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Abstract

This paper establishes new Foster-type criteria for a Markov chain on a general state space
to be Harris recurrent, positive Harris recurrent, or geometrically ergodic. The criteria are
based on drift conditions involving stopping times rather than deterministic steps. Meyn
and Tweedie (1994) developed similar criteria involving random-sized steps, independent
of the Markov chain under study. They also posed an open problem of finding criteria
involving stopping times. Our results essentially solve that problem. We also show that
the assumption of ψ-irreducibility is not needed when stating our drift conditions for
positive Harris recurrence or geometric ergodicity.
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1. Introduction

The classical Foster criterion is well known for verifying whether an irreducible Markov
chain on a countable state space is positive recurrent. Intuitively, this criterion assumes that the
chain tends to drift (in unit steps) towards some small subset of the state space, and the chain
does not wander too far when it makes a one-step transition out of this set.

This paper addresses the following issue. Can we find analogous drift criteria for Markov
chains on general state spaces that are based on steps that may be larger than one or on random
steps? Specifically, are there drift criteria that are sufficient for Harris recurrence, positive
Harris recurrence, or geometric ergodicity?

The first study that addressed such issues was Filonov [3] (see also [7]). Filonov gave
a sufficient drift condition for a Markov chain on a countable space to be ergodic for steps
that are stopping times. Meyn and Tweedie [6] obtained similar results for Markov chains on
arbitrary state spaces for deterministic steps. They also derived a sufficient condition involving
steps that are conditionally independent of the Markov chain (given a fixed initial state), with
tail probabilities that satisfy a certain property. Because of this property, their random state-
dependent drift criterion is not a generalization of their deterministic version.

In this paper, we present new Foster-type drift conditions involving steps that are stopping
times with respect to a filtration that preserves the Markovian property of the Markov chain
under study. In Theorem 3, we provide a sufficient condition for a Markov chain on a general
state space to be Harris recurrent. It is based on a drift condition for steps that are stopping
times with respect to a suitable filtration. Theorems 2.1(i) and 2.2(i) in [6] are special cases.
Our next result (Theorem 4) is a sufficient condition for positive Harris recurrence under drift
conditions for steps that are integrable stopping times. Theorem 4 generalizes many known
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results, including Filonov’s result [3] (for a countable state space), [6, Theorem 2.1(ii)] (for
deterministic steps), and [4, Theorem 1]. However, our Theorem 4 and [6, Theorem 2.1(ii)] are
not comparable for some cases; see the example in [6, Section 2] for further insight into this.
Our next result (Theorem 5) gives a sufficient condition for a Markov chain to be geometrically
ergodic. The special case of this result for deterministic steps is [6, Theorem 2.1(iii)]. We
conclude by giving another state-dependent drift condition for geometric ergodicity that is
similar to [4, Theorem 1]. This result also generalizes [6, Theorem 2.1(iii)], but in a different
way.

An important feature of our Theorems 4, 5, and 6 for establishing positive Harris recurrence
and geometric ergodicity is that they do not require the Markov chain to be ψ-irreducible.
Costa and Dufour [1] also showed that the ψ-irreducibility assumption is not needed for the
one-step drift condition for positive Harris recurrence. Another subtlety in their drift condition
is that it uses extended real-valued test functions – our conditions, and those in [6], simply use
real-valued test functions.

2. Preliminaries

We will study the type of Markov chain discussed in [5]. Let X := {Xn}∞n=0 be a Markov
chain with respect to a filtration F := {Fn}∞n=0 on an arbitrary state space E equipped with
a countably generated σ -field E (for example, E could be a Polish space equipped with its
Borel σ -field E ). The underlying probability space for the process is (�,A,P).

We will frequently use stopping times of the form τA := inf{n ≥ 1 : Xn ∈ A}, A ∈ E . A set
C ∈ E is petite if there exist a nontrivial measure µ on E and a probability measure α on the
nonnegative integers such that

Kα(x, B) :=
∞∑
n=0

α(n)Px(Xn ∈ B) ≥ µ(B), x ∈ C, B ∈ E .

The Markov chain X is ψ-irreducible if there exists a nontrivial measure ψ on E such that
Px(τA < ∞) > 0, x ∈ E, for any A ∈ E with ψ(A) > 0. The Markov chain X is Harris
recurrent if it is ψ-irreducible and Px(τA < ∞) = 1, x ∈ A, for any A ∈ E with ψ(A) > 0.

A measure π is invariant forX if π(A) = ∫
E

Px(X1 ∈ A)π(dx), A ∈ E . A Harris recurrent
Markov chain has a unique invariant measure (up to constant multiple), and the chain is positive
Harris recurrent if the measure is finite.

The Markov chain X is geometrically ergodic if there exists a function M : E → R+ and a
ρ < 1 such that

sup
A∈E

| Px(Xn ∈ A)− π(A)| ≤ M(x)ρn, n ≥ 1.

We will use the following results from [6].

Theorem 1. Suppose that the Markov chain X is ψ-irreducible.

(i) ([6, Theorem 3.1(i)].) The Markov chain X is Harris recurrent if there is a petite set
C ∈ E such that Px(τC < ∞) = 1, for all x ∈ E.

(ii) ([6, Theorem 3.2(i)].) The Markov chain X is positive Harris recurrent if and only if
there is a petite setC ∈ E such that Px(τC < ∞) = 1, for all x, and supx∈C Ex[τC] < ∞.

(iii) ([6, Theorem 3.3(ii)].) The Markov chain X is geometrically ergodic if it is aperiodic
and there exist a petite set C ∈ E and a κ > 1 such that Ex[κτC ] < ∞, for all x, and
supx∈C Ex[κτC ] < ∞.
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Theorem 2. ([6, Theorem 3.1(ii)].) Suppose that X is ψ-irreducible. There is a set N ∈ E
such that Nc (the complement of N ) is empty or absorbing, and X restricted to Nc is Harris
recurrent and ψ(N) = 0. If X is not Harris recurrent then N is nonempty and, for any petite
set C ⊆ N and x ∈ N ,

Px(Xn ∈ N, n ≥ 0) > 0, Px(Xn ∈ C infinitely often) = 0.

3. Results

For the following results, we assume that the underlying probability space for the Markov
chainX has the additional structure that there is a shift operator θ : � → � such thatXn(ω) =
X0(θnω), where θ0 = I (the identity mapping on �) and θn = θ ◦ θn−1, n ≥ 1. If (�,A) is
the canonical probability space (i.e. the sequence space E

∞ equipped with the product σ -field),
then θ is just the usual shift operator for sequences.

Associated with a stopping time τ , define random variables 0 = τ0 < τ1 < · · · on (�,A)
by

τn+1 = τn + τ ◦ θτn, n ≥ 0.

Note that each τn is an F -stopping time and, by the strong Markov property (which holds
because our time index is discrete), the processXn := Xτn , n ≥ 0, is also a Markov chain with
respect to the filtration F τ := {Fτn}∞n=0. In addition to the first entrance time τA to the set A,
we will use

σA := inf{n ≥ 0 : Xn ∈ A} and σC := inf{n ≥ 0 : Xn ∈ C}.
Our first result provides a sufficient condition for X to be Harris recurrent.

Theorem 3. Suppose that the Markov chainX isψ-irreducible and there exist an f : E → R+
that is unbounded off petite sets, a finite F -stopping time τ ≥ 1, and a petite set C such that

Ex[f (Xτ )] ≤ f (x), x /∈ C. (1)

Then X is Harris recurrent.

Proof. Proceeding as in the proof of [6, Theorem 2.1(i)], define Un = f (Xn) 1{σC≥n},
where 1{·} is the indicator function. Clearly, σC is an F τ -stopping time. This fact, along with
our drift condition (1) gives

E[Un | Fτn−1 ] = 1{σC≥n} E[f (Xn) | Fτn−1 ] ≤ Un−1.

This implies that U := {Un}∞n=0 is a nonnegative supermartingale with respect to the filtration
F τ , so it converges almost surely (a.s.) to a finite limit. Notice that if σC < ∞ a.s., then the
limit must be zero a.s.

Consider the setN given in Theorem 2, and suppose that it is nonempty (otherwise we would
be done). Notice that, while on the set �N = {Xk ∈ N, k ≥ 0}, we only have to consider
the case when limn→∞ f (Xn) = ∞ a.s. on �N , since f is unbounded off petite sets and
Px(Xn ∈ G infinitely often) = 0 for any petite set G ⊆ N and any x ∈ N , by Theorem 2
(if the limit inferior is finite with positive probability, then the contrapositive of the second
part of Theorem 2 allows us to conclude that the chain is Harris recurrent). Therefore,
limn→∞ f (Xn) = ∞ a.s. on �N , which means that σC < ∞ a.s. on �N (notice the use
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of the supermartingale U ). Since τn < ∞ a.s. for each n, we also know that σC < ∞ a.s.
on �N .

Now assume thatNc is nonempty (if it is empty, then our proof is complete by Theorem 1(i)).
From Theorem 2, we know there is a petite setD ⊂ Nc such that ψ(D) > 0, since ψ(N) = 0.
From Harris recurrence on Nc, it follows that Px(σD < ∞) = 1, x ∈ Nc. However, for all
paths not in�N , it follows that σD < ∞ a.s. for any initial point y, becauseNc is an absorbing
set.

From [5, Theorem 5.5.5], we know that C ∪D is petite. Thus, for any x ∈ E,

Px(σC∪D = ∞) ≤ Px(σC = ∞, �N)+ Px(σD = ∞, �c
N) = 0,

which, using Theorem 1(i), completes the proof.

The following lemma will be used in the rest of our proofs.

Lemma 1. If there is a petite set C such that Px(τC < ∞) > 0, for all x ∈ E, then the Markov
chain X is ψ-irreducible.

Proof. Since C is petite, there exist a probability measure α(·) and a nontrivial measure ψ
such that

Kα(x, B) ≥ ψ(B), x ∈ C, B ∈ E .

Fix y ∈ E. Since Py(τC < ∞) > 0, there exists an integer n0 such that Py(Xn0 ∈ C) > 0.
Thus, for any set B ∈ E such that ψ(B) > 0,

∞∑
m=n0

Py(Xm ∈ B) =
∫

E

( ∞∑
m=0

Px(Xm ∈ B)
)

Py(Xn0 ∈ dx)

≥
∫
C

Kα(x, B)Py(Xn0 ∈ dx)

≥ ψ(B)Py(Xn0 ∈ C)
> 0.

So, by [5, Proposition 4.2.1], X is ψ-irreducible.

The following result is an extension of [4, Theorem 1] to the random-drift setting. Conditions
(3)–(6), below, are similar to conditions (L1)–(L4) in [4].

Theorem 4. The Markov chain X is positive Harris recurrent if there exist a petite set C,
an f : E → R+ bounded on C, constants A and α, a stopping time τ ≥ 1 a.s., and an
F∞-measurable random variable η that satisfy the following:

Ex[f (Xτ )+ η] ≤ f (x), x /∈ C,
sup
x∈C

Ex[f (Xτ )+ η] < ∞, (2)

η(ω) ≥ α > −∞, ω ∈ �, (3)

η(ω) > 0, X0(ω) /∈ C, (4)

sup
x∈C

Ex[τ ] < ∞, (5)

τ(ω) ≤ Aη(ω), X0(ω) /∈ C. (6)
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Theorem 4 is a generalization of many standard methods. When η = τ , we have the general
state space analogue of Filonov’s result. In particular, if η = τ = g(X0) for some function g
and f is bounded on C, we end up with Meyn and Tweedie’s criterion found in [6]. Another
special case of Theorem 4 is Dai’s method [2], which involves the use of fluid limits; see [4]
for details on how this method is equivalent to satisfying certain drift criteria.

Proof of Theorem 4. In addition to our sequence {τn}∞n=0, we introduce another sequence,
{ηn}∞n=0, where η0 = 0 and, for n ≥ 0, ηn+1 = ηn + η ◦ θτn . Note that, by induction,

ηn =
n−1∑
k=0

η ◦ θτk . (7)

Let ν := inf{n ≥ 0 : τn ≥ σC}. This is an F τ -stopping time since it is easy to see that
{ν ≤ n} ∈ Fτn .

We will now show that {Yν∧n}∞n=0 is an F τ -supermartingale, where Yn := f (Xn) +
E[ηn | Fτn ]. Notice that, on the set {ν > n},

E[Yn+1 | Fτn ] = E[f (Xτn+τ◦θτn )+ η ◦ θτn | Fτn ] + E[ηn | Fτn ]
= EXn [f (Xτ )+ η] + E[ηn | Fτn ]
≤ f (Xn)+ E[ηn | Fτn ]
= Yn.

Thus, {Yν∧n}∞n=0 is a nonnegative F τ -supermartingale.
Since f is nonnegative,

Ex[ην∧n] = Ex[Ex[ην∧n | Fτν∧n ]] ≤ Ex[Yν∧n] ≤ f (x). (8)

Using (7), we obtain

ην∧n =
n−1∑
k=0

η ◦ θτk 1{k<ν} ≥ A−1
n−1∑
k=0

τ ◦ θτk 1{k<ν} = A−1τν∧n.

The first inequality follows from (6), since ν > k implies that X0(θτkω) /∈ C. After taking
limits, while using (8) and σC ≤ τν , we see that, for x /∈ C,

Ex[τC] = Ex[σC] ≤ Af (x). (9)

For x ∈ C, we obtain

Ex[τC] = Ex[τC 1{τC≤τ }] + Ex[τC 1{τC>τ }]. (10)

Now, by (9),

Ex[τC 1{τC>τ }] ≤ Ex[τ 1{τC>τ }] + Ex[1{τC>τ } EX1
[τC]]

≤ Ex[τ 1{τC>τ }] + Ex[1{τC>τ }Af (X1)]
≤ Ex[τ 1{τC>τ }] + AEx[f (X1)+ η − η].

Using this with (2), (5), and (10), we have

Ex[τC] ≤ Ex[τ ] + AEx[f (X1)+ η] − Aα < ∞.

Then X is positive Harris recurrent by Lemma 1 and Theorem 1(i).
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Our next result provides sufficient conditions for X to be geometrically ergodic.

Theorem 5. The Markov chain X is geometrically ergodic if it is aperiodic and there exist an
f : E → [1,∞), an F -stopping time τ ≥ 1, a petite set C, and a constant κ > 1 such that

Ex[κτf (Xτ )] ≤ f (x), x /∈ C,
sup
x∈C

Ex[κτf (Xτ )] < ∞, x ∈ C.

Proof. This proof is similar to the proof of Theorem 4. Let Yn := κτnf (Xτn). Then, on the
set {ν > n},

E[Yn+1 | Fτn ] = E[κτn+τ◦θτn f (Xτn+τ◦θτn ) | Fτn ]
= κτn EXτn [κτf (Xτ )]
≤ Yn.

This shows that {Yν∧n}∞n=0 is a nonnegative supermartingale with respect to F τ . Next, observe
that

Ex[κτν∧n ] ≤ Ex[Yν∧n] ≤ Ex[Y0] = f (x), x ∈ E.

Letting n → ∞ and applying the monotone convergence theorem, we have

Ex[κσC ] ≤ Ex[κτν ] ≤ f (x), x ∈ E.

Then, for x /∈ C, Ex[κτC ] = Ex[κσC ] ≤ f (x) < ∞ and, for x ∈ C, we obtain

Ex[κτC ] ≤ Ex[κτ EXτ [κσC ] 1{τC>τ } +κτ 1{τC≤τ }] ≤ Ex[κτf (Xτ )].
Combining these observations yields Ex[κτC ] < ∞ for all x ∈ E, so again Lemma 1 tells us
that X is ψ-irreducible. Therefore, X is geometrically ergodic by Theorem 1(iii).

It is also worth pointing out that a ‘supermartingale’ approach helps to derive another drift
condition for geometric ergodicity that is analogous to [4, Theorem 1].

Theorem 6. The Markov chain X is geometrically ergodic if it is aperiodic and there exist
a petite set C, functions f : E → [1,∞), g : E → {1, 2, 3, . . .}, and h : E → (0,∞), and
constants A > 0 and κ > 1 that satisfy the following:

Ex[κh(x)f (Xg(x))] ≤ f (x), x /∈ C,
sup
x∈C

Ex[κh(x)f (Xg(x))] < ∞,

g(x) ≤ Ah(x), x /∈ C,
sup
x∈C

g(x) < ∞.

Proof. The proof of this result is very similar to the proofs of Theorems 4 and 5.

Remark 1. Theorems 3, 4, and 5 should allow us in principle to use tools from optimal stopping
theory (see [8]) to determine whether or not various Markov chains are stable. In [8], the
following examples were studied in detail:

s(x) = inf
τ

Ex[f (Xτ )],
s(x) = inf

τ
Ex[f (Xτ )+ τ ].
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If we could guarantee the existence of an optimal stopping time τ ∗, then we would only have to
show that {x : Px(τ ∗ = 0) > 0} is petite. To do this, we would have to find a nontrivial upper
bound h of the payoff function s and show that h(x) < f (x) for all x outside a petite set.

Remark 2. It is well known that the converse to Theorem 4 is also true (let τ = 1, and consult
[5, Chapter 11]). Analogously, here is a converse to Theorem 3.

Proposition 1. If the Markov chain X is Harris recurrent, then there exist an f : E → R+
unbounded off petite sets, a finite stopping time τ ≥ 1, and a petite set C such that, for x /∈ C,

Ex[f (Xτ )] ≤ f (x).

Proof. Byψ-irreducibility, we know from [5, Theorem 5.5.5] that there exists an increasing
sequence of sets {Cn} whereCn is petite for each n and

⋃∞
n=1 Cn = E. Let r be an integer large

enough that ψ(Cr) > 0. Then τCr < ∞ almost surely, for any initial starting point x ∈ E.
Now consider the real-valued function f (x) := min{n ≥ 1 : x ∈ Cn}, x ∈ E. Clearly f is

unbounded off petite sets. Moreover, Ex[f (XτCr )] ≤ r < f (x), x /∈ Cr .

Acknowledgements

The author would like to thank Professor Richard Serfozo for his insightful comments that
significantly improved the style of this paper. He would also like to thank two referees for their
comments and suggestions, which also had a significant impact on the paper (Theorem 4 in
particular).

References

[1] Costa, O. L. V. and Dufour, F. (2005). A sufficient condition for the existence of an invariant probability
measure for Markov processes. J. Appl. Prob. 42, 873–878.

[2] Dai, J. G. (1995). On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid
limit models. Ann. Appl. Prob. 5, 49–77.

[3] Filonov, Y. P. (1990). Criterion for ergodicity of homogeneous discrete Markov chains. Ukranian Math J. 41,
1223–1225.

[4] Foss, S. and Konstantopoulos, T. (2004). An overview of some stochastic stability methods. J. Operat. Res.
Soc. Japan 47, 275–303.

[5] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
[6] Meyn, S. P. and Tweedie, R. L. (1994). State-dependent criteria for convergence of Markov chains. Ann. Appl.

Prob. 4, 149–168.
[7] Robert, P. (2003). Stochastic Networks and Queues. Springer, Berlin.
[8] Shiryayev, A. N. (1978). Optimal Stopping Rules. Springer, New York.

https://doi.org/10.1239/jap/1165505219 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505219

	1 Introduction
	2 Preliminaries
	3 Results
	Acknowledgements
	References

