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Ultracontractive Properties for Directed
Graph Semigroups with Applications to
Coupled Oscillators

Jason J. Bramburger

Abstract. It is now well known that ultracontractive properties of semigroups with inûnitesimal gen-
erator given by an undirected graph Laplacian operator can be obtained through an understanding of
the geometry of the underlying inûniteweighted graph. he aim of thiswork is to extend these results
to semigroups with inûnitesimal generators given by a directed graph Laplacian operator through an
analogous inspection of the geometry of the underlying directed graph. In particular, we introduce
appropriate nomenclature to discuss the geometry of an inûnite directed graph, aswell as provide suf-
ûcient conditions to extend ultracontractive properties of undirected graph Laplacians to those of the
directed variety. Such directed graph Laplacians can o�en be observed in the study of coupled oscilla-
tors, where recent work made explicit the link between synchronous patterns to systems of identically
coupled oscillators and ultracontractive properties of undirected graph semigroups. herefore, in this
work we demonstrate the applicability of our results on directed graph semigroups by extending the
aforementioned investigation beyond the idealized case of identically coupled oscillators.

1 Introduction

he study ofheat equations on graphshas long been a topic of inquiry that successfully
relates the geometric properties of the underlying graph to time-dependent estimates
of the behaviour of the semigroup generated by the associated graph Laplacian [7, 11–
13]. Adiscrete heat equation takes the formof the linear ordinary diòerential equation

(1.1) ẋv(t) = ∑
v′∈V

w(v , v′)(xv′(t) − xv(t)),

for each v ∈ V . Here, ẋv(t) denotes the derivative of xv(t) with respect to the inde-
pendent variable t, V is the countably inûnite vertex set of an underlying graph, and
w(v , v′) represents the weight of the edge from vertex v to vertex v′. (his will be
made more precise in the following section.) In the case of undirected (or symmet-
ric) graphs,muchwork has been done to connect the behaviour of a randomwalk on
the underlying graph to the long-time dynamics of solutions to the diòerential equa-
tion (1.1) associatedwith the graph [2,7,10,19]. hiswork has successfully introduced
ultracontractive properties into the study of heat kernels on symmetric graphs, thus
continuing a long investigation into the decay of one-parameter semigroups that dates
back at least to the seminal work of Varopoloulus [21].
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It appears that the study of discrete heat equations on graphs is greatly skewed to-
wards undirected graphs,with few results pertaining to ultracontractive properties of
system (1.1) associatedwith a directed graph. herefore, it is the intention of thisman-
uscript to introduce a set of suõcient conditions that allow one to obtain ultracon-
tractive properties of the semigroup generated by the linear operator governing the
right-hand side of (1.1), based upon the geometry of the underlying directed graph.
Precisely, in this manuscript a set of suõcient conditions is provided for graphs of
dimension two and up that can guarantee that the ultracontractive properties from
undirected graphs can be extended to the general setting of directed graphs. hese
ultracontractive properties are equivalent to the uniform decay in t of solutions to
(1.1) over various Banach spaces of real sequences indexed by the vertex set V .
Aside from their connection with random walks, discrete heat equations of the

form (1.1) arise naturally in the study of coupled oscillators, where the stability of a
synchronous state is o�en understood via the geometry of an associated graph. Al-
though this connection has been thoroughly studied in the ûnite-dimensional set-
ting [4, 8], there still remain a number of open problems pertaining to the inûnite-
dimensional setting. Recent work has initiated the investigation into the connection
between graph geometry and stability in inûnite systems of coupled oscillators by
restricting the investigation to identically coupled oscillators [2]. his restriction to
identically coupled oscillators lacks the generality that is already well understood in
the ûnite-dimensional setting, and therefore in this manuscript we aim to describe
how our work on system (1.1) can be used to extend the results of [2] beyond such an
idealized scenario. herefore, our work herein leads to amore robust result detailing
suõcient conditions for the stability of inûnitely-many coupled oscillators.

Systems of the form (1.1) have also been documented in the study of the stability
of traveling wave solutions to lattice dynamical systems [15]. his investigation re-
quired a tedious analysis using the Fourier transform to obtain decaying bounds on
an associated Green’s function, which was then used to infer linearized stability of
an associated ordinary diòerential equation. It is therefore the intention of this work
to provide a framework in which future investigations into the stability of solutions
to lattice dynamical systems can readily obtain linearized stability through a careful
checking of the conditions on (1.1) laid out in this manuscript, potentially reducing
the amount of diõculty required to obtain decaying bounds on a Green’s function.
Hence, it has become a long-term goal to apply the results of this work to the diverse
and expanding study of stability in lattice dynamical systems.

his manuscript is organized as follows. In Section 2 we introduce the proper
nomenclature, notation, and hypotheses to discuss discrete heat equations on graphs,
as well as introduce some new notation to properly analyze directed graphs. hen in
Section 3 we discuss some of the known results for undirected graphs as well as pro-
vide some necessary extensions of this work that will become useful when discussing
directed graphs. Our main result is heorem 4.1, which provides a set of suõcient
conditions on the geometry of a directed graph to obtain uniform decay of solutions
to (1.1). Section 5 is dedicated to demonstrating the importance of Hypothesis 2.4,
which forms themajor assumption on the geometry of the directed graphs considered
in thismanuscript. An example of a systemof the form (1.1) is provided forwhich this
assumption fails, and it is shown that the decay of solutions cannot be understood via
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themethods outlined in thismanuscript. Finally, in Section 6we connect these results
to the stability of coupled oscillators, resulting inheorem 6.1,which is supplemented
by a brief discussion of an application of this theorem.

2 Definitions and Hypotheses

We consider a graph G = (V , E) with a countably inûnite collection of vertices, V ,
and a set of oriented edges between these vertices, E. If there exists an edge e ∈ E
originating at vertex v and terminating at vertex v′ then we will write v ∼ v′, but
we note that since the edges are assumed to be oriented the relation v ∼ v′ is not
necessarily symmetric. Furthermore, wemay equivalently consider the set of edges E
as a subsetof theproductV×V bywriting {v , v′} ∈ E if there exists an edgeoriginating
at vertex v and terminating at vertex v′. A graph is called strongly connected (or simply
connected in this manuscript) if for any two vertices v , v′ ∈ V there exists a ûnite
sequence of vertices in V , {v1 , v2 , . . . , vn}, such that v ∼ v1, v1 ∼ v2, . . . , vn ∼ v′. We
will only consider connected graphs for the duration of this work.

We will also consider a weight function on the edges between vertices, written
w ∶ V × V → R, such that for all v , v′ ∈ V , we have w(v , v′) ≠ 0 if and only if
v ∼ v′. his then leads to the notion of a weighted oriented graph, written as the
triple G = (V , E ,w). We emphasize that w is not necessarily symmetric with respect
to its arguments, even in the case when v ∼ v′ and v′ ∼ v for some v , v′ ∈ V . More-
over, it should be noted that in the interest of full generality,we have not assumed that
the weights are nonnegative, but only that all edges must have a nonzero weight. he
weight function further allows us to consider the graph Laplacian (sometimes combi-
natorial graph Laplacian) associatedwith the graph G = (V , E ,w) given by the linear
operator, L, acting on the real sequences x = {xv}v∈V by

(2.1) [Lx]v = ∑
v′∈V

w(v , v′)(xv′ − xv),

so that (1.1) can be written abstractly as the linear ordinary diòerential equation
ẋ = Lx, upon suppressing the dependence on the independent variable t for con-
venience. Hence, the general solution to (1.1) with initial condition x0 can be writ-
ten x(t) = eLtx0, where eLt is the semigroup with inûnitesimal generator L. It will
therefore be our goal in this manuscript to obtain ultracontractive properties on the
semigroup eLt , which are equivalent to determining uniform decay properties of the
solution x(t).

Natural spatial settings for the graphLaplacianoperator are the real sequence spaces

ℓp
(V) = {x = {xv}v∈V ∣ ∑

v∈V
∣xv ∣p <∞} ,

for any p ∈ [1,∞). he vector space ℓp(V) becomes a Banach space when equipped
with the norm

∥x∥p ∶= (∑
v∈V

∣xv ∣p)
1
p
.
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We can also consider the Banach space ℓ∞(V), the vector space of all uniformly
bounded real sequences indexed by V with norm given by

∥x∥∞ ∶= sup
v∈V

∣xv ∣.

It should be noted that these deûnitions extend to any countable index set V , inde-
pendent of a respective graph.

he potential asymmetry of the edges and weights on the graph G make the direct
application of results for graphswith undirected edges unlikely, and thereforewewish
to develop a method of extending these results to the setting of (1.1) for a general
directed graph. Let us begin by deûning the function wsym ∶ V × V → R by

wsym(v , v′) ∶=
w(v , v′) +w(v′ , v)

2
so thatwsym(v , v′) = wsym(v′ , v) for all v , v′ ∈ V . Similarly,wewilldeûne the function
wskew ∶ V × V → R by

wskew(v , v′) ∶=
w(v , v′) −w(v′ , v)

2
so that wskew(v , v′) = −wskew(v′ , v) for all v , v′ ∈ V . Hence, one sees that

w(v , v′) = wsym(v , v′) +wskew(v , v′)

for all v , v′ ∈ V . his leads to the following deûnition.

Deûnition 2.1 he graph Laplacian (2.1) induces the linear operators Lsym and Lskew
given by

[Lsymx]v = ∑
v′∈V

wsym(v , v′)(xv′ − xv),

[Lskewx]v = ∑
v′∈V

wskew(v , v′)(xv′ − xv).

We refer to Lsym as the symmetric graph Laplacian induced by L, and Lskew as the
skew-symmetric graph Laplacian induced by L.

It should immediately be noted that L = Lsym+Lskew. Moreover, the functionwsym
and the linear operator Lsym also lead to the deûnition of an underlying undirected
weighted graph.

Deûnition 2.2 he symmetric graph induced by G, denoted Gsym, is the graph with
vertex set V and edge set, Esym, deûned by assigning an undirected edge connecting
v , v′ ∈ V if and only if wsym(v , v′) ≠ 0.

he graph Gsym becomes a weighted graph when considered with the symmetric
weight functionwsym. herefore, itwill be through the graphGsym = (V , Esym ,wsym)

and the associated symmetric graph Laplacian Lsym that we will work to understand
decay properties of the linear equation (1.1). We present the following hypothesis,
which is fundamental to our interpretation of Gsym, and in turn G.
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Hypothesis 2.3 he graph Gsym = (V , Esym ,wsym) satisûes the following assump-
tions:
(i) he function wsym ∶ V × V → R is nonnegative, and furthermore, if w(v , v′) ⋅

w(v′ , v) ≠ 0, then wsym(v , v′) > 0.
(ii) here exists a constant M > 0 such that wsym(v , v′) ≤ M for all v , v′ ∈ V .
(iii) he set N(v) ∶= {v′ ∈ V ∶ wsym(v , v′) > 0} is such that there exists a constant

D ≥ 1 such that 1 ≤ ∣N(v)∣ ≤ D for all v ∈ V .

Hypothesis 2.3(i) says that all edgeweights ofGsym are strictly positive. We should
note that this does not contradict our assumption that the weight function w asso-
ciated with the original directed graph G can assume negative values. Indeed, we
simply have imposed that if w(v , v′) < 0, then we necessarily have w(v′ , v) > 0 and
w(v , v′)+w(v′ , v) > 0. his also leads toHypothesis 2.3(ii),which says that the graph
Gsym essentially takes all edges inG,makes themunoriented, and assigns aweight that
is the average of the directed edge weights between each pair of vertices. Hence, we
have assumed that the creation ofGsym does not disconnect two vertices, and sinceG
was assumed to be connected, we therefore have that Gsym is also connected.

Hypothesis 2.3(iii) further requires that we assume the edge weights to be uni-
formly bounded above, and that each vertex in Gsym is connected to a ûnite number
of vertices. When a graph exhibits this latter property, it is o�en said to be locally û-
nite. It should be noted that our assumption is slightlymore restrictive than just being
locally ûnite though, as we have assumed that the number of vertices each vertex is
connected to is uniformly bounded from above. he set N(v) represents the neigh-
bourhood of v ∈ V in the graph Gsym. In the context of the directed graph G, under
Hypothesis 2.3, we have that N(v) represents the set of all vertices v′ ∈ V for which
v ∼ v′ or v′ ∼ v. We will work to understand the decay of solutions to the linear
equation (1.1) through Hypothesis 2.3.

We now turn to the skew-symmetric graph Laplacian Lskew and the associated
weight function wskew. Let us deûne the quantity

(2.2) W ∶= ∑
v∈V
∑
v′∈V

∣wskew(v , v′)∣ ∈ [0,∞].

his leads to the following hypothesis.

Hypothesis 2.4 he quantity W deûned in (2.2) is ûnite.

We remark that we make no assumption on the exact magnitude of W , we sim-
ply assume that it is ûnite. his implies that for any ε > 0, the weights w(v , v′) and
w(v′ , v) will be ε-close for inûnitely many v , v′ ∈ V . In Section 5 we demonstrate
that in the absence of Hypothesis 2.4, solutions to (1.1) cannot necessarily be under-
stood through the geometry of the associated symmetric graph. We conclude this
section with the following simple example, which illustrates all of the deûnitions and
hypotheses put forth in this section.

Example 2.5 Consider a directed graphwith index setV = Zwith edges from vertices
n to n + 1 and vice-versa, except that there is no edge from vertices indexed by 0 to 1.
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18 J. J. Bramburger

Figure 1: he graph discussed in Example 2.5. he vertex set is given by the set of integers with
edges from vertices n to n + 1 and vice-versa, with the exception of an edge from 0 to 1. Edge
weights are given above each edge.

he edge weights are given by

w(n, n + 1) = 1 −
1

1 + n2 ,

w(n + 1, n) = 1 +
1

1 + n2 ,

for all n ∈ Z, where we note that w(0, 1) = 0,meaning that there is no edge from 0 to 1.
Figure 1 provides a visual representation of this graph. he important point here is that
for large ∣n∣, we have that the weights w(n, n + 1) and w(n + 1, n) become uniformly
close together at a rate of O(n−2), which will guarantee that Hypothesis 2.4 is indeed
satisûed.

hen, using the deûnition of wsym and wskew above, we get that

wsym(n, n + 1) = 1 and wskew(n, n + 1) =
−1

1 + n2 ,

for all n ∈ Z, along with the symmetry conditions wsym(n + 1, n) = wsym(n, n + 1) and
wskew(n + 1, n) = −wskew(n, n + 1). he graph Gsym(Z, Esym ,wsym) is simply the stan-
dard one-dimensional integer lattice,where successive integers are connected by an undi-
rected edge of weight 1. Hence, it is very easy to check that Hypothesis 2.3 does indeed
hold for Gsym. Moreover, the quantity W in this case is given by

W =
∞
∑

n=−∞

2
1 + n2 = 2π coth(π),

where coth is the hyperbolic cotangent function. Hence,W <∞ in this case, and hence
Hypothesis 2.4 holds for this graph as well.

3 Ultracontractive Properties for Undirected Graphs

In this section we provide a review of the relevant results for undirected graphs. We
will see that an understanding of the geometry of the graph Gsym = (V , Esym ,wsym)

can be used to obtain uniform decay of solutions to the linear ordinary diòerential
equation

(3.1) ẋ = Lsymx .

It should be noted that much of the information in this section comes as a review of
the work in [2], and many of the graph-theoretic facts and deûnitions can be found
in, for example, [7, 19]. Hence, in this section we provide assumptions that lead to the
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algebraic decay of solutions to (3.1), which will be utilized in the following section to
obtain algebraic decay of solutions to (1.1).

We begin by deûning the measure of a vertex of the graph Gsym, written m ∶ V →
[0,∞], and deûned by

m(v) ∶= ∑
v′∈V

wsym(v , v′) = ∑
v∈N(v)

wsym(v , v′).

We note that Hypothesis 2.3 dictates that 0 < m(v) ≤ MD, for all v ∈ V , and hence
themeasurem is well deûned. his notion extends to the volume of a subset, V0 ⊂ V ,
by deûning

Vol(V0) ∶= ∑
v∈V0

m(v).

Hence, we see that Gsym can be interpreted as a measure space with σ-algebra given
by the power set of V .
Connectedundirected graphs also have anaturalmetric associatedwith them, here

denoted ρ, which returns the smallest number of edges needed to traverse from one
vertex to another. his metric allows for the consideration of a ball of radius r ≥ 0
centred at the vertex v ∈ V , denoted by

B(v , r) ∶= {v′ ∣ ρ(v , v′) ≤ r}.

For simplicity,wewill simplywriteVol(v , r) to denoteVol(B(v , r)). he combination
of the graph metric and the vertex measure allows one to interpret a weighted graph
as ametric-measure space.

We now provide a series of deûnitions to describe the geometry of Gsym.

Deûnition 3.1 heweighted graph Gsym = (V , Esym ,wsym) satisûes a uniformpoly-
nomial volume growth condition of order d, abbreviated VG(d), if there exists d > 0
and cvol,1 , cvol,2 > 0 such that

cvol,1rd ≤ Vol(v , r) ≤ cvol,2rd

for all v ∈ V and r ≥ 0.

he value d in Deûnition 3.1 is o�en referred to as the dimension of the graph
Gsym. Apotential reason for this is that the characteristic examplesof graphs satisfying
VG(d) are the integer lattices Zd with an edge between two vertices n, n′ ∈ Zd if and
only if ∥n − n′∥1 = 1, and all edge weights taken to be identically 1 [1]. In Example 2.5
we saw that the resulting symmetric graph is exactly of this type, and therefore, it
satisûes VG(1). It should be noted that d need not be an integer, as one can construct
fractal graphs that satisfy VG(d) for non-integer valued d > 0. For the duration of
this work, we will restrict our attention to d ≥ 2, since the methods of Section 4 fail
when d < 2.

Deûnition 3.2 We say Gsym = (V , Esym ,wsym) satisûes the local elliptic property,
denoted ∆, if there exists an α > 0 such that

wsym(v , v′) ≥ αm(v)
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for all v ∈ V and v′ ∈ N(v).

It was pointed out in [2, Lemma 3.5] that a suõcient condition to satisfy this local
elliptic property, ∆, is to have the edgeweights,wsym(v , v′), bounded above and below
by positive constants for all v ∈ V , v′ ∈ N(v) and to have a uniform upper bound on
the number of elements in N(v) over v ∈ V . Of course, Hypothesis 2.3 takes care of
two thirds of these suõcient conditions, but in the interest of generality, we refrain
from assuming the third and ûnal condition, as these conditions were not found to
be necessary.

Deûnition 3.3 he weighted graph Gsym = (V , Esym ,wsym) satisûes the Poincaré
inequality, abbreviated PI, if there exists a constant CPI > 0 such that

∑
v∈B(v0 ,r)

m(v)∣xv − xB(v0)∣2 ≤ CPIr2( ∑
v ,v′∈B(v0 ,2r)

wsym(v , v′)(xv − xv′)2
) ,

for all real sequences {xv}v∈V , all v0 ∈ V , and all r > 0, where

xB(v0) =
1

Vol(v0 , r)
∑

v∈B(v0 ,r)
m(v)xv .

It is immediately apparent that proving that an undirected graph satisûes the
Poincaré inequality is a signiûcant analytical undertaking. Some methods were out-
lined in [6], and in [2] the notion of a rough isometry was introduced to demonstrate
that a graph satisûes PI.We refrain from going into further detail here, but direct the
reader to those sources for a full analytical treatment of the Poincaré inequality with
regard to undirected graphs.

It iswell known [17,18,22] that Lsym is the inûnitesimal generator of the semigroup
Pt = eLsym t . Moreover, the semigroup Pt acts on the real sequences x = {xv}v∈V by

(3.2) [Ptx]v = ∑
v′∈V

pt(v , v′)xv′ ,

where pt(v , v′) are transition probabilities generated by a randomwalk on theweighted
graph Gsym [7,17,22] (see [2] for complete details). his leads to the following propo-
sition that summarizes the work of [2, Section 3.3].

Proposition 3.4 ([2, §3.3]) Assume that Gsym = (V , Esym ,wsym) satisûes Hypothe-
sis 2.3, ∆, PI, and VG(d) for some d > 0. hen there exists a constant Csym > 0 such
that

∥Ptx∥p ≤ Csym∥x∥p ,

∥Ptx∥p ≤ Csym(1 + t)−
d
2 (1−

1
p )∥x∥1

for all p ∈ [1,∞] and real sequences x = {xv}v∈V ∈ ℓ1(V).

We now provide an extension of Proposition 3.4,whichwill be integral to ourwork
here. Let us begin by deûning the functions

Qp(x) = (∑
v∈V

∑
v′∈N(v)

∣xv′ − xv ∣p)
1
p
,
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for all p ≥ 1 and

Q∞(x) = sup
v∈V ,v′∈N(v)

∣xv′ − xv ∣.

It is easy to see that for each p ∈ [1,∞], the functions Qp satisfy Qp(x) ≤ 2D∥x∥p for
all x ∈ ℓp and are semi-norms on ℓp(V) for each p ≥ 1. Furthermore, since Gsym is
assumed to be connected, it follows that the Qp vanish if and only if x is a constant
sequence. he components ∣xv′ − xv ∣ are typically interpreted as the discrete analogue
of a directional derivative of the sequence x in the direction of the edge {v , v′}. Hence,
Qp can be thought to be the p-norm of the (discrete) gradient of the sequences in
ℓp(V). he following lemma extends the bounds of Proposition 3.4.

Lemma 3.5 Assume that Gsym = (V , Esym ,wsym) satisûes Hypothesis 2.3, ∆, PI, and
VG(d) for some d > 0. here exists constants CQ , η > 0 such that for all x = {xv}v∈V ∈

ℓ1(V), we have

Qp(Ptx) ≤ CQ(1 + t)−
d
2 (1−

1
p )−η∥x∥1 ,

for all t ≥ 0 and p ∈ [1,∞].

Proof Itwas shown byDelmotte that any graph satisfying∆, PI, andVG(d) for some
d > 0must also satisfy a ParabolicHarnack Inequality [7], which we do not explicitly
state here, because it will not be necessary for our result. But the work of [14, he-
orem 2.32] dictates that any graph (or more generally metric space) satisfying the
ParabolicHarnack Inequality further satisûes the estimate

∣pt(v1 , v3) − pt(v2 , v3)∣ ≤ C0m(v3)(
ρ(v1 , v2)
√

1 + t
)
β
p2t(v1 , v3)

for all v1 , v2 , v3 ∈ V and some independent constants C0 , β > 0. Hence, assuming
Hypothesis 2.3, for all v , v′′ ∈ V and v′ ∈ N(v), we have

∣pt(v , v′′) − pt(v′ , v′′)∣ ≤ C0M(1 + t)−
β
2 p2t(v , v′′),

since ρ(v , v′) = 1, because v′ ∈ N(v).
hen, using the form for Pt given in (3.2), for all x ∈ ℓ1(V), v ∈ V , and v′ ∈ N(v),

we have

∣ [Ptx]v′ − [Ptx]v ∣ ≤ ∑
v′′∈V

∣ pt(v , v′′) − pt(v′ , v′′)∣ ∣xv′′ ∣

≤ C0M(1 + t)−
β
2 ∑
v′′∈V

p2t(v , v′′)∣xv′′ ∣

= C0M(1 + t)−
β
2 [P2t ∣x∣] v .
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his therefore implies that

Qp(Ptx) = (∑
v∈V

∑
v′∈N(v)

∣ [Ptx]v′ − [Ptx]v ∣ )
1
p

≤ C0M(1 + t)−
β
2 (∑

v∈V
∑

v′∈N(v)
[P2t ∣x∣]v)

1
p

≤ C0D
1
p M(1 + t)−

β
2 (∑

v∈V
[P2t ∣x∣]v)

1
p

≤ C0D
1
p M(1 + t)−

β
2 ∥P2t ∣x∣∥p ,

for all p ∈ [1,∞), since ∣N(v)∣ ≤ D for all v ∈ V . hen from Proposition 3.4 we have
that

∥P2t ∣x∣∥p ≤ Csym∥Pt ∣x∣∥p ≤ C2
sym(1 + t)−

d
2 (1−

1
p )∥x∥1 ,

for some constant Csym > 0, where we have introduced the notation ∣x∣ = {∣xv ∣}v∈V .
his then gives that

Qp(Ptx) ≤ C0C2
symD

1
p M(1 + t)−

d
2 (1−

1
p )−

β
2 ∥x∥1 ,

which proves the cases p ∈ [1,∞) with η =
β
2 . he case p = ∞ follows in a nearly

identical fashion, and is therefore omitted. his completes the proof. ∎

4 Ultracontractive Properties for Directed Graphs

In this section, we show that an understanding of the graph Gsym and its associated
symmetric graph Laplacian Lsym can be used to understand the decay of solutions to
(1.1). he following theorem is our main result on the decay of solutions to (1.1), and
its proof will be broken up into a series of lemmas throughout this section.

heorem 4.1 Consider the linear ordinary diòerential equation (1.1), and construct
Gsym and Lsym as deûned in Deûnitions 2.1 and 2.2, respectively. Assume that Gsym
satisûesHypothesis 2.3, ∆, PI, andVG(d) for some d ≥ 2 and thatHypothesis 2.4 is true.
hen there exists a continuous, positive, strictly increasing function f ∶ [0,∞)→ (0,∞)

and a constant η > 0 such that for all x0 ∈ ℓ1, the solution x(t) = eLtx0 to (1.1) satisûes
the following decay estimates for all t ≥ 0 and p ∈ [1,∞]:

∥x(t)∥p ≤ f (W)(1 + t)−
d
2 (1−

1
p )∥x0∥1 ,

Qp(x(t)) ≤ f (W)(1 + t)−
d
2 (1−

1
p )−η∥x0∥1 .

Remark 4.2 We note that our results only pertain to those graphs Gsym which sat-
isfy VG(d) with d ≥ 2, i.e., at least two-dimensional graphs. Of course this is a minor
shortcoming ofheorem 4.1, but we will see in the following proofs that the case d < 2
(particularly d = 1 for many applications) presents amajor technical hurdle that cannot
be overcome with themethods put forth in this manuscript. his same technical hurdle
was encountered in the results of [2], and therefore, it would be interesting if alternative
methods were proposed that overcome the restriction to d ≥ 2.
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Remark 4.3 All of our analysis in this manuscript relies heavily on the deûnitions
of wsym and wskew. herefore, it would be interesting in the future to explore diòerent
deûnitions for these weights to see if the results of heorem 4.1 can be extended to an
even wider range of directed graphs than those considered herein.

We now proceed with the proof of heorem 4.1, beginning with the following
lemma.

Lemma 4.4 Assume Hypothesis 2.4. hen for all x ∈ ℓ∞(V), we have

∥Lskewx∥1 ≤WQ∞(x),

whereW <∞ is the quantity deûned in (2.2).

Proof We begin by remarking that the assumption x ∈ ℓ∞(V) ismerely to guarantee
that Q∞(x) is ûnite and can be loosened under appropriate conditions. hen, using
Lskew given in Deûnition 2.1, we have that

∣ [Lskewx]v ∣ ≤ ∑
v′∈V

∣wskew(v , v′)∣ ∣xv′ − xv ∣ ≤ ( ∑
v′∈V

∣wskew(v , v′)∣)Q∞(x),

for every v ∈ V . hen, taking the sum over all v ∈ V , we arrive at

∥Lskewx∥1 ≤ (∑
v∈V
∑
v′∈V

∣wskew(v , v′)∣)Q∞(x) =WQ∞(x),

which proves the lemma. ∎

Now, if x(t) is a solution to (1.1) with initial condition x(0) = x0 ∈ ℓ1, we trivially
have that

ẋ(t) = Lsymx(t) + Lskewx(t).
hen, using the variation of constants formula,we obtain the equivalent integral form
of the ordinary diòerential equation (1.1), given as

(4.1) x(t) = Ptx0 + ∫
t

0
Pt−sLskewx(s) ds,

where Pt = eLsym t is the semigroup with inûnitesimal generator Lsym described in the
previous section. Moreover, sincewe have assumed thatGsym satisûesHypothesis 2.3,
∆, PI, and VG(d) for some d ≥ 2, we obtain the decay properties of both Proposi-
tion 3.4 and Lemma 3.5. We now use the integral form (4.1) to proveheorem4.1, but
ûrst we provide a useful lemma from [3].

Lemma 4.5 ([3, §3, Lemma 3.2]) Let γ1 , γ2 be positive real numbers. If γ1 , γ2 ≠ 1 or
if γ1 = 1 < γ2, then there exists a Cγ1 ,γ2 > 0 such that

∫

t

0
(1 + t − s)−γ1(1 + s)−γ2ds ≤ Cγ1 ,γ2(1 + t)−min{γ1+γ2−1,γ1 ,γ2} ,

for all t ≥ 0.

Lemma 4.6 Assume thatGsym = (V , Esym ,wsym) satisûesHypothesis 2.3, ∆, PI, and
VG(d) for some d ≥ 2, and that Hypothesis 2.4 is true. hen there exists a continuous,
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positive, strictly increasing function f1 ∶ [0,∞) → (0,∞) such that for all x0 ∈ ℓ1, the
solution x(t) to (1.1) with x(0) = x0 satisûes

Q∞(x(t)) ≤ f1(W)(1 + t)−
d
2 −η∥x0∥1 ,

for all t ≥ 0, where η > 0 is the constant guaranteed by Lemma 3.5.

Proof hrough straightforwardmanipulations of the integral form(4.1), one obtains

Q∞(x(t)) ≤ Q∞(Ptx0) + ∫
t

0
Q∞(Pt−sLskewx(s))ds.

hen, using Lemmas 3.5 and 4.4, we obtain

Q∞(x(t)) ≤ CQ(1 + t)−
d
2 −η∥x0∥1 + CQ ∫

t

0
(1 + t − s)−

d
2 −η∥Lskewx(s))∥1 ds

≤ CQ(1 + t)−
d
2 −η∥x0∥1 + CQW ∫

t

0
(1 + t − s)−

d
2 −ηQ∞(x(s)) ds,

where CQ > 0 is the constant guaranteed by Lemma 3.5. We now apply Gronwall’s
Inequality to obtain

Q∞(x(t)) ≤ CQ(1 + t)−
d
2 −η∥x0∥1

+ C2
QW∥x0∥1 ∫

t

0
(1 + t − s)−

d
2 −η(1 + s)−

d
2 −ηeCQW ∫ t

s (1+t−r)−
d
2 −ηdrds.

Now, since d ≥ 2, we have that d2 + η > 1, and hence

eCQW ∫ t
s (1+t−r)−

d
2 −ηdr

≤ e
2CQW
d+2η−2 .

for all s, t ≥ 0. hen, combining this boundwith the result of Lemma 4.5,we ûnd that

∫

t

0
(1 + t − s)−

d
2 −η(1 + s)−

d
2 −ηeCW ∫

t
s (1+t−r)−

d
2 −ηdrds

≤ C d
2 +η ,

d
2 +η
e

2CW
d+2η−2 (1 + t)−

d
2 −η .

Putting this all together therefore gives

Q∞(x(t)) ≤ CQ(1 + CQWC d
2 +η ,

d
2 +η
e

2CW
d+2η−2 )(1 + t)−

d
2 −η∥x0∥1 ,

which allows one to deûne f1(W) = CQ(1+CQWC d
2 +η ,

d
2 +η
e

2CW
d+2η−2 ), thus completing

the proof. ∎

Corollary 4.7 Assume that Gsym = (V , Esym ,wsym) satisûes Hypothesis 2.3, ∆, PI,
and VG(d) for some d ≥ 2, and that Hypothesis 2.4 is true. hen there exists a continu-
ous, positive, strictly increasing function f2 ∶ [0,∞) → (0,∞) such that for all x0 ∈ ℓ1,
the solution x(t) to (1.1) with x(0) = x0 satisûes

∥x(t)∥1 ≤ f2(W)∥x0∥1 and ∥x(t)∥∞ ≤ f2(W)(1 + t)−
d
2 ∥x0∥1 ,

for all t ≥ 0.

https://doi.org/10.4153/S0008439519000390 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000390


Directed Graph Heat Kernels 25

Proof his proof follows in a similar way to that of Lemma 4.6. Beginning with the
ℓ1(V) bound, we use (4.1) and the bounds from Proposition 3.4 to see that

∥x(t)∥1 ≤ ∥Ptx0∥1 + ∫

t

0
∥Pt−sLskewx(s)∥1ds

≤ Csym∥x0∥1 + Csym ∫

t

0
∥Lskewx(s)∥1ds

≤ Csym∥x0∥1 + CsymW ∫
t

0
Q∞(x(s))ds.

hen, using Lemma 4.6, we obtain

∥x(t)∥1 ≤ Csym∥x0∥1 + Csym f1(W)W∥x0∥1 ∫

t

0
(1 + s)−

d
2 −ηds

≤ Csym(1 +
2 f1(W)W
d + 2η − 2

)∥x0∥1 ,

for all t ≥ 0, since d
2 + η > 1, which proves the ûrst bound.

hrough a nearly identical manipulation to that of Lemma 4.6, we arrive at

∥x(t)∥∞

≤ Csym(1 + t)−
d
2 ∥x0∥1 + CsymW ∫

t

0
(1 + t − s)−

d
2 Q∞(x(s))ds

≤ Csym(1 + t)−
d
2 ∥x0∥1 + Csym f1(W)W∥x0∥1

× ∫

t

0
(1 + t − s)−

d
2 (1 + s)−

d
2 −ηds

≤ Csym(1 + C d
2 ,

d
2 +η

f1(W)W)(1 + t)−
d
2 ∥x0∥1 ,

by Lemma 4.5. Hence, we can deûne f2 ∶ [0,∞)→ (0,∞) by

f2(W) ∶= Csym max{1 +
2 f1(W)W
d + η

, 1 + C d
2 ,

d
2 +η

f1(W)W} ,

which proves the lemma. ∎

Corollary 4.8 Assume that Gsym = (V , Esym ,wsym) satisûes Hypothesis 2.3, ∆, PI,
and VG(d) for some d ≥ 2, and that Hypothesis 2.4 is true. hen for all x0 ∈ ℓ1, the
solution x(t) to (1.1) with x(0) = x0 satisûes

∥x(t)∥p ≤ f2(W)(1 + t)−
d
2 (1−

1
p )∥x0∥1

for all t ≥ 0 and p ∈ [1,∞], where f2 ∶ [0,∞) → (0,∞) is the function from Corol-
lary 4.7.

Proof his proof is a straightforward application of the log-convexity property of
the ℓp norms, which dictates that for any 1 ≤ p0 ≤ p1 ≤∞ and all x ∈ ℓp0(V), we have

∥x∥q ≤ ∥x∥1−γ
p0 ∥x∥γ

p1 ,

where q is deûned by
1
q
=

1 − γ
p0

+
γ
p1
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for every 0 < γ < 1. he proof is obtained by taking p0 = 1 and p1 = ∞ and applying
the bounds from Corollary 4.7. ∎

Corollaries 4.7 and 4.8, therefore, give the proof of the p-norm bounds on the
solution stated in heorem 4.1. he remaining Qp follow in exactly the same way as
those of the p-norms and are therefore omitted. his completes the proof of
heorem 4.1. ∎

5 Importance of Hypothesis 2.4

We now detail a situation inwhich Hypothesis 2.4 fails and show that in this scenario
we cannot obtain the decay rates ofheorem4.1. Since our results only apply to graphs
of dimension two or higher, we will work with a two dimensional graph, although we
note simpler examples can be created for one-dimensional graphs.

Let us consider the vertex set V = Z2 along with the linear ordinary diòerential
equation

(5.1) ẋ i , j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(x i−1, j − x i , j) + (x i , j−1 − x i , j) j ≥ 1,
(x i−1, j − x i , j) j = 0,
(x i−1, j − x i , j) + (x i , j+1 − x i , j) j ≤ −1.

In the context of this work, we ûnd that the associated graph is composed of directed
edges connecting (i , j) to (i − 1, j), along with directed edges connecting (i , j) to
(i , j − 1) when j ≥ 1 and (i , j) to (i , j + 1) when j ≤ −1, all with identical weights of
1. Furthermore, the associated symmetric graph then has an edge set for which every
(i , j) ∈ Z2 is connected to (i ± 1, j) and (i , j± 1), with identical weights of 1

2 . Figure 2
provides a visualization of this directed graph. Importantly, one can follow themeth-
ods of [2, Section 6] to see that this associated symmetric graph indeed satisûes ∆, PI,
and VG(2). hen the associated symmetric graph leads to expected decay bounds of
the order (1 + t)−1 for all t ≥ 0. But we note that the only requirement that fails to
apply heorem 4.1 is the condition that W <∞, required by Hypothesis 2.4.

Now, let us take the initial condition x0 = {x0i , j}(i , j)∈Z2 given by

x0i , j =
⎧⎪⎪
⎨
⎪⎪⎩

1 (i , j) = (0, 0),
0 (i , j) ≠ (0, 0).

It is a straightforward argument toûnd thatwith this initial conditionwehave x i ,0(t) =
0 for all i < 0 and t ≥ 0. he reason for this is that each element with index j = 0 de-
pends only on those elements to the le� of them, and since only the site i = j = 0 is
activatedwith this initial condition, it can only in�uence those elementswith j = 0 to
the right of it.

We begin by observing that at index (i , j) = (0, 0), we have

ẋ0,0 = −x0,0 Ô⇒ x0,0(t) = e−t ,

since x−1,0(t) = 0 for all t ≥ 0 and x i , j(0) = 1. hen, moving to index (i , j) = (1, 0),
we can substitute the solution for x0,0(t) to obtain

ẋ1,0 = e−t
− x1,0 Ô⇒ x1,0(t) = te−t ,
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Figure 2:he directed graph associatedwith the lineardiòerential system(5.1). Here the vertices
lie in one-to-one correspondencewith the elements of (i , j) ∈ Z2 and the direction of the edges
is given by the arrow. All edges have weight exactly 1. he resulting symmetric graph looks
nearly identical, but with the arrows removed from the edges. In the case of the associated
symmetric graph, all edges have weight 1

2 .

Figure 3: (Colour online.) he functions (5.2) for i = 0, 1, 2, 3, 4, 5. Note the unique global
maximum of x i ,0(t) at t = i.

since x1,0(0) = 0. Continuing in this way, an inductive argument shows that

(5.2) x i ,0(t) =
t i

i!
e−t ,

for all t ≥ 0. We plot the ûrst few of these functions of visual reference in Figure 3.
hen for each i ≥ 1, diòerentiating x i ,0(t) with respect to t gives

dx i ,0

dt
(t) =

t i−1

(i − 1)!
(1 −

t
i
)e−t .
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Hence, x i ,0(t) attains its global maximum at t = i, and this maximum is given by

x i ,0(i) =
i i

i!
e−i .

Using Stirling’s Approximation, we ûnd that x i ,0(i) ≥ e−1 i−
1
2 . Hence, we see that the

solution x(t) to the diòerential equation (5.1) is such that
∥x(i)∥∞ ≥ e−1 i−

1
2 ,

which shows that there cannot exists a constant C > 0 such that ∥x(t)∥∞ ≤ C(1+ t)−1

for all t ≥ 0, since i−
1
2 cannot be bounded uniformly by a constant multiple of the

function (1+ i)−1 for all i ≥ 0. herefore, system (5.1) provides an example of a system
for which the failure to have Hypothesis 2.4, but all other hypotheses ofheorem 4.1
hold, leads to solutions that can only decay at a rate of (1 + t)−

1
2 , signiûcantly slower

than the (1 + t)−1 that holds for the given associated symmetric graph. his presents
amajor problem in the analysis of the following section, sincewe require decays rates
of at least (1 + t)−1 to apply bootstrapping arguments to extend from linear ordinary
diòerential equations to local asymptotical stability of nonlinear ordinary diòerential
equations. Hence, in this case an understanding of the associated symmetric graph
cannot inform our understanding of the directed graph and the decay of solutions to
the diòerential equation (5.1).

6 Application to Coupled Oscillators

We reserve this ûnal section for an application of the results ofheorem4.1. To begin,
it is well known that systems of weakly coupled oscillators can be reduced through
a process of averaging to a single phase variable, under minor technical assumptions
[5,9,16,20]. In complete generality for a countable index set V , these systems take the
form
(6.1) θ̇v = ωv + ∑

v′∈V∖{v}
H(θv′ − θv , v , v′),

where the function H ∶ R × V × V → R is assumed to be smooth and 2π-periodic
in the ûrst variable. he constants ωv ∈ R are taken to represent intrinsic diòerences
in the oscillators and/or external inputs. In the work of [2] it was assumed that the
functions H were independent of (v , v′), leading to the limited focus on identically
coupled oscillators. With the results of theprevious section,we arenow able to expand
to more general functions H, thus providing amore robust result than that of [2].
A solution to (6.1) is called phase-locked (or synchronous) if it takes the form

(6.2) θv(t) = Ωt + θv ,

where θ = {θv}v∈V are time-independent phase-lags and the elements θv(t) aremov-
ing with identical velocity Ω ∈ R. Assuming the existence of a phase-locked solution
to (6.1) of the form (6.2), the resulting linearization about this solution leads to the
linear operator, denoted Lθ , acting on the real sequences x = {xv}v∈V by
(6.3) [Lθx]v = ∑

v′∈V∖{v}
H′

(θv′ − θv , v , v′)(xv′ − xv),

for all v ∈ V ,where the prime notation denotes diòerentiationwith respect to the ûrst
component of H. he form of Lθ given in (6.3) should be immediately recognized as
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of the form of a graph Laplacian operator with

w(v , v′) = H′
(θv′ − θv , v , v′),

for all v , v′ ∈ V . his leads to the nontrivial extension of [2,heorem 4.5].

heorem 6.1 Consider the system (6.1) for a twice-diòerentiable function H ∶ R ×

V × V → R such that the derivatives with respect to the ûrst component are uniformly
bounded in R × V × V , and assume this system of equations possesses a phase-locked
solution of the form (6.2), denoted θ lock(t). hen if the resulting linear operator Lθ
deûned in (6.3) satisûes the hypotheses of heorem 4.1, we have the following: there
exists an ε > 0 for which every θ0 = {θv ,0}v∈V with the property that

∥θ0 − θ∥1 ≤ ε

leads to a unique solution of (6.1), θ(t) for all t ≥ 0, satisfying the following properties:
(i) θ(0) = θ0;
(ii) θ(t) − θ lock

v (t) ∈ ℓp(V) for all p ∈ [1,∞];
(iii) there exists a C > 0 such that

∥θ(t) − θ lock
(t)∥p ≤ C(1 + t)−

d
2 (1−

1
p )∥θ0 − θ∥1 ,

for all t ≥ 0 and p ∈ [1,∞].

Due to the results ofheorem4.1, the proof ofheorem 6.1 is identical to the proof
of [2, heorem 4.5] and is therefore omitted. Prior to concluding this section, we
comment on a simple application of heorem 6.1 to optimally convey these results.
Consider system (6.1) with ωv = ω ∈ R for all v ∈ V , and

H(x , v , v′) = kv ,v′ sin(x),

where K = [kv ,v′]v ,v′∈V is an inûnite matrix of coupling coeõcients. We note that
no assumption on the signs of the kv ,v′ will be made. A trivial example of a phase-
locked solution to such a system of coupled oscillators is obtained by taking Ω = ω
and θv = 0 for all v ∈ V . Hence, linearizing about this phase-locked solution results
in a linear operator of the form on the right-hand side of (1.1) with w(v , v′) = kv ,v′
for all v , v′ ∈ V . Hence, using heorem 6.1, we see that the stability of this trivial
phase-locked solution can be determined by examining the directed graph induced
by the coupling matrix K. Moreover, if K can be shown to satisfy the graph-theoretic
hypotheses ofheorem4.1, one can useheorem 6.1 to infer local asymptotic stability
of the trivial phase-locked solution with respect to perturbations in ℓ1(V).

In particular, one can simply deûne the inûnitematrices Ksym and Kskew by

Ksym = 1
2 [K + KT

] and Kskew = 1
2 [K − KT

],

where KT = [kv′ ,v]v ,v′∈V is the formal transpose of the inûnitematrix K. he entries
ofKsym are exactly theweights of the associated symmetric graph, and hence to satisfy
Hypothesis 2.3, one must ûrst check that the elements of Ksym are both nonnegative
and uniformly bounded above. Furthermore, it must be such that each row and col-
umn contains only ûnitelymany nonzero entries, and the number of nonzero entries
is uniformly bounded above over all rows and columns. Checking that the symmet-
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ric graph deûned by Ksym satisûes ∆, PI, and VG(d) for d ≥ 2 can be followed as in
[2, Section 6]. Finally, to satisfyHypothesis 2.4, wemust have that the ℓ1 norm of the
entries of Kskew is ûnite.
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