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Abstract. The next-generation radio telescopes such as LOFAR and SKA will give access to high
time-resolution and high instantaneous sensitivity that can be exploited to study slow and fast
transients over the whole radio window. The search for radio transients in large datasets also
represents a new signal-processing challenge requiring efficient and robust signal reconstruction
algorithms. Using sparse representations and the general ‘compressed sensing’ framework, we
developed a 2D–1D algorithm based on the primal-dual splitting method. We have performed
our sparse 2D–1D reconstruction on three-dimensional data sets containing either simulated or
real radio transients, at various levels of SNR and integration times. This report presents a
summary of the current level of performance of our method.
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1. Introduction

The new giant radio facilities like LOFAR (van Haarlem et al. 2013), MeerKAT/SKA
and ASKAP/SKA (Dewdney et al. 2009) come with high spectral, temporal and angu-
lar resolutions and huge instantaneous sensitivity. In order to detect transient radio
sources like pulsars, rotating radio transients (RRATs), fast radio bursts, solar-system
magnetised objects, etc., one needs to rely on robust transient detection tools working
at all temporal scales, from millisecond to weeks or months. Searching for signals from
transients in huge datasets generated at high resolution also represents a hard data-
processing challenge which classical methods cannot absorb. It is hoped that, with the
recent framework of Compressed Sensing (Candès et al. 2006, Donoho 2006) and sparse
representations, it will be possible to start addressing this problem.

Radio transients can be classified broadly into two classes:
• ‘Slow’ transients, mostly generated from incoherent synchrotron emissions, showing

relatively low variability (minutes to months or a year). They are usually associated with
explosive events radio counterparts such as X-ray binaries, Magnetar outbursts, SN,
AGN, Tidal Disruption Events, Gamma-Ray Bursts (Fender & Bell 2011). Detections
are made mainly in images obtained from multi-spectral observations.
• ‘Fast’ transients, associated with coherent emission processes, present fast vari-

ability (� 1 min). The sources can be pulsars, Rotating Radio Transients (RRATs),
(exo)planets, flaring stars, solar bursts and (more recently) Fast Radio Bursts (Lorimer
et al. 2007, 2013; Thornton et al. 2013; Spitler et al. 2014; Petroff et al. 2015); their detec-
tions are usually made with time series or time-frequency spectroscopy (a.k.a. dynamic
spectroscopy).
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In this work we focus mainly on transient detection using the imaging mode of a
generic radio interferometer. Detection of transients through direct imaging depends
mostly on the quality of the data calibration, on the performance and on the rate of
imaging using aperture synthesis. We have proposed a novel approach for addressing
the deconvolution and the detection of radio interferometric images, accounting for both
spatial and temporal dependency of the data.

2. Methodology

2.1. The motivation for sparse representations

Classical transient detection methods operating on radio images rely on comparing
the result of a source detection algorithm in a series of time integrated images such as
TraP (see Swinbank et al. 2015). The detectability of a transient will therefore depend
on the temporal resolution of an image. However, in a blind search for transients the
duration of a transient event is unpredictable. For a steady source, time and frequency
integration can help to improve the detection SNR in the image. For a highly variable
source, long-time integration will be detrimental for the detection owing to temporal
smearing (or ‘dilution’). Conversely, if a series of noisy snapshot images is produced to
detect a transient, there is no guarantee that the SNR of the image will add towards a
robust detection of it.

Interferometric data are samples of the Fourier transform of the sky brightness sampled
at spatial frequencies (time and frequency dependent) corresponding to all projected
baselines towards a source. From those sets of samples, an image can be formed using a
given time (or frequency) integration window. There is scope to search for an appropriate
space for representing the data that could grasp the temporal structure of the signal. The
Fourier space is appropriate for representing periodic features in a signal (e.g. pulsars),
while wavelet-class transforms are more suitable for single pulses. Transforming a signal
in its appropriate space is searching for a ‘sparse’ representation of it. This signal can be
represented by only a small set of its relevant coefficients in that space, thus improving
detection.

2.2. Casting the transient imaging problem as an inverse problem

The interferometry imaging problem constitutes an ill-posed inverse problem that can
be written, in a simplified form, as in Eq. 2.1:

V = MFx + N (2.1)

where V is the measured visibility vector, M is the sampling mask which accounts for
time-dependent incomplete sampling of the interferometer in Fourier space, F is the FT
operator, x is the time-dependent sky, and N is the noise. The sky x is expressed here in
the ‘direct’ 3D space (2D for space and 1D for time). A sparse representation of x can be
given with a compact set of relevant coefficients αi. If we call Φ the transform operator
from this sparse domain to the direct domain, we can write x = Φα. The corresponding
2D–1D sparse representation represented by Φ and ΦT is vital to the quality of the final
reconstruction.

As described in Starck et al. (2009), an adequate wavelet function would be ψ(x, y, t) =
ψ(xy)(x, y)ψ(t)(t), where space (xy) and time (t) are independent, and ψ(xy) is chosen to
be the spatial isotropic undecimated wavelet function (or Starlets, Starck et al. 2011),
and ψ(t) is a decimated wavelet function (either 9/7 or Haar wavelets).

Having defined the 2D–1D dictionary Φ, we can derive the minimisation problem in
the analysis framework from Eq. 2.1, and after some mathematical developments (details
of which are given in the poster), we obtain
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min
x

||V−MFx||22 + k1||W�λ�Φtx||1 + k2iC+(x), (2.2)

The objective function can be decomposed into three terms: (1) the data fidelity term
(using the l2 -norm from 2.1), (2) the sparsity constraint given by the ||Φt · ||1, where the
l1 -norm is the sum of the absolute values of the coefficients to reinforce the sparsity of
the solution and ensure the convexity of the problem, and (3) the positivity constraint.
W and λ are respectively weights and scale-dependent thresholds in the Lagrangian
form of the Reweighted-l1 formulation (Candes et al. 2007). iC+ denotes the indicator
function in the positive set C+, and k1 and k2 are the two relaxation parameters to
define trade-offs between sparsity, positivity and data fidelity. In our study, using the
Condat-Vũ splitting method (CVSM; Condat et al. 2013; Vũ et al. 2013, and also used
in our previous work dedicated to 2D-only sparse reconstruction in Garsden et al. 2015),
a variation of primal–dual algorithms was used to solve the inverse problem with the
scheme of Eq. 2.2.

3. Preliminary Results

3.1. Data preparation

In order to test our method, we carried two numerical experiments: (1) from a simulated
dataset containing a steady source and a transient source sampled by a small realistic
interferometer, and (2) a real EVLA interferometric dataset containing a single pulsar
pulse from B0355+54 (not discussed here; see the online poster (URL on p. 303) for
details).

In the first experiment, we simulated a 2-hour observation with one control source in
the centre of the field, and one transient offset source. We then prepared raw datasets
by injecting various levels of noise (σ) and rebinning the data artificially in time (τ) to
simulate a continuous span of short- and long-time integrations. We could explore the
efficiency of reconstruction in a 2D parameter space defined by the time integration τ and
the injected noise σ, and we chose the injected noise level range from no noise to twice
the detectability limit (σ∼ S, where S is the peak flux of the source transient source
at its maximum). The time integration was defined as the number of temporal frames
that covered the 2-hour observation with a minimum of two frames (two frames of 1-hour
integration) up to 256 frames (each frame is ∼30s). The transient was simulated to follow
a Gaussian light-curve of width 2.5 min, centred in the middle of the observation.

3.2. Reconstruction of the simulated data

The 9th image in the online poster (URL on p. 303) presents the reconstructed SNR of
the peak flux of the transient source in the (σ, τ) parameter space for three reconstruction
algorithms: (1) a direct inversion of the gridded data (the ‘dirty image’), (2) after we
applied a simple CLEAN algorithm (Högbom 1974) to each temporal frame, and (3) the
reconstruction with the 2D–1D method. The dirty image SNR map shows how a single
transient pulse can be detected depending on the level of injected noise (high noise is
at the top of each plot, no noise at the bottom) and the effect of time binning (for an
identical observation of 2h, small values of time frames correspond to long time-integrated
images; large values correspond to short time-integrated/snapshot images). In a low noise
regime, the transient becomes undetectable owing to a ‘dilution’ effect when the number
of time frames is below 50.

In the CLEANed image cubes the transient can be detected with high SNR even
with long-time integration. However, the CLEAN algorithm produces a larger fraction
of detections compared to the dirty cubes when higher noise in involved.
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For our 2D–1D reconstruction (‘CS’ in the poster), the area of robust detection (e.g.
with high SNR) was dramatically improved compared to a regime with only small noise.
In the high-noise regime the SNR is a function of the time integration between 0 and 50
time frames. In short time-integration images (large number of time frames), the SNR
no longer improves above a noise level of ∼1.3.

3.3. Conclusions

We produced a similar map to compare the reconstruction fidelity of the transient
profile. To inspect other results in more detail, please see Jiang et al. 2015, and the online
version of the poster related to this work. From these early results, we have demonstrated
that the detection capabilities of our method allow for good reconstruction SNR and
improved reconstruction fidelity of the transient pulse. A full analysis of the results,
along with the reconstruction code, will be made available in a feature article.
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