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Abstract
A deployable manipulator has the characteristics of a small installation space and a large workspace, which has great
application prospects in small unmanned platforms. Most existing deployable manipulators are designed based on
rigid links, whose complexity and mass inevitably increase sharply with increasing numbers of rigid links and
joints. Inspired by the remarkable properties of tape springs, this paper proposes novel deployable parallel tape-
spring manipulators with low mass, simple mechanics, and a high deployed-to-folded ratio. First, a double C-
shaped tape spring is presented to improve the stability of the structure. The combined fixed drive component
(CFDC) and combined mobile drive component (CMDC) are designed. Then, novel 2-DOF and 3-DOF deployable
translational parallel manipulators are proposed based on the CFDC and CMDC, and their degrees-of-freedom
(DOFs), kinematics, and stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral, which
can significantly improve the accuracy of kinematic analysis. The correction coefficient of the Euler formula is
obtained by comparison with simulation results and experimental results. Furthermore, the stability spaces of the
2-DOF and 3-DOF deployable parallel manipulators are given. Finally, a prototype is fabricated, and experiments
are conducted to validate the proposed design and analysis.

1. Introduction
The deployable manipulator has the characteristics of small installation space and large workspace,
which has great application prospects in small unmanned platforms such as satellites, unmanned aerial
vehicles, and unmanned vehicles. Deployable mechanisms [1–8] can be folded into a small configuration
for storage and expanded to a much larger structure for operation. Meanwhile, parallel manipulators such
as DELTA [9], the Tricept robot [10], translational parallel manipulators [11–15], and spherical parallel
manipulators [16–19] have parallel structures that improve the stiffness and accuracy of the manipulator
[20, 21]. Deployable parallel manipulators, which combine the concepts of deployable mechanisms
and parallel manipulators, have attracted increasing attention. Gonzalez et al. proposed a six-degree-of-
freedom (6-DOF) parallel robot with a triple scissor extender for aircraft assembly [22]. A deployable
manipulator with scissor linear joints that reduced the swept volume was designed by Chablat et al. [23].
Yang et al. designed certain parallel lower-mobility manipulators with dual scissor-like mechanisms (D-
SLiMs) [24–27] and addressed the positioning error of this type of mechanism with a large span and low
stiffness [28]. A novel deployable grasping manipulator for grasping large-scale objects was proposed
by Li et al. [29].

The aforementioned deployable parallel manipulators were designed based on rigid links. However,
with the increase in the number of rigid links and joints, the complexity and mass of the rigid deployable
manipulator inevitably increase sharply, which greatly reduces the movement accuracy, stability, and
reliability. Moreover, it is not easy to improve the deployed-to-folded ratio. This paper introduces the tape
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spring into the design of deployable manipulators to overcome these limitations. The tape spring is a thin-
walled open cylindrical structure with a natural transverse curvature and some remarkable properties
[30, 31], such as being stiff before buckling but compliant thereafter and having a constant fold radius
and moment after buckling [32, 33]. Deployable tape-spring manipulators have the advantages of low
mass, simple mechanics, high folding efficiency, and no mechanical joints. Schmid designed deployable
parallel manipulators with multiple tape springs [34]. Seriani et al. presented a 2-DOF manipulator
that uses a pair of storable tubular extendible member actuators [35]. A chameleon-inspired shooting
and rapidly retracting manipulator with a tape spring was developed by Lee et al. [36]. Yang et al.
proposed two novel deployable parallel tape-spring manipulators [37]. The above deployable tape-spring
manipulators have shortcomings in terms of stability and accuracy.

This paper proposes novel deployable parallel manipulators by taking advantage of the tape spring.
A double C-shaped tape spring is presented to improve the stability of the structure. Inspired by the
remarkable properties of tape springs, the combined fixed drive component (CFDC) and combined
mobile drive component (CMDC) are designed. Based on the two kinds of drive components, 2-DOF
and 3-DOF deployable translational parallel manipulators are designed, and their DOFs, kinematics, and
stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral in kinematic analy-
sis, which can significantly improve the accuracy of kinematic analysis and facilitate kinematic control.
The correction coefficient of the Euler formula is obtained by comparison with simulation results and
experimental results. Furthermore, the boundary equations of the stability space of the manipulators are
derived, and the stability spaces of the 2-DOF and 3-DOF parallel manipulators are given to avoid the
instability phenomenon.

The remainder of this paper is organized as follows. In Section 2, the double C-shaped tape spring
and two kinds of drive components are presented. In Sections 3 and 4, the structures, DOF analysis,
and kinematics of the 2-DOF and 3-DOF deployable translational parallel tape-spring manipulators are
presented. In Section 5, the stability of the manipulator is analyzed. The prototype is manufactured, and
the experiment is conducted to validate the proposed design and analysis in Section 6. Finally, Section 7
presents the conclusions of the study.

2. Design of a double C-shaped tape spring and two drive components
2.1. Design of double C-shaped tape spring
The tape spring is a thin-walled open cylindrical structure that can achieve a deployable and folded state.
To improve the stiffness and stability of the tape spring structure, two thin-walled open cylindrical struc-
tures are combined face-to-face to form a double C-shaped tape spring. They are tightly wrapped in a
polyolefin tube by thermoforming, as shown in Fig. 1(a). This method could simplify the manufacturing
process. Two open cylindrical structures are not fixed, reducing the creep effect of long-term accumu-
lation. During the coiling process, the tight polyolefin tube can effectively reduce the tendency of the
open cylindrical structure to buckle locally under pressure, improving the coiling efficiency. Fig. 1(b)
shows the cross-section of the folded double C-shaped tape spring, which is flattened. The coiled double
C-shaped tape spring is shown in Fig. 1(c), and the cross-sections of the deployable and folded segments
correspond to Fig. 1(a) and (b), respectively. The double C-shaped tape spring structure can significantly
improve the stiffness of the tape spring and the stability of the manipulator, which will be analyzed in
Section 5.

2.2. Mobile drive component
The tape spring has unique properties. Fig. 2(a) shows that the straight segments of the tape spring can
be stiff enough to withstand reasonable compressive loads before buckling, and the folded segments have
zero transverse curvature. As shown in Fig. 2(b), the folded segment can slide along the tape spring if
it is subjected to an external torque. Inspired by the above characteristics, we place the MDC on the
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Figure 1. Diagram of a double C-shaped tape spring. (a) Cross-section; (b) Cross-section after folding;
(c) Coiled tape spring.
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Figure 2. Design principle of the MDC. (a) Localized folded configuration; (b) Folded segment of the
tape spring sliding; (c) Schematic diagram of MDC.
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Figure 3. The detailed structure of the mobile drive component.

localized folded segment of the tape spring. The MDC has one driving pulley and three driven rollers,
and the three driven rollers are paired under the driving pulley and located on the same arc, as shown
in Fig. 2(c). The driving pulley and three driven rollers flatten the tape spring, reducing the folded
segment’s resistant torsion. As the driving pulley rotates, the MDC imposes an external torque on the
fold, and the fold and the MDC can move along the tape spring.

The detailed structure of the MDC is shown in Fig. 3. The MDC mainly consists of a U-shaped frame,
driving shaft, driving pulley, driven shaft, driven rollers, bearings, and a straight pin. When the driving
pulley is actuated by the servo motor, the MDC and the localized fold can move along the tape spring.
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Figure 4. Fixed drive component. (a) Structure; (b) Constant tension mechanism.

2.3. Fixed drive component
The fixed drive component is designed to store the coiled tape spring and extend or retract the tape
spring. The main parts of the FDC are a servo motor, a shaft coupling, a hub, a braced frame, a fixed
frame, and a constant tension mechanism, as shown in Fig. 4(a). The servo motor and braced frame are
mounted on the fixed frame. One end of the tape spring is fixed on the hub. The hub is connected to the
servo motor by shaft coupling, and the tape spring can extend or retract by rotating the hub.

To flatten the tape spring and enhance motion reliability, a constant tension mechanism is designed
to press the tape spring upon the hub. As shown in Fig. 4(b), the constant tension mechanism consists
of a compression block, a rotating shaft, a tension spring, a mount pin, and a compression roller. While
the tape spring is retracted or extended, the compression block presses the tape spring upon the hub,
preventing it from expanding.

3. Structures and DOF analysis for two types of mechanisms
3.1. Structure and DOF analysis of a 2-DOF deployable parallel tape-spring manipulator
As shown in Fig. 5, the combined mobile drive component (CMDC) consists of two MDCs connected
by a synchronous belt and a connecting rod. The connecting rod serves as the moving platform, and
a gripper is mounted on it. Two MDCs can move synchronously by a servo motor. When the CMDC
moves, the two MDCs may produce the same deviation angle with respect to the moving platform, but
the moving platform does not produce the deviation angle relative to the horizontal axis. Therefore, the
CMDC can solve the problem of the deviation angle of the MDC. Similarly, two FDCs are connected
by a synchronous belt to form a combined fixed drive component.

Herein, a novel 2-DOF deployable parallel tape-spring manipulator is proposed based on CMDC and
CFDC. As shown in Fig. 6, the double V-shaped 2-DOF deployable parallel manipulator consists of two
tape springs, a CMDC, a CFDC, and two revolute joints. The CFDC is fixed on the aluminum frame, and
the ends of the tape springs are hinged with the frame through the revolute joints. The CMDC located
on the fold can move along the tape springs. The two FDCs are driven by a synchronous belt that allows
the two V-shaped tape springs to simultaneously shorten or extend the same length. By controlling the
CMDC and CFDC, the moving platform can translate in the plane.

Fig. 7 illustrates the schematic diagram of the mechanism. The mobile drive component can be con-
sidered as a 2-DOF kinematic pair, encompassing one translational mobility and one rotational mobility,
as depicted in Fig. 7(a). The fixed drive component can be regarded as a 1-DOF kinematic pair with one
translational mobility, as presented in Fig. 7(b).
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Figure 5. Combined mobile drive component.
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Figure 6. 2-DOF double V-shaped deployable parallel manipulator.

To calculate the mobility of a mechanism, the Unified Modified G-K Criterion is given by relevant
literature [38–40]

M = d(n − g − 1)+
g∑

i=1

fi + v − ζ (1)

where M denotes the mobility of a mechanism, d is the order of a mechanism, n is the number of links
including the frame, g is the number of kinematic joints, fi is the number of freedoms of the ith joint, v is
the number of redundant constraints except the number having been accounted in common constraints.
ζ is the number of local freedoms.
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Figure 7. Schematic diagram of the mechanism. (a). Mobile drive component, (b). Fixed drive
component, (c). Single V-shaped configuration, (d). Double V-shaped configuration.

The schematic diagram of the single V-shaped configuration is shown in Fig. 7(c). In this single
V -shaped mechanism, n is 4, g is 4,

∑4
i=1 fi is 5. The mobility of this mechanism is

Ms = 3 × (4 − 4 − 1)+ 5 = 2 (2)

We connect two V-shaped mechanisms in parallel, as shown in Fig. 7(d). The mobility of the double
V-shaped mechanism is

Md = 3 × (8 − 10 − 1)+ 12 = 3 (3)

By utilizing the Gr FC;bler’s formula, we can initially determine the DOF of the mechanism.
However, details regarding the DOF of the mechanism and how to increase constraints need further
investigation through the screw theory.

The schematic diagram of the 2-DOF manipulator is shown in Fig. 8. D1 and D2 denote the FDCs,
M1 and M1denote the MDCs, and A1 and A2 denote the hinge joints which connect the end of the tape
springs to the aluminum frame. D1 and D2, M1 and M2 are connected by synchronous belts to realize
the synchronous motion. The lengths of D1D2, A1A2, and M1M2 are L1, and D1A1 and D2A2 are L2. The
midpoint between D1 and A2 is set as the coordinate origin. The lengths of D1M1, M1A1, D2M2 and
M2A2 are l1, l2, l3 and l4. Angles θ1, θ2, θ3, θ4, θ5, θ6, θ21, and θ41 are as shown in the figure. Therefore,
the coordinates of each point are as follows: D1(xd1, yd1, 0), M1(xm1, ym1, 0), D2(xd1 + L1, yd1, 0), M2(xm1 +
L1, ym1, 0), A1(xd1 + L2, yd1, 0), and A2(xd1 + L1 + L2, yd1, 0).

Then, the screw coordinates of the different joints can be determined. Limb D1M1 is used as an
example, while other limbs are not listed.

$D1 = (
0 0 1 yd1 −xd1 0

)
$D1M1 = (

0 0 0 xm1 − xd1 ym1 − yd1 0
)

$M1 = (
0 0 1 ym1 −xm1 0

) (4)
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Figure 8. Schematic diagram of the 2-DOF manipulator.

Specifically, selecting
�

D1M1M2D2,
�

D1M1A1, and
�

D2M2A2, their screw equations are as follows:

$D1θ̇1 + $D1M1 l̇1 + $M1θ̇2 = $D2θ̇3 + $D2M2 l̇3 + $M2θ̇4

$D1θ̇1 + $D1M1 l̇1 + $M1θ̇21 = $A1θ̇5 + $A1M1 l̇2

$D2θ̇3 + $D2M2 l̇3 + $M2θ̇41 = $A2θ̇6 + $A2M2 l̇4

(5)

These equations can be formulated into the matrix,

⎡
⎢⎣

$D1 $M1 −$D2 −$M2 0 0 0 0

$D1 0 0 0 −$A1 0 $M1 0

0 0 $D2 0 0 −$A2 0 $M2

$D1M1 0

$D1M1 −$A1M1

0 0

−$D2M2 0

0 0

$D2M2 −$A2M2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6

θ̇21

θ̇41

l̇1

l̇2

l̇3

l̇4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(6)

where the coefficient matrix is

Q =
⎡
⎢⎣

$D1 $M1 −$D2 −$M2 0 0 0 0 $D1M1 0 −$D2M2 0

$D1 0 0 0 −$A1 0 $M1 0 $D1M1 −$A1M1 0 0

0 0 $D2 0 0 −$A2 0 $M2 0 0 $D2M2 −$A2M2

⎤
⎥⎦
(7)

Determining the null space vectors of the coefficient matrix Q,

P = null(Q) (8)

This yields a three-column vector, indicating that the mechanism has 3 DOFs namely two translations
and one rotation. To design a 2-DOF translational mechanism, it is necessary to maintain the parallel-
ogram configuration, that is, l1 = l3 and l2 = l4. To satisfy these conditions, we introduce synchronous
pulley constraints between D1 and D2, as well as between M1 and M2. Then, l̇1 = l̇3 and l̇2 = l̇4.
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Figure 9. Schematic diagram of the mechanism consisting of two 2-DOF manipulators.

Therefore, the coefficient matrix is augmented by adding two rows for the constraints.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

$D1 $M1 −$D2 −$M2 0 0 0 0 $D1M1 0 −$D2M2 0

$D1 0 0 0 −$A1 0 $M1 0 $D1M1 −$A1M1 0 0

0 0 $D2 0 0 −$A2 0 $M2 0 0 $D2M2 −$A2M2

0 0 0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 0 0 0 0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
(9)

The null space vector of the coefficient matrix Q is two columns, indicating that the mechanism has
2 DOFs. We can select l̇1and l̇2 as the two driving inputs. Substituting the null space vectors of the
coefficient matrix Q into the expression $D1θ̇1 + $D1M1 l̇1 + $M1θ̇21, two motion screws for the moving
platform B1B2 can be obtained:

$M1M2 =
[

0 0 0 1 0 0

0 0 0 0 1 0

]
(10)

3.2. Structure and DOF analysis of a 3-DOF deployable parallel tape-spring manipulator
To further propose a 3-DOF deployable parallel tape-spring manipulator, we consider the 2-DOF manip-
ulator as a sub-chain. As shown in Fig. 9, with the addition of a revolute joint based on the 2-DOF
manipulator, the sub-chain can be equivalently represented by the blue lines.

The screw vectors for the endpoint of the equivalent sub-chain are:

$E1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

$1 = (
1 0 0 0 0 −yd

)
$M1M2 =

(
0 0 0 1 0 0

0 0 0 0 1 0

)

$2 = (
1 0 0 0 0 −ym

)
(11)

The corresponding constraint screw is derived as follows:

$r
E1 =

(
0 0 0 0 1 0

0 0 0 0 0 1

)
(12)

When the above sub-chain is rotated by 90 degrees, the corresponding constraint screw for the
endpoint of the sub-chain becomes:

$r
E2 =

(
0 0 0 1 0 0

0 0 0 0 1 0

)
(13)
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The constraint screw of the mechanism constructed by the two sub-chains is

$r
E =

{
$r

E1

$r
E2

(14)

Consequently, the DOF of the composite mechanism is

$E =
⎡
⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎦ (15)

Therefore, the composite mechanism has three translational mobilities. It is evident that if the end-
points of the two sub-chains are rigidly connected, the moving platform of the parallel tape-spring
mechanism exhibits three translational DOFs. In this context, each sub-chain contributes two input
DOFs, denoted as l̇1 and l̇2. Therefore, the composite parallel mechanism has four input DOFs and
three output DOFs.

To eliminate redundancy in the composite mechanism, one potential solution is to retain only one
input DOF in one of the sub-chains. However, for the tape-spring mechanism, retaining only one input
cannot guarantee the expected motion. This is due to the lower stiffness of tape springs compared to
traditional rigid links. When the tape spring is significantly extended, ensuring effective force transmis-
sion becomes challenging. For instance, if the tape spring is subjected to substantial pressure, it might
undergo buckling, resulting in the failure of the motion transmission. Therefore, we choose to preserve
four input DOFs, while the output DOF is 3. However, there is another issue that needs to be considered.
To achieve coordinated motion, these four input DOFs must maintain interdependent relationships. The
mismatched motion may result in mechanical jamming or deformation, posing significant challenges for
control.

To enhance the feasibility of the manipulator, when the moving platforms of two sub-chains are con-
nected, a practical approach involves enabling relative vertical movement between these two moving
platforms. This configuration translates the four inputs into four outputs, with one of the outputs repre-
senting the relative platform movement. In this way, even if there is a control deviation during motion,
it may result in positional errors, but it will not lead to jamming or deformation. This design serves to
enhance the practicality of the mechanism.

Overall, the 3-DOF parallel tape-spring manipulator is proposed as shown in Fig. 10. The distance
between the center of the synchronous belt is L1, and the distance between the FDC and the revolute
joint is L2. When L2 < L1, the double V-shaped parallel manipulator can evolve into the W-shaped
parallel manipulator. Two W-shaped parallel manipulators are distributed vertically to form a 3-DOF
translational manipulator. The 3-DOF manipulator is actuated by four servo motors, so it is a redundant
manipulator. The 3-DOF manipulator mainly includes two 2-DOF W-shaped parallel manipulators, con-
nections, rods, T-shaped connections, and moving rods. The manipulator is mounted on the aluminum
frame. The T-shaped connection is fixed on the aluminum frame. Two bases are hinged to the T-shaped
connections so that the moving platform is always parallel to the ground during the movement. The
connections are hinged to the rods, and the moving rod is fixed on the upper connection, while the
lower connection can translate along the moving rod. Relative motion can occur between two W-shaped
parallel manipulators, reducing unstable movement caused by over-coupling. The 3-DOF tape-spring
manipulator can realize space operation and is easy to control.

4. Kinematics of 2-DOF and 3-DOF deployable parallel tape-spring manipulators
4.1. Kinematic analysis of a 2-DOF deployable parallel tape-spring manipulator
The kinematic model of the 2-DOF deployable parallel tape-spring manipulator is shown in Fig. 11.
D1, D2, M1, and M2 are connected by synchronous belts to realize synchronous motion. The lengths of
D1D2, A1A2, and M1M2 are L1, and D1A1 and D2A2 are L2. Points D, M, and A are the midpoints of

https://doi.org/10.1017/S0263574724000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000353


1532 Hu Liu et al.

T-shaped 

connection

Aluminum 

frame

W-shaped parallel manipulator
Rod

Combined 

MDC
MDC

FDC BaseRevolute joint

Rod

Rod Moving 

Rod

ConnectionConnection

Figure 10. Detailed structure of the 3-DOF deployable tape-spring manipulator.

Figure 11. Kinematic model of the 2-DOF deployable parallel tape-spring manipulator.

D1D2, M1M2, and A1A2, respectively. The midpoint between D1 and A2 is set as the coordinate origin.
To simplify the kinematic model, the impact of the pulley radius on the positions of M1 and M2 is not
considered. The initial lengths of the tape spring between D1 and M1, A1 and M1, D2 and M2, and A2

and M2 are all l0. We assume that s1 is the change in the overall length of the tape spring caused by the
FDC D1, that is, the length of the tape spring extending or shortening by rotating the hub. s2 denotes the
tape spring length variation between A1 and M1 caused by the MDC M1. When D1 rotates in a clockwise
direction, s1 is defined as positive. Likewise, when M1 rotates in a clockwise direction, s2 is defined as
positive. The lengths of D1M1 and D2M2 are both l1 = l0 - s1 + s2, and M1A1 and M2A2 are l2 = l0 - s2.

According to geometrical relationships, the coordinates of midpoint M of M1M2 are⎧⎪⎨
⎪⎩

x = (2s2 − s1) (2l0 − s1)

2L2

y = −
√
(l0 + s2 − s1)

2 − (x0 + L2/2)
2

(16)

According to Eq. (16), s1 and s2 can be expressed by x and y, respectively,⎧⎨
⎩

s1 = 2l0 −
√
(x + L2/2)

2 + y2 −
√
(x − L2/2)

2 + y2

s2 = l0 −
√
(x − L2/2)

2 + y2
(17)
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Figure 12. The relationship between s1 and the rotation angles of FDC θ1 in two cases.

Equation. (16) and (17) are the forward and inverse kinematic equations, respectively. Furthermore,
s1 and s2 are analyzed as follows.

As the layer of the coiled tape spring increases, the radius of D1 will increase. Therefore, the radius of
D1 is not constant. Herein, the coiled tape spring can be regarded as the Archimedes spiral. The radius
of D1 can be expressed as

r1 = a + bθ1 (18)

where a is the initial radius of the spiral, b is the rate of increase of the spiral, and θ1 is the rotation angle
of D1. The arc length of the spiral is

L =
∫ √

r2
1 +

(
dr1

dθ1

)2

dθ1 (19)

Therefore, we have

L(θ1)= b2θ1 + ab

2b2

√
a2 + b2 + 2abθ1 + b2θ 2

1 + b

2
arcsin h

(
bθ1 + a

b

)
+ C (20)

Herein, we assume that the initial angle of D1 is 0. The tape spring length variations caused by the
rotation angle of FDC θ1 are denoted as s1 and can be expressed as

s1 = L(θ1)− L(0) (21)

Given the initial radius a = 19.5 mm and the rate of increase of the spiral b = 5/2π mm/rad, the
relationship between s1 and the rotation angles of FDC θ1 is shown in Fig. 12. In addition, we also
give the result when the radius r1 is assumed to be constant. When the FDC is rotated by 50 rad, s1 is
approximately 2000 mm, while s1 is 1000 mm if the coiled tape spring is considered a constant radius. In
other words, s1 is twice as large as the result if the coiled tape spring is considered a constant radius, and
the error increases as the FDC rotates. Therefore, considering the coiled tape spring as an Archimedean
spiral can significantly improve the accuracy of kinematic analysis and facilitate kinematic control.

The radius of MDC is r2, and θ2 is the corresponding rotation angle. The tape spring length variation
s2 due to the rotation angles of the MDC θ2 is

s2 = r2θ2 (22)

Differentiating Eq. (21) and (22) with respect to time, we have

ṡ1 = L̇ = θ̇1

√
(a + bθ1)

2 + b2

ṡ2 = r2θ̇2

(23)
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Figure 13. (a) Workspace of the 2-DOF manipulator; (b) Variation of r1 in the workspace.

Based on the above formula, the workspace of the 2-DOF deployable parallel tape-spring manipulator
can be given. When s1 is invariable, the trajectory of M is an ellipse as s2 changes, with the foci located at
D(−L2/2, 0) and A (L2/2, 0). The focal length is c = L2/2, the length of the major axis is a = (2l0 − s1)/2,
and the length of the minor axis is b =√

((2l0 − s1)/2)2 − (L2/2)2. Herein, assuming that the total length
of the tape spring lies in the range [ηmin, ηmax], the workspace can be regarded as the set of ellipses whose
major axis is a ∈ [ηmin/2, ηmax/2]. Given the length L2 = 500 mm, the maximum total length of the tape
spring ηmax = 2400 mm, and its minimum total length ηmax = 600 mm, the workspace of the manipulator
is shown in Fig. 13(a).

The boundary equations of the workspace ψ1 and ψ2 can be expressed as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψ1 :

x2

(ηmin/2)
2 + y2

(ηmin/2)
2 − (L2/2)

2 = 1

ψ2 :
x2

(ηmax/2)
2 + y2

(ηmax/2)
2 − (L2/2)

2 = 1

(24)

As shown in Fig. 13(b), the radius of FDC r1 varies in the working space. The radius r1 lies in the
range [19.5, 57] mm. The closer to the boundary ψ1, the larger the radius. Conversely, the closer to the
boundary ψ2, the smaller the radius.

Differentiating Eq. (16) with respect to time, the velocity equations are
⎡
⎢⎢⎢⎣

x + L2/2√
(x + L2/2)

2 + y2

y√
(x + L2/2)

2 + y2

x − L2/2√
(x − L2/2)

2 + y2

y√
(x − L2/2)

2 + y2

⎤
⎥⎥⎥⎦
[

ẋ

ẏ

]
=
[

−1 1

0 −1

] [
ṡ1

ṡ2

]
(25)

Equation (25) can be rewritten as

JK

[
ẋ

ẏ

]
=
[

ṡ1

ṡ2

]
(26)

Let l1 =√
(x + L2/2)2 + y2, and l2 =√

(x − L2/2)2 + y2. The Jacobian matrix Jk is

JK =
[
(L2/2 − x) /l2 − (L2/2 + x) /l1 −y/l1 − y/l2

(L2/2 − x) /l2 −y/l2

]
(27)
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Figure 14. Condition number of the Jacobian matrix under different conditions.

Figure 15. Kinematic model of the 3-DOF deployable tape-spring manipulator.

The determinant of Jk is

|JK| = L2y

l1l2

(28)

Equation (28) shows that the 2-DOF manipulator is singular when y = 0. Therefore, when the 2-DOF
manipulator moves, the above condition should be avoided.

The condition numbers of Jacobian matrix Jk in the workspace are calculated to evaluate the kine-
matic performance of the manipulator, as shown in Fig. 14. The figure shows that the condition numbers
become much larger as the moving platform approaches y = 0, indicating that the manipulator is singu-
lar when y = 0. In addition, we also give the result when r1 is assumed to be constant. The condition
number when the coiled tape spring is considered an Archimedean spiral is larger than that when the
radius of the coiled tape spring is considered constant, and the difference is obvious. Therefore, it is
necessary to consider the coiled tape spring as the Archimedes spiral in the kinematic analysis.

4.2. Kinematic analysis of the 3-DOF deployable tape-spring manipulator
The kinematic model of the 3-DOF deployable tape-spring manipulator is shown in Fig. 15. 1A1, 1A2,
2A1, and 2A2 denote revolute joints. 1D1, 1D2, 2D1, and 2D2 denote FDCs. 1M1, 1M2, 2M1, and 2M2 denote
MDCs. E is the midpoint between 1M1 and 1M2, and F is the midpoint between 2M1 and 2M2. The
coordinate origin O1 is set in the middle between 1D1 and 1A2. The coordinates of O2, which is the
midpoint between 2D1 and 2A2, are (0, h0, 0). 1D1

1A2 can rotate about the X-axis, and 2D1
2A2 can rotate

https://doi.org/10.1017/S0263574724000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000353


1536 Hu Liu et al.

about the Z-axis. 1D1 and 1D2, 1M1 and 1M2, 2D1 and 2D2, and 2M1 and 2M2 are connected by synchronous
belts. The center distance of the synchronous belt is L1, and the distance between the FDC and the
revolute joint is L2.

Herein, we assume that 1s1 and 2s1 are tape spring length variations caused by FDCs, and 1s2 and 2s2

are tape spring length variations caused by MDCs. The initial lengths of the tape spring between 1D1

and 1M1, 1A1 and 1M1, 1D2 and 1M2, 1A2, 2D1 and 2M1, 2A1 and 2M1, 2D2 and 2M2, and 2A2 and 2M2 are
all l0. The lengths of each tape spring segment can be expressed as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l1M1
1A1

= l1M2
1A2

= l0 + 1s2

l1D1
1M1

= l1D2
1M2

= l0 − 1s2 − 1s1

l2M1
2A1

= l2M2
2A2

= l0 + 2s2

l2D1
2M1

= l2D2
2M2

= l0 − 2s2 − 2s1

(29)

We assume that the coordinate of the moving platform is E(x, y, z). The lengths of 1M1
1A1 and 1M2

1A2

are l1. The lengths of 1D1
1M1 and 1D2

1M2 are l2. The lengths of 2M1
2A1 and 2M2

2A2 are l3. The lengths
of 2D1

2M1 and 2D2
2M2 are l4. The following expressions are established from the geometric relation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√(
x − L2

2

)2

+ y2 + z2 = l0 + 1s2 = l1

√(
x + L2

2

)2

+ y2 + z2 = l0 − 1s2 − 1s1 = l2

√
x2 + (y + ht − h0)

2 +
(

z + L2

2

)2

= l0 + 2s2 = l3

√
x2 + (y + ht − h0)

2 +
(

z − L2

2

)2

= l0 − 2s2 − 2s1 = l4

(30)

Differentiating Eq. (30) with respect to time, the velocity equations are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x − L2/2)

l1

y/l1 z/l1 0

(x + L2/2)

l2

y/l2 z/l2 0

x/l3

(y + ht − h0)

l3

(z + L2/2)

l3

(y + ht − h0)

l3

x/l4

(y + ht − h0)

l4

(z − L2/2)

l4

(y + ht − h0)

l4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ẋ

ẏ

ż

ḣt

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

1 0 0 0

−1 −1 0 0

0 0 1 0

0 0 −1 −1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1ṡ2

1ṡ1

2ṡ2

2ṡ1

⎤
⎥⎥⎥⎦

(31)
The Jacobian matrix Jis

J =

⎡
⎢⎢⎢⎣

1 0 0 0

−1 −1 0 0

0 0 1 0

0 0 −1 −1

⎤
⎥⎥⎥⎦

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x − L2/2)

l1

y/l1 z/l1 0

(x + L2/2)

l2

y/l2 z/l2 0

x/l3

(y + ht − h0)

l3

(z + L2/2)

l3

(y + ht − h0)

l3

x/l4

(y + ht − h0)

l4

(z − L2/2)

l4

(y + ht − h0)

l4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)
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Figure 16. Workspace of the 3-DOF deployable tape-spring manipulator.

The determinant of the Jacobian matrix J is

|J| = L2
2y(ht − h0 + y)

l1l2l3l4

(33)

Equation (33) shows that the 3-DOF manipulator is singular when y = 0 or y = h0 − ht. Therefore,
when the 3-DOF manipulator moves, the above condition should be avoided.

It is assumed that the length changes of each straight segment caused by the driving component are
dl1, dl2, dl3, and dl4, and the position changes of the moving platform are dx, dy, dz, and dht. The position
of the moving platform and the variation in the length of the straight section of the tape spring can be
expressed as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x − L2/2)

l1

y/l1 z/l1 0

(x + L2/2)

l2

y/l2 z/l2 0

x/l3

(y + ht − h0)

l3

(z + L2/2)

l3

(y + ht − h0)

l3

x/l4

(y + ht − h0)

l4

(z − L2/2)

l4

(y + ht − h0)

l4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

dx

dy

dz

dht

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

dl1

dl2

dl3

dl4

⎤
⎥⎥⎥⎦

(34)

Substituting the length L2 = 350 mm, h0 = ht = 100 mm, the maximum total length of the tape spring
ηmax = 2400 mm, and its minimum total length ηmin = 460 mm into Eq. (34), the workspace of the 3-DOF
manipulator is shown in Fig. 16.

5. Stability of the deployable parallel tape-spring manipulator
When the MDC moves along the tape spring, the part of the tape spring bears pressure, which means
that the tape spring may buckle and disable the manipulator. The stability of the double C-shaped tape
spring plays a crucial role in ensuring the stable motion of the manipulator. Hence, the stability of the
manipulator is analyzed in this section.
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Figure 17. Cross-sectional geometry of the double C-shaped tape spring.
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Figure 18. The second moment of the area corresponding to different α.

5.1. Second moment of the area of the double C-shaped tape spring
To solve the stability workspace of the manipulator, it is necessary to analyze the buckling of the double
C-shaped tape spring. The cross-sectional geometry of the double C-shaped tape spring is shown in
Fig. 17, where r is the radius, t is the wall thickness, α is the angle of the arc edge to the vertical Y -axis,
and h ∈ [0, t] is the integration variable. Two thin-walled open cylindrical structures are tightly wrapped
in a polyolefin tube, and the effect of the polyolefin tube is neglected. The second moment of the area of
the double C-shaped tape spring is the sum of the two independent tape springs about the centroid O.

The cross-section of the double C-shaped tape spring is centrosymmetric, so the second moment of
area Ix about the X-axis is

Ix = 4Ix/4 = (
(r + t)4 − r4

) ( sin 2α

4
+ α

2

)
− 4(r + t)3 r − 4r4

3
sin 2α − (

4r3t + 2r2t2
)
α cos2 α (35)

Similarly, the second moment of area Iy about the Y -axis can be expressed as

Iy = 4Iy/4 = (
(r + t)4 − r4

) (α
2

− sin 2α

4

)
(36)

The second moment of the area can be considered the upper limit for the bending stiffness and ulti-
mate load. As shown in Fig. 18, the second moment of the area corresponding to different α values is
investigated under a specific flattening width and wall thickness (w = 25 mm, t = 0.1 mm). With increas-
ing α, Ix increases and Iy decreases gradually. The cross-section of the double C-shaped tape spring can
be regarded as circular when α = 90◦, so Ix and Iy are equal. At this point, the double C-shaped tape
spring has the best stability performance. In addition, the second moments of the area of the single tape
spring about the X- and Y -axes are I

′
x and I

′
y. Under the same conditions, the second moment of the

area of the double C-shaped tape spring is much larger than that of the single tape spring. Therefore,
the manipulator we proposed adopts the double C-shaped tape spring, which can greatly improve the
stability of the manipulator.
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Figure 19. Deformation diagram of a double C-shaped tape spring. (a) l = 490 mm; (b) l = 540 mm;
(c) l = 590 mm; (d) l = 640 mm.

5.2. Simulation analysis
Tape springs with lengths of 490 mm, 540 mm, 590 mm, and 640 mm are simulated by ANSYS. The
elasticity and Poisson’s ratio of the tape spring are set to E = 1.31 × 105N/mm2 and 0.3, the elasticity
and Poisson’s ratio of the polyolefin tube are set to E = 1070N/mm2 and 0.41, and the actual load is set
to 1. Fig. 19 shows the deformation diagram for the linear buckling of the tape springs. The simulation
results of the tape springs with lengths of 490 mm, 540 mm, 590 mm, and 640 mm are 347 N, 303 N,
257 N, and 213 N, respectively.

5.3. Buckling experiment
The experimental configuration is shown in Fig. 20, mainly including a mechanical testing machine,
fixture, and tape spring. The mechanical testing machine can obtain the load F and displacement of the
rod end λ in real time. In the experiment, the moving speed of the loading mechanism is set as 5 mm/min.
Buckling experiments are carried out on a tape spring with lengths of 490 mm, 540 mm, 590 mm, and
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Figure 20. Configuration of the buckling experiment.
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Figure 21. F-λcurves of double C-shaped tape springs with different lengths: (a) l = 490 mm; (b)
l = 540 mm; (c) l = 590 mm; (d) l = 640 mm.

640 mm. Experiments of each length are performed three times. F-λcurves of tape springs with different
lengths are shown in Fig. 21.

For clarity, the experimental critical buckling loads of tape springs with different lengths are shown
in Table I. For each length of tape spring, three experimental results and average values are given. As
the length of the tape spring increases, the critical buckling loads gradually decrease.
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Table I. Critical buckling loads of the tape springs.

Critical buckling load F/N

Length/mm 1st 2nd 3rd average
490 345 321 336 334
540 268 270 288 275
590 231 236 242 236
640 192 202 210 201

Table II. Comparison of critical loads for the tape spring obtained by
three methods.

Length (mm) Theory (N) Simulation (N) Experiment (N)
490 384 347 334
540 316 303 275
590 265 257 236
640 225 213 201

5.4. Comparison of critical buckling load results obtained by the three methods
The buckling in axial compression of the tape spring is quite complex. In this section, we assume
that the critical buckling case is Euler column buckling. The buckling load F is given by the Euler
formula as

F = π 2EI

(Kl)2 (37)

where I is the second moment of the area of the tape spring, K is the column effective length factor, l
is the length of the tape spring, and F is Euler’s critical load. In the experiments and simulations, one
end of the tape spring is fixed, and the other end is hinged. Substituting K = 0.7, w = 25mm,t = 0.1mm,
α = 34◦, and E = 1.31 × 105N/mm2 into Eq. (37), the theoretical critical load is obtained.

The critical loads obtained from the theoretical calculation, simulation, and experiments are shown
in Table II.

Table II shows that the theoretical, simulation, and experimental results are similar, and the theoretical
and simulation values are higher than the experimental values. However, for practical application, the
predicted value of the critical load of the tape spring should be below the experimental value to ensure
stability and safety in the actual working process. To make the structure more reliable, the Euler formula
is multiplied by a safety factor 
 to calculate the critical loads of the tape spring. Herein, according to
the relevant literature [41–43] and experimental data, the safety factor is set as 
= 0.85. The modified
Euler formula is

F = ζ

l2
(38)

where

ζ =

π 2EI

K2
(39)

To verify the accuracy of the modified Euler formula proposed in this paper, the calculated results
of the modified Euler formula are plotted against the experimental results in Fig. 22. The theoretical
calculation results using the modified Euler formula are smaller than the experimental values with small
errors. This ensures the calculation accuracy as well as the stability and safety in the actual working
process.
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Figure 22. Comparison between the modified Euler formula and experimental values.

5.5. Stability spaces of 2-DOF and 3-DOF deployable parallel manipulators
The double V-shaped tape-spring manipulator can be simplified to a single V -shaped tape-spring manip-
ulator DMA. The lengths of D1M1, D2M2, and DM are l1, and the lengths of M1A1, M2A2, and MA are
l2. l1 and l2 can be expressed as {

l1 = l0 − s1 + s2

l2 = l0 − s2

(40)

The x- and y-component forces upon the end-effector are denoted as f x and f y. Then, the compressions
(tensions) f s1 and f s2 in DM and MA are [

fs1

fs2

]
= (

JT
Kl

)−1

[
fx

fy

]
(41)

Herein, we assume that f y is always along the negative Y -axis. The Jacobian matrix JK can be
expressed as

JK =
[
(x + L2/2) /l1 y/l1

(x − L2/2) /l2 y/l2

]
(42)

Then,

(
JT

K

)−1 =
[

l1/L2 (l1 (L2 − 2x)) / (2L2y)

−l2/L2 (l2 (L2 + 2x)) / (2L2y)

]
(43)

Substituting Eq. (43) into Eq. (41), the following equations can be obtained:{
fs1 = fxl1/L2 + fy(l1(L2 − 2x)) / (2L2y)

fs2 = −fxl2/L2 + fy(l2(L2 + 2x)) / (2L2y)
(44)

To maintain the stability of the manipulator, we require⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−fs1 ≤ 2ζ

l2
1

(fs1 < 0)

−fs2 ≤ 2ζ

l2
2

(fs2 < 0)

(45)

�s1 and �s2 denote the first and second boundaries of the stability space, respectively, which come
from the first and second expressions in Eq. (45).

https://doi.org/10.1017/S0263574724000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000353


Robotica 1543

0

–200

–400

–600

–800

–1000

–1200

y 
/m

m

0 100 200 300 400–100–200–300–400
x /mm

–500

s2 s1

500

Figure 23. Stability space of the 2-DOF manipulator.

When calculating the stability space of the 2-DOF manipulator, only a vertical downward force on the
end-effector is considered, that is, f y = −10 N. The manipulator parameters are those given in Section 4.
The corresponding stability space of the 2-DOF manipulator is shown in Fig. 23.

For the 3-DOF manipulator, the Jacobian matrix can be written as follows according to Eq. (34).

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x − L2/2)

l1

y/l1 z/l1 0

(x + L2/2)

l2

y/l2 z/l2 0

x/l3

(y + ht − h0)

l3

(z + L2/2)

l3

(y + ht − h0)

l3

x/l4

(y + ht − h0)

l4

(z − L2/2)

l4

(y + ht − h0)

l4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (46)

Assuming that the force on the end-effector of the 3-DOF manipulator is F, the relationship between
F and the axial force N on the straight segment of each tape spring can be written as follows:

N = JTF (47)

Similarly, when calculating the stability space of the 3-DOF manipulator, only a vertical downward
force on the end-effector is considered, that is, Fy = −10 N. When the axial force is less than the critical
buckling load of the tape spring, it is regarded as the stability space of the manipulator, as shown in
Fig. 24.

6. Prototype and experiments
The prototype of the 2-DOF deployable parallel tape-spring manipulator is manufactured to validate the
previous design and analysis, as shown in Fig. 25. The manipulator is based on an aluminum frame.
The FDCs and the revolute joints are installed on the top of the frame. The two tape springs are both
2400mm long and 25 mm wide. Made of ABS material, the driving pulleys and driven rollers are 3D
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Figure 24. Stability space of the 3-DOF manipulator.

2 V-shaped tape-spring

manipulator

FDC Revolute joints

Motor

Aluminium frame

Control panel

STM32

CMDC

DC power

Moving platform

Figure 25. Prototype of the 2-DOF double V-shaped tape-spring manipulator.

printed. The main diameter of the driving pulley is 25 mm, the diameter of the driven roller is 14 mm,
and the width of the groove is 26 mm. The mass of the CMDC is 855 g, and the mass of the CFDC is 810
g. The manipulator control unit adopted one member of the STM32 F1 family of microcontrollers. It
communicates with the driver board based on the TTL communication protocol. Then, the driver board
transmits the control signal to the servo motor based on the TTL communication protocol. The servo
motor in FMC is SM40BL by FEETECH, and the other one in MDC is SM30BL. By controlling the
two motors in the FDC and MDC, the 2-DOF ultralight deployable parallel tape-spring manipulator can
move smoothly along the X- and Y -axes.

To verify the stability space of the 2-DOF manipulator, a 1 kg weight is fixed on the end-effector
platform. As shown in Fig. 26, we select four boundary positions to carry out the experiment. The
experimental results validate the tape springs do not buckle in the stability space given in Section 5.5.

Fig. 27(a) illustrates the initial state of the experiment. The deployable manipulator is collapsed,
and the object is placed at the bottom. The height between the gripper and the object is approximately
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1kg

(a) (b) (c) (d)

Figure 26. Stability experiment at four boundary positions: (a) (0, −200); (b) (450, −500); (c) (−450,
−500); (d) (−100, −1150).

Object

Gripper

Deployable 
manipulator

(a) (b) (c)

(d) (e) (f)

Figure 27. Grasping experiment for the 2-DOF double V-shaped tape spring manipulator. (a) Initial
state; (b) Deploying; (c) Grasping; (d) Moving to the right; (e) Releasing; (f) Retracting.

800 mm. As shown in Fig. 27(b), the manipulator expands along the centerline by controlling two motors
located in the FDC and MDC. Then, the manipulator moves to the left and grasps the object (Fig. 27(c)).
Next, the manipulator moves above the right box and releases the object to the box, as shown in Fig. 27(d)
and (e). Finally, the manipulator retracts to the initial state (Fig. 27(f)). In the experiment, the gripper
could always be vertical to the ground and unaffected by the deviation angles of the MDC on each V-
shaped tape spring. The motion of the manipulator is continuous and smooth. The experiment shows
that the deployable parallel tape-spring manipulator has the advantages of a small installation space, a
large workspace, and high stability.
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7. Conclusions
This paper proposes novel deployable parallel manipulators by taking advantage of tape springs, such as
variable stiffness, lightweight, and compact storage. The double C-shaped tape spring is presented, and
the theoretical and experimental results show that it significantly increases the stability of the structure.
Inspired by the remarkable properties of tape springs, the FDC and MDC are designed. Two MDCs
are connected with a synchronous belt to form a combined mobile drive component, which can solve
the problem of the deviation angle of the MDC. Based on the CFDC and CMDC, 2-DOF and 3-DOF
deployable translational parallel manipulators are designed, and their DOFs, kinematics, and stabil-
ity workspaces are analyzed. As the layer of the coiled tape spring increased, the radius r1 increased.
Hence, the coiled tape spring is regarded as an Archimedean spiral in kinematic analysis. When the FDC
is rotated by 50 rad, the tape spring length variation s1 is approximately 2000 mm, while s1 is 1000 mm
if r1 is considered a constant radius. Meanwhile, the error increases as the FDC rotates. Therefore,
considering the coiled tape spring as an Archimedean spiral can significantly improve the accuracy of
kinematic analysis and facilitate kinematic control. The correction coefficient of the Euler formula is
obtained by comparison with simulation results and experimental results. The modified Euler formula
results are smaller than the experimental values with small errors. This ensures the accuracy of cal-
culation as well as the stability and safety in the actual working process. Furthermore, the boundary
equations of the stability space of the manipulators are derived, and the stability spaces of the 2-DOF
and 3-DOF deployable parallel manipulators are given to avoid the instability phenomenon. Finally, a
prototype is manufactured, and the experiment is conducted to verify the proposed design and analy-
sis. The proposed manipulators have significant advantages in terms of lightweight, deployed-to-folded
ratio, and stability and are suitable for unmanned platforms.

Further research can be conducted on the application of deployable parallel tape-spring manipulators
mounted on small-scale platforms such as unmanned aerial vehicles and microsatellites.
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