxn matrix with continuous entries on / = [a, b], and let L be a linear 
operator from C(I) to Rm. Define a linear operator M from C'(I) into Y by 

(2.1) Mx = [x'+Ax,Lx]. 
Suppose M+ is any operator from Y into C(I) such that MM+=E, the identity 
mapping on Y. We then have the following basic result, in which A and L are 
assumed to have the properties just stated. 

THEOREM 1. Let R and S be the operators on D given by 

R(x) = Ax-T(x\ 

S(x) = Lx—f(x). 

Assume that the operator M in (2.1) has a right inverse M+, and let the operator 

Q:D-+C'(I)begivenby 

(2.2) Q(x) = M+[R(x), S(x)]. 
Ifx*is a fixed point ofQ, then x* is a solution of the boundary value problem (1.1). 
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Proof. Let x* be a fixed point of Q. Hence Q(x*)=x* and it follows that 
x* E D n C'(I). Thus we can apply the operator M to both sides of the expression 

x* = M+[R(x% S(x*)] 
to obtain 

Mx* = [R(x% S(x*)]. 

Therefore, using (2.1) and the definitions of the operations on Y, we have 

(2.3) [x*' + T(x*)J(x*)] = 0. 

From the form of (2.3) it follows immediately that x* is a solution of (1.1). This 
completes the proof. 

Theorem 1 makes it possible to find solutions of nonlinear boundary value 
problems by seeking fixed points for operators of the form (2.2). In particular 
we can use a contraction mapping method to solve Q(x)=x. We shall apply the 
contraction mapping principle in the following form (for a proof, see [4, pp. 11-
20]). 

THEOREM 2. Let D be an open subset of a Banach space X. Suppose P is a twice 
Fréchet differ entiable operator from D into X. For a given point x0 e Z>, assume there 
exist constants rj>0, K>0, and ô e [0, 1) such that 

(i) \\x0-P(x0)\\<rj} 

(ii) ||P'(*o)ll<<5; 
(iii) \\P\x)\\<Kfor, 

where 

and 

all xe 

r0 = 

h = 

: (̂*o> ro) 

1—(1—2/i)1/2 

h 

Krj 1 

JL 
1 -

ttr. 0 < - , S(x0, r0) c: D. 
(l-<5)2 2 

Then the contraction mapping sequence {xn}for P beginning at x0, namely 

*n+l = P(*n\ n = 0, 1, 2, . . . , 

is defined, remains in S(x0, r0), and converges to a fixed point x* of P in S(x09 r0). 
The rate of convergence is given by 

ll**-*«ll < r 0 [ l - ( l - a ) ( l - 2 / z ) 1 / 2 r , n = 0, 1, 2 , . . . . 

3. Right inverses. Suppose the operator M:C'(I)-+Y is defined as in (2.1), 
Let O be any fundamental matrix on / for the linear system 

x'+Ax = 0 

and define the linear operator N on Rn by 

(3.1) Ni = L(0>£). 
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Since we have N:Rn->Rm, it follows that there i s a m x n real matrix which repre­
sents the operator N. The following theorem deals with the existence of right in­
verses for M. 

THEOREM 3. Let B be a mxn matrix representation of the operator N in (3.1). 
Suppose there exists a nxm matrix B+ such that BB+=Em (the mxm identity 
matrix). Then for any given x0 e C'(I) there exists an operator M+: Y->C'(I) with 
the following properties: 

(3.2) MM+ = E 

and 

(3.3) (M+M)(x0) = x0 

Proof. Right inverses for M can be found by dealing with linear boundary value 
problems of the form 

(3.4) x'+Ax = ip 

(3.5) Lx = v 

where [ip, v] e Y. If we let Hx=x'+Ax9 it then follows that the inverse image of 
any ip e C(I) under H is the set of solutions of (3.4) and is represented by the fol­
lowing linear variety in C'(I): 

(I <&(t)<&-\s)y{s) ds\+JV°(H), 

where J^(H) denotes the null space of H. Thus 77 maps C'(I) onto C(I) and equation 
(3.4) has solutions for every choice of ip e C(I). Moreover, the null space of H is 
isomorphic to Rn under the isomorphism given by 

(3.6) £<r*Q£, ieRn. 

Because the operator H is onto, it has right inverses, and one such right inverse 
is given by 

( # » ( 0 = | O(0O~1(s)^(s) ds, a<,t<b. 
Ja 

Hence, using (3.6), we see that all solutions of (3.4) can be represented by 

(3.7) x = Of+f l+ y , ieRn. 

Therefore x will be a solution of (3.4), (3.5) if | G Rn is a solution of 

(3.8) B$ = v-LH+ip. 

By assumption B has a right inverse J5+, and thus 

I = è0+B+(v-LH+y>) 

is a solution of (3.8) for each £0 e ^(N). By (3.7) it follows that, for every such 
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| 0 , an operator M+ satisfying (3.2) is given by 

M+[y, v] = <S>(B+v+Ç0-B
+LH+y>)+H+ip. 

We now seek a right inverse which also satisfies (3.3). Using (2.1) and an integra­
tion by parts, we obtain 

(M+M)(x0) = ®Ç0+x0-m-\a)x0(a)+m+B<ï>-\a)x0(a). 

Therefore if we choose 

f0 = O-\a)x0(a)^B+B^-\a)x0(a), 

it then follows that B£0=0 and (3.3) holds. This establishes the theorem. 

4. The existence theorem. It is necessary to require that certain relationships 
hold among the norms on the various spaces of matrices in this problem. To be 
specific, let s/9 SS, and ^ be respectively the linear spaces ofy'xfc, kxl, andy'x/ 
real matrices with corresponding norms ||. ||l5 ||. ||2, and ||. ||3. Then the norms are 
said to be compatible if for all At se and 5 e ^ w e have ||^4JB||3^ H-̂ llx II^L- If 
we make the natural identification of elements of Rn with nx 1 matrices, then this 
notion of compatibility is a generalization of the concept defined in [6, p. 427]. 
We shall require that the arithmetic spaces Rn and Rm be given norms which are 
compatible with the norms introduced on the other spaces of matrices in the forth­
coming development. 

Since the function F i n (1.1) is assumed to be twice continuously differentiable 
on Uxl, it follows that the resulting operator J7 is twice continuously Fréchet 
differentiable on D. For any given x0 e D, the functional value of T'(x0) at any 
x E C(I) can be represented by 

(T'(x0)x)(t) = G(t)x(t), a<t<b, 

where G is a nxn matrix of continuous functions and the indicated multiplication 
is ordinary multiplication of a matrix by a vector (see [9, p. 95]). 

Suppose that the operator / is twice Fréchet differentiable on the open subset 
D of C(I) and let D'=D n C\I). For a given x0 e D\ define the linear operator 
M :C'(I)->Y by 

Mx= [xf+TXxo)x,fXx0)xl 

and let O be any fundamental matrix on / for 

x'+T'(x0)x = 0. 

Define the linear operator N on Rn by JVf=/'(x0)(O|), and let B be a mxn 
matrix representation of N. We shall assume that B has a right inverse B+. Further­
more, letting 

(4.1) f0 = O-1(a)x0(a)-jB+5O-1(a)x0(a), 
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we also define the operator M+: Y->C'(I) by 

M+[f, v] = Hf[w, »]+0£ o 

for all [f, v] e Y where 

H+[y>, v] = ®B+v-®B+f'(x0)H
+y)+H+f, 

(H+f)(t) = |O(0O-1(s)^(s) ds, a<t<b. 

Ja 
We are now ready to establish the main result concerning the existence of solutions 
for (1.1). 

THEOREM 4. Suppose there exist non-negative constants a, /? and K such that 

(i) | |K+r(x 0 ) , / (x 0 ) ] | |<cc; 
(ii) Kx WB+W+K^ib-aXl+K, H5+II ||/'(*o)il)<|3 

where 

Kx = max ||0>(0||, K2 = max UO^OII ; 
tel tel 

(iii) || [T"(x),f'(x)]\\<Kfor all x e S(x0, r0) 

where 

p* 

TTzew f/ze contraction mapping sequence {xn}for the operator 

Q(x) = M+[TXx0)x-T(x),f'(x0)x-f(x)] 

starting at x0, namely 

*n+l = 8(*n)> H = 0, 1, 2, . . . , 

w defined, remains in S(x0, r0), a/2*/ converges to a solution x* of the boundary value 
problem (1.1). 27ze rate of convergence is given by 

ll**-xn | | < r 0 [ l - ( l -2 / i ) 1 / I ' ] -
/or 72=0, 1 , 2 , . . . . 

Proof. By an argument strictly analogous to that given in Theorem 3, it follows 
from the definitions of O, f0, B+, and H+ that M+ is a right inverse for M. Thus by 
Theorem 1 it suffices to show that the operator Q defined on D satisfies the hypoth­
eses of Theorem 2. 

We first consider the operator lit, which is clearly linear from Y into CXI). 
To show that Ht is bounded, consider 

IHÎ1- sup [ I M 
t v . f n \\[y>,v]\\ 
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Using the boundedness of f'(x0) and the compatibility of the matrix norms, we 
obtain for each fixed tel and every choice of [y)9 v] e Y that 

\\Ht[y>9 v](t)\\ £ Kx \\B+\\ \\v\\+(b-a)KtK2 \\B+\\ \\f'(x0)\\ M+K^b-a) ||y,||. 

Hence by hypothesis (ii) it follows that 

(4.2) Htffll <: p. 

By the definition of the operator Q we have 

ll*o-Q(*o)ll = \\x0-M
+[T'(x0)x0-T(x0)J'(x0)x0-f(x0)]\\-

Thus by (4.1) and Theorem 3 we see that the operator M+ satisfies both MM+=E 
and (M+M)(XQ)=XQ. Hence 

(4.3) \\x0-Q(x0)\\ = mixô+T(xà,f(xM £ \\m\\ Mxl+T(xà,f(xM, 
which by (4.2) and hypothesis (i) implies that ||x0—2(x0)||<oc/?. Since Q'(x0)=09 

we may choose (5=0 in Theorem 2, and therefore hypothesis (iii) now guarantees 
that the operator Q satisfies all the conditions of Theorem 2. Hence an appeal to 
Theorem 1 finishes the proof. 

5. An application. The boundary value problem (1.1) is very comprehensive 
in that it includes nonlinear differential equations subject to many different classes 
of boundary conditions. It encompasses as special cases familiar boundary con­
ditions such as two-point and multi-point conditions together with less common 
problems such as those involving integral conditions and conditions at an infinite 
set of points in /. As a consequence the existence criteria for solutions given in 
Theorem 4 can only be general in nature. For specific classes of problems and 
particular examples, much more precise conditions can readily be formulated. For 
instance consider the determination of the number (3 in hypothesis (ii) of Theorem 
4. The choice of the initial point xQ will determine a value for /? since, by (4.2), j8 
is a bound for the operator H*. However, the value for /? obtained from the com­
putation indicated in hypothesis (ii) is often only a crude bound for the operator. 
With specific examples an alternative approach is to calculate HÎ explicitly and 
then obtain an estimate for the operator norm by a direct computation. Such a 
procedure generally yields a smaller value for the operator norm. 

The proof of Theorem 4 offers important information concerning the application 
of the above technique in particular cases. As with all local iterative techniques, 
the quality of the initial approximation x0 is the key factor which determines whether 
or not this method can be applied to a specific boundary value problem. It is there­
fore essential to have a practical means for obtaining initial approximations to 
fixed points of the operator Q. Such initial guesses would be almost impossible to 
obtain directly since the form of Q itself depends upon the particular choice of 
initial point x0. However, from (4.3) we see that in general a "good" initial approxi­
mation to a solution of the nonlinear boundary value problem (1.1) will corre­
spond to a suitable first guess for a fixed point of Q. The only restriction is that the 
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norm of the operator Hi must be reasonably small. Since it is quite natural and 
easy to work directly with problem (1.1), this procedure gives a practical means for 
obtaining a starting point for the iterations and for defining precisely the iteration 
function Q. 

As an illustration of these points we conclude by treating a problem that has 
received considerable study in its linear form but for which little nonlinear theory 
exists (see [2, pp. 149, 163-165]). Consider the nonlinear boundary value problem 
given by 

(5.1) —+F(x91) = 0, fblA(t)x(t) dt = c. 
dt Jai 

We assume that the function F has the properties outlined in section 2, that A 
is a m xn matrix with continuous entries on [al9 bx]9 and that c e Rm and [al9 6 i ] c / . 
In this case we have 

B = J hlA(t)0(t) dt 

and/"(*)=0 for every x e D. Because the initial approximation x0 determines the 
values of a and /? in Theorem 4, it follows that the calculation of suitable choices 
for r0 and K depends only upon the properties of the operator T: 

l | [n*) ,0 ] j | <K for all xe5(x0,r0). 

We now deal with a specific example related to the class of problems described 
by (5.1). The following boundary value problem on / = [0, 0.4] is chosen to illus­
trate the wide range of nonlinearities that can be treated by using the technique 
of Theorem 4 : 

(5.2) Jc-(tan x ) V = \ sin(*4) 

fl/4 
(5.3) 4x(0)+ x(f) dt = 0.2. 

Jo 
The linear space R2 is given the norm 

||t?|| = maxlKI, \v2\} 

and the linear space s/ of 1 x 2 real matrices is normed by 

MII = N + |a2 | . 
We choose 

x° = (o) 
as the initial approximation, which yields a=0.05 as a suitable value in hypothesis 
(i). If we choose O to be the principal matrix solution of x'+T'(x0)x=0 on / , then 
the matrix B is given by 

*-<P <>(; !)+fc. o>(;;)„=(if). 
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Clearly B has right inverses, and we choose 

-(f) . 
\137/ 

By calculating Ht explicitly in this case, we find that /? = 1.14 satisfies the require­
ment of hypothesis (ii). Another direct computation establishes that 

\\[T"(x\ 0]|| < 1.615 for all x e S(x0, r), 

where r=0.15. Therefore a choice of K— 1.615 yields 

(5.4) h = *pK < 0.105 

in hypothesis (iii). Since we obtain r0<0.061 for any value of h in the range indi­
cated by (5.4), it follows that all the conditions of Theorem 4 can be satisfied. 
Hence we have established that the nonlinear boundary value problem (5.2), 
(5.3) has a solution x* which lies in S(xQ, 0.061) and is the limit of the iterative 
sequence defined in Theorem 4. 
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