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Abstract

In this paper we investigate some subclasses of strongly regular congruences on an E-inversive semigroup
S. We describe the minimum and the maximum strongly orthodox congruences on S whose characteristic
trace coincides with the characteristic trace of given congruences and, in each case, we present an
alternative characterization for them. A description of all strongly orthodox congruences on S with
characteristic trace 7 is given. Further, we investigate the kernel relation of strongly orthodox congruences
on an E-inversive semigroup and give the least and the greatest element in the class of the same kernel
with a given congruence.
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1. Introduction and preliminaries

A semigroup S is called E-inversive if for any a € S there exists x €S such that
ax € E(S), the set of idempotents of S. This class of semigroups was introduced
by Thierrin [14], and it contains both the class of all eventually regular semigroups
(in which every element has a power that is regular; see [1]) and the class of all
Bruck semigroups over a monoid (and also includes all periodic semigroups, all
group bound semigroups and all semigroups with zero). The strategy for studying
E-inversive semigroups was to generalize known results for regular semigroups
and for periodic semigroups to E-inversive semigroups. Mitsch [10] studied the
subdirect product of E-inversive semigroups, and Zheng [17] characterized the group
congruences on an E-inversive semigroup. Some basic properties of E-inversive
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semigroups were given by Mitsch and Petrich [11]. Weipoltshammer [16] described
certain special congruences on E-inversive E-semigroups.

Hayes [3] investigated E*-dense semigroups and gave a characterization theorem
for E*-dense semigroups whose idempotents form a *-rectangular band. Recently,
Luo et al. [7] described regular congruences on an E-inversive semigroup S by means
of their kernels and traces and proved that each regular congruence on S is uniquely
determined by its kernel and trace.

The lattices of congruences on regular semigroups have been explored extensively.
Gomes [2] gave descriptions for the lattice of R-unipotent congruences on a regular
semigroup, and LaTorre [6] described the 6-classes in L-unipotent semigroups. Pastijn
and Petrich [12] considered three different subdirect decompositions of the congruence
lattice. The lattice of idempotent-separating congruences on a P-regular semigroup
was studied by Sen and Seth in [13].

The aim of this paper is to describe some subclasses of strongly regular congruences
on an E-inversive semigroup. After introducing some definitions and results in
this section, in Section 2 we describe the minimum strongly orthodox congruence
determined by its characteristic trace on an E-inversive semigroup, and we give an
alternative characterization for it. A description of all strongly orthodox congruences
on an E-inversive semigroup with characteristic trace 7 is given in Section 3. In the
last section, we investigate strongly orthodox congruences determined by their kernel
and give the least and the greatest element of «(p).

In this paper S denotes an E-inversive semigroup, unless otherwise stated. We
shall use the standard terminology and notation of semigroup theory, and the reader
is referred to Higgins [4] and Howie [5]. As usual, E(S) is the set of idempotents
of a semigroup S, Reg(S) is the set of regular elements of S and V(a) is the set of
all inverses of a in S. An element x of S is called a weak inverse of a if xax = x.
We denote by W(a) the set of all weak inverses of @ in §. From [11, Lemma 3.1], a
semigroup S is E-inversive if and only if W(a) # 0 for any a € S. Luo and Li [8, 9]
described R-unipotent congruences and orthodox congruences on eventually regular
semigroups by means of the notion of ‘weak inverses’, which also play an important
role in this paper.

Recall from [15] that the core C(S)=(E(S)) of S is its idempotent generated
subsemigroup. Define

C.(S) = < U{aC(S Ya' ua'C(S)a:a e W(a),ae$S }>, Coo(S) = Cpe..(S).

Then C(S) (or just C if the context is clear) is the self-conjugate core of S. It is easy
to show that C, is the least self-conjugate full subsemigroup of S having the property
of including all weak inverses of its elements. Let p be a congruence on a semigroup
S. The subset {a€ S :ape€ E(S/p)} of S is called the kernel of p and is denoted by
ker p. The restriction of p to the subset Co, of S is called the characteristic trace of p
and is denoted by ctr p.
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Let S be a semigroup and e, f € E(S). Define

M(e, f)={g € E(S): ge =g = fg}

and
Se, f)={g € E(S):ge=g=fg egf =ef}.
S (e, f) is called the sandwich set of e and f. It is known that M (e, f) # 0 (respectively,
S(e, f)#0) forall e, f € E(S) in an E-inversive (respectively, a regular) semigroup S
(see [4]).
The following definition provides a central concept of this paper.

DeriniTiON 1.1. A congruence p on S is called a strongly regular congruence, if for
each a € S there exists @’ € W(a) such that a p ad’a.

Recall that a congruence p on a semigroup S is called regular if S/p is regular.
In [7] strongly regular congruences on an E-inversive semigroup are called regular
congruences. An example in [7] illustrates that there exists a regular congruence on
an E-inversive semigroup S which does not satisfy the following property:

Yae§) ([@d €W(a) apada.

For a class C, a C-congruence p on an E-inversive semigroup S is a strongly C-
congruence on § if p is a strongly regular. For example, an orthodox congruence p on
an E-inversive semigroup S is said to be strongly orthodox if p is strongly regular. It
is clear that C/p is a band if p is a strongly orthodox congruence on an E-inversive
semigroup S. We have seen that a congruence on an eventually regular semigroup
is regular if and only if it is strongly regular (see [16, Lemma 5.4]). Therefore a
congruence on an eventually regular semigroup S is a C-congruence on S if and only
if it is a strongly C-congruence on S. Notice the fact that all elements have a weak
inverse in an E-inversive semigroup. It follows from that the class of E-inversive
semigroups is the largest possible class on which strongly regular congruences exist.

We now list some known results for later use.

Lemma 1.2 [7]. Let a,be S, a’ e W(a), b’ e W(b). If g€ M(d'a,bb"), then b'ga’ €
W(ab) N V(agb).

Lemma 1.3 [7]. If p is a strongly regular congruence on S and ap is an idempotent of
S'/p, then an idempotent e can be found in ap such that H, < H,.

If p is a strongly regular congruence on an E-inversive semigroup S then, according
to Lemma 1.3,
kerp={aeS :(decE(S)) apel}.

Lemma 1.4 [7]. Let p be a strongly regular congruence on S. If x,y €S such that
yxy py, then there exists z € yp such that z € W(x) and H; < H,.

Lemma 1.5 [7]. Let p be a strongly regular congruence on S. If e, f € E(S) such that
e p f, then there exists g € E(S) such thate p g p f and g € M(e, f).
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DerinTioN 1.6. A congruence 7 on the least self-conjugate full subsemigroup Co, of S
is said to be regular normal if:

1) MaeS)a* € W(a))(Va’ € W(a)) aa’ T aa*ad’,d’a T a’aa*a;

(i) (x,yeCx)xty= NaeS,Va' € W(a)) axa’ T aya’,a’xa 7 a’ya.

Lemma 1.7. Let p be a strongly orthodox congruence on S with t =ctrp. Then tis a
regular normal band congruence on Ce.

Proor. Since p is a strongly regular congruence, for any a € S, there exists a* € W(a)
such that @ p aa*a. Thus aa*aa’ T aa’ and d’aa*a T a’a for any a’ € W(a). Let
x,y € Cs be such that x 7 y. Then for any a € S and a’ € W(a), we have axa’ T aya’
and a’xa 7 a’ya. Hence 1 is a regular normal congruence on C. It follows from p
being a strongly orthodox congruence on S that Co,/7 is a band. Thus 7 is a regular
normal band congruence on Co. O

2. The minimum strongly orthodox congruences determined by
characteristic traces

Let 7 be an equivalence relation on C,,. Define the following relation 7,;, on S for
a,bes:

(V' € W(a))3b' € W(b))(Ax, y € Cu)(xa = by, xtad' thb’, yrd'ath’'b) &

@Tminb & (Vo' e W(b))Ta' € W(a))(Ix, y € Co)(xb = ay, xtaa’tbb’, yta'atb'b).

TueoreM 2.1. Let p be a strongly orthodox congruence on S with T = ctr p. Then Ty,
is the minimum strongly orthodox congruence on S with characteristic trace 7.

Proor. We first show that 7, is an equivalence relation. It is clear that 7.y, is reflexive
and symmetric. To show that 7y, is transitive, let (a, b), (b, ¢) € Tyin- Then for any
a’ € W(a) there exist b’ € W(b), x,y € C such that

xa=by, xtad Tbb' and ytdatb'b,
and so for b’ € W(b), there exist ¢’ € W(c), z,v € C such that

h=cv, ztbb tcc and vrbbtcc.

Let x; =zx, y; =vy. Then x;,y; € Co and xy -a =zxa =zby=cvy=c-y;. Notice
x 7 zand y T v; we have that

xi=zxtad tec’, yi=vyrdartdec.

Dually we may show that for any ¢’ € W(c), there exist a’ € W(a), p, g € Cw such that
pc=aq, ptaad tvcc’ and g T d’a 1 ’c. Therefore (a, ¢) € Ty, as required.
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To show that 7., is a congruence, suppose that (a, b) € Tp,;,. For any c€ S,
(ac) € W(ac), we have that a’ = c(ac)’ € W(a), ¢’ =(ac)a€ W(c) and (ac) =c'a’,
ad'a=cc’. By the definition of Ty, there exist b’ € W(b), x,y€ Cs such that
xa=by, xtad Tbb’ andy T a'atb'b. Now

becd'b' x - ac = be - b’ byc.
Let s =bcc’b’x, t =c’b’byc. Then s,t € C, and s - ac = bc - t. It follows that
s=bcc’'b’'x=bd’ ab’x T bb'x T ad’ = (ac)c’a’ = (ac)(ac)

and
t=c'b'byc T 'd’ ac = (ac) (ac).

On the other hand, by Lemma 1.5, there exists g € M(b'b, a’a) = M(b’b, cc’) such that
b'btgtda. Let(bc) =c'gb’. Then (bc) € W(bc). It now follows that

s 7 (ac)(ac) = aa’ T bb’' = bb'bb’ T bgb’ = bec’ gb” = (be)(be)’

and
t 7 (ac) (ac) = c'd’ac v ’gc = ("gb")(bc) = (be) (bo).

A similar argument will show that for any (bc)’ € W(bc), there exist (ac)’ € W(ac), p, q
€ Cy such that p(bc) = (ac)g and p 7 (ac)(ac) T (bc)(bc), g T (ac) (ac) T (bc) (be).
Hence ac Ty, be, and so that 7, is a right congruence on S. Similarly, we can show
that Ty, 1s a left congruence on S. Consequently, T, iS @ congruence on S.

We now verify that ctr Ty, = 7. Suppose first that (x, y) € 7N Cw. Then for any
x" € W(x) and x’" p x’yx’, by Lemma 1.4, there exists y' € W(y) such that x" p y" and so
xx’ Tyy and x'x 7 y'y. Since x’x T y’y, by Lemma 1.5 there exists g € M(x'x,y'y)
such that x’x 7 ¢ 7 y’y. Put m=ygx’ and n=g; then m,n € Cs. It follows that
m-x=ygx'x=yg=y-n. Then

m=ygx' tyy'yy =yy vxx and n=gtx'xtyy.

A similar argument will show that for any y’ € W(y), there exist x’ € W(x), p,q € Cw
suchthat p-y=x-qgand p v xx" 7yy, g 7 x’x Ty’y. Thus (x, y) € Tin.

Conversely, let (x, y) € ctr 7. Since p is a strongly regular congruence on S, there
exist X’ € W(x) and ¥y € W(y) such that x p xx”"x and y p yy”y. By the definition of
Tmin, there exist y’ € W(y), pi, q1 € Co such that

pix=yq, prtxx"tyy and q;tx"x7tyy,
and there exist x’ € W(x), my, n; € Cw such that
my=xn, mtxxtyy and ntx'xty’y.

It follows that
xtxxX'xtpix=yq tyyytxxy
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and
yryw'yrxx'ytxx"xx'y t xx"y.

Hence x 7y, as required.

To show that 7y, is a strongly orthodox congruence, we first show that 7, is a
strongly regular congruence on §. By Lemma 1.7, 7 is a regular normal congruence on
C.; then for each a € S, there exists a™ € W(a) such that aa’ T aa*aa’ and d’a v d’aa™a
for any a’ € W(a). Clearly, aa*a € Reg(S). Now we show that a T,;, aa*a. Notice that
da=dad a1 aaa*ad a, so by Lemma 1.4 there exists (a*a) € W(a*a) N Cs such
that (a*a)’ 7 a’a and Hi+,y < Hy,. Notice that (a*a)'a’a = (a*a)’, hence

(a*a)'d -aa*a-(a*a)ad =(a*a)a’ thatis,(a*a)a’ € W(aa"a).
Put s=aa*ad’,t=d'a;then s,t € Cs and s - a =aa*aa’a = aa*a - t. It follows that
s=aa*ad taa 1 (aata)ata)d
and
t=datdaa*at(a*a)a a=(a"a)d (aa*a).

On the other hand, for any ue€ W(aa*a), we have a*au-a-a*au=a*au and
au - aa® - au = au. It follows that a*au € W(a) and au € W(aa*) N Cw. Thus

aatau-au-aatau=a-a*au - au v aatauaa® au = aa*au.

So by Lemma 1.4 there exists v € W(au) such that v T aa*au where v, aa*au € C,. Let
a* =uv. Then uvauv = uv implies a* € W(a). Put I = au, h=uaa*a. Then [, h € Cy
and /- aa*a = a - h. It follows that

l=au=auaa*autauv=a-a* taa*auv v aa*tau - aatau = aa*a - u
and
h=u-aa*a =uaa*auaa*a v uvaa*a =a*aa*a v a* - a.

Therefore a T, aa™a, as required.

Next let atmin, bTmin € E(S /Tmin)- Then by Lemma 1.3 there exist e, f € E(S) such
that a Ty, €, b Tin f- It follows from the fact that 7 is a strongly orthodox congruence
on C,, that

(ab)? Twin (€f)* T (ef) Tmin (ab).

Then atyinbTmin * ATminDTmin = ATminbTmin. Hence S /Ty is an orthodox semigroup
and Ty, is a strongly orthodox congruence on S'.

Finally, we show that 7, is the minimum strongly orthodox congruence on S
with characteristic trace 7. Let 6 be any strongly orthodox congruence on S with
characteristic trace 7, and (a, b) € Tpi,. Since 6 is a strongly regular congruence on S,
for any a, b € §, there exist a” € W(a) and b”” € W(b) such that a 8 aa”’a and b 6 bb"'b.
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By the definition of 7., there exist a’ € W(a), b’ € W(b), x,y,l, h € C such that

xb=ay, xtaa Tbb”, ytadatbh’b

and
la=bh, Iltad’ tbb', hta’atbb,
so that
x6aa Obb”, yOda6b'b
and

l6aa” Obb', hOa’abb'b.
It follows that (b’a) 8 b’aa”’ a 0 b’la = b’bh 6 b’b, and so (b'a)6 € E(S/6). Now
aBaa’adbb'albla)ba)baba.
On the other hand,
bObb'b0Oaa'bbaa’aa’b 0 (aa”)bb"b) 6 aa’b.
It follows that
abaa’aBab’bbab -aa”’b=ab'a-a”"b60aa”bob.
Therefore T, C 6, as required. O
We now present an alternate characterization of 7Tp;y.

THEOREM 2.2. Let p be a strongly orthodox congruence on S with T = ctr p. Define a
binary relation 6, on S as follows. For a,b € S, let

Va' e W(a))(Ab' e W(b)) (aa’ T bb’, a’atb'b, a’b €ker Tpn) &

@ Omin b < (Vo' e W(b)3a' € W(a)) (aa’ T bb’, d’atb'b, b'a € ker Tpin).

Then 6min = Tmin-

Proor. Let (a, b) € Tmin. Then for any a’ € W(a), there exists b’ € W(b) such that
ad’ Tbb',a’'a T b'b. Also (a’b, d’a) € Ty, and so a’b € ker Ty,. A similar argument
will show the dual case. Hence (a, b) € Omin, as required.

Conversely, let (a, b) € . For any @’ € W(a), then there exists b’ € W(b) such that
aa’ Tbb',a’a v b’b and a’b € ker 1. Notice that T = ctr ;. Thus aa’ ctr Ty, bV,
a'a ctr Ty b’b and a’b € Ker Tyy,.  Similarly, for any b’ € W(b), there exists @’ €
W(a) such that aa’ ctr T, bb’, a’a ctr Ty, B’'b and b’a € Ker Tpy;,. Since T, 1S a
strongly orthodox congruence on S, it is easy to prove that a T, b by imitating the
corresponding part of Theorem 2.1. Therefore dpin = Tmin- O
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3. Strongly orthodox congruences determined by characteristic trace

DeriniTION 3.1. Let S be a semigroup and 7 be an equivalence relation on Cs,. Define
a binary relation 1y, on S fora, b € S by

b Va' e W(a)) AD e W(b)) (aa’ Tbb', dathb'h) &
@ Tmax (Vb € W(b)) Aa’ € W(a)) (ad’ T bV, d'at b'b).

If 7 is an equivalence relation on E(S) then 7, is equivalent to the relation H;
given in [7, Definition 2.1]. It is clear that if 7 is a congruence on E(S) and € Ty f
for any e, f € E(S), then et = fT.

THEOREM 3.2. Let p be a strongly orthodox congruence on S with T = ctr p. Then Tp,x
is the maximum strongly orthodox congruence on S with characteristic trace T.

Proor. It follows from the fact that p is a strongly orthodox congruence on S that
T = ctr p is a band congruence on Co,.

To show that ctr T, = 7, let x, y € Co, be such that x 7,,x ¥. Since p is a strongly
regular congruence, there exist X’ € W(x) N Cs such that x p xx’x. So by the definition
of Tmax, there exist y' € W(y) N Co such that xx’ 7 yy’, x’x 7 y'y. It follows from
T = ctr p being a band congruence on C, that xy'y T x 7 xx’x 7 yy’x. And so xy 7 x 7 yx.
Dually, we have that yx 7 y 7 xy. Hence x 7 y, and so ctr T, € 7. Conversely, let
x,y € C be such that x 7 y. For any x" € W(x), then x’yx’ p x’. By Lemma 1.4, there
exists y' € W(y) such that x’ p y'. Hence xx’ 7 yy’ and x’x 7 y’y. Dually, for any
y' € W(y), there exists x” € W(x) such that xx’ 7 yy’, x’x 7 y’y. Hence x T,,x y and so
T C Tmax. Therefore T = Ctr Tyax.

As in [7, Theorem 2.3] we may deduce that T, is the maximum strongly regular
congruence on S. Then 7,y is the maximum strongly orthodox congruence on S with
characteristic trace 7. O

ProposiTiON 3.3. Let p be any strongly orthodox congruence on S with T = ctr p. Then
foralle € E,

ep = eTmax N ker p.

Proor. Leta € et N Ker p, thatis, (a, €) € Tyax and a € ker p. Then there exists f € E
such that (a, f) € p. It follows that faf p f. By Lemma 1.4, there exists a’ € W(a) such
that a’ p f. Hence (ad’, f) € p, and a p aa’. It is easy to show that p C 7, and so
a Tmax aa’. By the definition of Ty, there exists a* € W(a) such that aa’ p aa™ p a*a.
Thus a p ad’ p aa*. Since (a, €) € Thyax, there exists e* € W(e) such that aa* p ee”.
Therefore

apaa*pee*=e-ee*pe-apef.
On the other hand,

apaa*p fa*=f- fa* p fa.
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Since (a, €) € Thax again, there exists a”” € W(a) such that e p aa” p a”’a. Then
ep fa’pa’f,andsoep fef p fap a. Therefore a € ep, as required.

Conversely, let a € ep for some e € E. Thus a € kerp. For any a’ € W(a), then
a’ p d'ea’ and, by Lemma 1.4, there exists ¢’ € W(e) such that ¢ p a’. Therefore
aa’ pee’ and d’a p €’e, that is, aa’ T e¢’ and d’a T €’e. A similar argument will show
that for any ¢’ € W(e) there exists a’ € W(a) such that aa’ T ee’ and a’a T ¢’e. Thus
a € eTmax, and so a € ety N ker p. Consequently, ep = eTax N ker p. a

We now present an alternate characterization of 7. The following theorem is very
easily proved by imitating the style of Theorem 2.2. We omit the details.

THeorREM 3.4. Let p be a strongly orthodox congruence on S with T = ctr p. Define the
following relation 6,,x on S fora,b e S by

Va’' e W(a)) @' e W(b)) (aa’ Tbb’, d’atb'b, a’beker Ty &

a0max b < (Vb € W(b)) (Fa’ € W(a)) (ad’ Tbb’, d’atb'b, b’a € Ker Tpay)-

Then 6max = Tmax-

DeriniTion 3.5. A subset K of S is called complete if, for a, b € S and x € C,:
(i) E(S)CK,thatis, K is full;

(i)  xa € K implies xaa*a € K for each a* € W(a);

(iii) b € K implies (ab® € K & ab € K).

DeriniTion 3.6. Let 7 be a regular normal congruence on C,,. A subset K of § is called
7-normal if, forany a,b € S, x € Cw,

(Cy) for y,zeS,a’ € W(a) and b’ € W(b), aa’ T bb’, d’a v b'b, a’be K and
y'ze K=ya'zeK.

(C,) forany a’ € W(a),a’be K and (x,aa’) et = d’xb e K.

(C3) forat e W(a), xae Kand xtaa® = a€ K.

ProposiTion 3.7. Let p be a strongly orthodox congruence on S with T=ctrp. If
K =ker p, then K is a complete and t-normal subset.

Proor. We first show that K is a complete subset. It is clear that K is full. Let
aeS and x € C, be such that xa € K =ker p. Then there exists e € E(S) such that
xa p e. Since p is a strongly regular congruence on S, there exists @’ € W(a) such that
apaa”a. By Lemma 1.7, T = ctr p is a regular normal band congruence on Cs,. Then
aa” ctrp aataa” for each a* € W(a), that is, aa” p aa*aa”. 1t follows that

ap = (aa” a)p = (aa*aa” a)p = (aa*a)p.

It follows that xaa*a p xa p e, and so xaa*a € K. Now let b € K. Then there exists
e € E(S)suchthat b p e. Thus ab p ae p ae® p ab*, and so ab € K < ab* € K. Therefore
K is a complete subset.

Consider a, b,y,z€ S and a’ € W(a), b’ € W(b) with aa’ T bb’, d’at b’b, a’be K
and yb'z € K. Then (a'b)p, (yb'z)p € E(S /p). It follows that

a =dad pabb pababb padbd
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and
b =b'bb pbad pbaa'ba pb'ba pdad =d.
Therefore (ya’z)p = (yb'z)p € E(S/p). By Lemma 1.3, ya’z € ker p, and so (C;) holds.

For any a€ S and x € Cw, @’ € W(a), if a’b € K and (x, aa’) € 7, then there exists
f € E(S) such that a’b p f. It follows that a’xb p a’aa’b =d’b p f, thatis, a’xb € K.
And so (C3) holds.

Let x € Cw be such that xa e ker p and x ctrp aa* for a* € W(a). Then (xa)p €
E(S/p). As p is a strongly regular congruence on S, one can deduce that a p aa*a as in
the proof above. Hence ap = (aa*a)p = (xa)p € E(S/p). Thus a € ker p by Lemma 1.3,
and so (C3) holds. Therefore K is a complete and 7-normal subset. O

The following theorem gives a description of all strongly orthodox congruences
with characteristic trace 7 on S . Denote

N ={K: ker Ty, € K C Ker Tnax Where K is a complete and 7-normal subset of S }.

Notice that ker T, and ker 7,4 are both the kernels of strongly orthodox congruences.
It follows from Proposition 3.7 that ker 7y, and ker 7,,x belong to N.

THeorEM 3.8. Let p be a strongly orthodox congruence on S with T = ctr p. Define a
binary relation pg on S as follows. For a,b € S, let

Va' e W(a)) Ab" e W(b)) (aa’ Tbb’, d'ath'b, a'beK) &

APRD S G e WibY) Qa’ € W(a)) (ad’ T bb'. d'atb'b, bacK).

Then the map K — pg is a one-to-one order-preserving map of N onto the set of all
strongly orthodox congruences on S with characteristic trace .

Proor. First we shall show that pk is an equivalence relation on S. It is clear that pg is
symmetric and reflexive. To prove that pg is transitive, let (a, b) € pk, (b, ¢) € pg. For
any a’ € W(a), then there exists b’ € W(b) such that aa’ T bb’, a’a v b’b and a’b € K,
and for b’ € W(b) there exists ¢’ € W(c) such that bb’ Tt cc’, b’btc’cand b’c € K. Since
T 18 transitive, we have that aa’ T ¢¢’ and @’a 7 ¢’c. Since b’c € K and ab’ba’ T aa’ T bb’,
by (Cy), b’ -ab’ba’ - c € K. Since aa’ T bb’, a’a v b’b and a’b € K, by (C;) we have
b'aa’ba’c € K. Thus b'aa’b - (a’c)(a’c)*(a’c) e K as K is a complete subset. Notice
that c(a’c)™ € W(a’), hence we have b’'aa’b - a’c(a’c)” T d’c(a’c)*. By (C3), d’ce K.
Dually, we may show that for any ¢’ € W(c), there exists a’ € W(a) such that aa’ 7 cc’,
a’'at c’cand c'ae K. Hence a px ¢ and pg is transitive. Consequently, px is an
equivalence relation on S.

To show that px is a congruence, let a,b,c€ S be such that (a,b) € pk.
For any (ca)’ € W(ca), we have that a’ = (ca)'ce W(a), ¢’ =a(ca) € W(c) and
(ca) =d'c’, ad’ =c’c. By the definition of pg, there exists b’ € W(b) such that
aa’ T bb’', a’a v b’b and a’be€ K. Hence (ca)’ (ch) =a’b € K. On the other hand,
by Lemma 1.5, there exists g € M(aa’, bb") = M(c’c, bb") such that ¢’c = aa’ T g T bb'.
Let (cb) = b’gc’. Then (cb) = b'gc’ € W(cbh). It now follows that

(ca)(ca) = cad' ¢’ T cbb' g’ = (cb)(cb)
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and
(cb) (ch)=b'gc’'cb=b'gbtb'btda=dad’a=ad ' ca=(ca)(ca).

A similar argument will show that for any (cb)’ € W(cb), there exists (ca)’ € W(ca)
such that (ca)(ca) T (cb)(cb)’, (ca) (ca) T (cb) (cb) and (c¢b) ca € K. Hence (ca, cb) €
Pk, and so pg is a left congruence on S. Similarly, we can show that pg is a right
congruence on S. Consequently, px is a congruence.

It is easy to show that pg is a strongly orthodox congruence by following exactly
the same argument of the corresponding part of Theorem 2.1.

Next we show that ctr pg =7. Let x,y € C be such that x pgx y. Since pg is a
strongly regular congruence, there exist x” € W(x) N C such that x p xx’x. So by the
definition of pg, there exist y’ € W(y) N Cs such that xx” 7 yy’, x'x 7 y"y. It follows
from the fact that 7 is a band congruence on C, that xy'y 7 x 7 xx’x 7 yy’x. And so
xy 7 x T yx. Dually, we have that yx 7y 7 xy. Hence x 7 y, and so ctr px C 7.

Conversely, let x, y € C,, be such that x 7 y. Take any x’ € W(x); then x'yx" p x’. By
Lemma 1.4, there exists y’ € W(y) such that x" p y". Hence xx’ 7 yy’ and x'x 7y"y. Now
Yy € K and xx’ 7 yy’, then by (C;) we have y’ xx'y € K, and so y'xx’'y(x'y)"(x'y) € K as
K is a complete subset. It follows that

Yxx'y(x'y)" T X x(x'y)" T X y(x'y)"

By (C3), we have x’y € K. Dually, for any y' € W(y), there exists x’ € W(x) such that
xx' tyy, x’xty'yand y'x € K. Hence x px y and so 7 C pg. Therefore 7 = ctr pg.

Next, to prove that the given map is onto, let u be a strongly orthodox congruence
with 7 =ctr g on § and let (a, b) € pyer . Then for any a’ € W(a), there exists b’ € W(b)
such that aa’ ctru bb’, a’a ctr u b’b and a’b € ker p. Dually for any b’ € W(b), there
exists @’ € W(a) such that aa’ ctru bb’, a’a ctr u b’b and b’a € ker u. Recall that u
is a strongly orthodox congruence. Then it is easy to show that a y b. Conversely,
let a u b. Then for any a’ € W(a), a’ i a’ba’. By Lemma 1.4, there exists b’ € W(b)
such that ¢’ u b’. Thus aa’ u bb’ and a’a u b’'b, that is, aa’ v bb’ and a’a v b’'b.
Also (a’b,a’a) € u, and so a’b € ker u. A similar argument will show that for any
b’ € W(b), there exists @’ € W(a) such that aa’ v bb’, a’a v b'b and b’a € ker u. Hence
(a, b) € prer > as required.

The given map is clearly order-preserving. We shall now show that the given map
is one-to-one. To this end, let K, L € N with pg = p; and let a € K. Since K C ker T,
a € ker Tmax. Therefore (a, €) € Tmax for some e € E(S). Then (a, a*) € Tmax. By the
definition of Ty, for any a’ € W(a), there exists ¢ € W(a?) such that aa’ T a*c and
datca SinccacK and dac K, daaeK as K is a complete subset. On the other
hand, for any ¢ € W(a?), there exists a’ € W(a) such that aa’ T a>c and a’a 7 ca®. Since
ca* € K and a € K, ca € K as K is complete subset. Thus (a, a*) € px = p. Then there
exists f € E(S) such that a p; f. For a* € W(a), by the definition of p;, there exists
fr e W(f)suchthataa™ v ff’,a*at f’ f and a* f € L. On the other hand, for f € W(f),
there exists a’ € W(a) such that aa’ v f v a’a and fa € L. Since fa€ L, faatac L as
L is a complete subset. Now faa* 7 f- ff' = ff 7 aa*. By (C3), we have a € L.
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Thus K € L. Similarly, we can prove that L € K. Therefore K = L. We conclude that
the given map is one-to-one. O

4. Strongly orthodox congruences determined by kernel

In this section we investigate the k-relation of strongly orthodox congruences on an
E-inversive semigroup and give the least and the greatest element of k(p).

DerinTion 4.1 [5]. If 6 and p are congruences on S such that 6 C p, then the relation
p/6on S/0is defined by
(x0, y9) € p/6 if and only if (x, y) € p.

This relation p/@ is in fact a congruence on S /6.
The set of all strongly regular (orthodox) congruences on S is denoted by SRC(S)
(SOC(S)).

DerintTION 4.2. Define
k ={(p, 8) € SOC(S) x SOC(S) : ker p = ker 6}
and denote the «-class containing p € SOC(S') by «(p).

The following is a direct analogue of [7, Lemma 2.7] and the proof carries across
with minimal change. We omit the details.

Proposition 4.3. For any p € SOC(S), the relation
P ={(a,b)eS xS :(Vx,yeS") xay € ker p & xby € ker p}
is the greatest element of k(p).

Let
75 ={(a,b)eS XS :(Vx,yeSl)xayeE(S)@xbyeE(S)}.
THeorEM 4.4. Let p, 8 € SRC(S). Then the following statements are equivalent:
M pkb;

(2) p g emax and Hmax /p - TS/p;
(3) apTsy bp & ab s/ bE.

Proor. (1)=(2). Let p « 6; then ker p = ker 6. Thus p C p™* = 8™*. For any a,b € S,
from the definition of 7/,

ap 0™ /p bp © a 6™ b
& (Yx,yeS") (xay eker 0 & xby € ker 6)
& (Yx,yeS") (xay e ker p & xby € ker p)
& (Yx,yeSh (xay)p € E(S/p) & (xby)p € E(S/p))
& (Vxp, yp € (S/p)") (xp)(ap)(yp) € E(S /p) & (xp)(bp)(p) € E(S /p))
& ap ts, bp.
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(2)=(1). By p € 6™*, we have ker p C ker ™** = ker 6. Conversely, let a € ker 8 =
ker 6™2%; then there exists e € E(S) such that (a, ¢) € 6™**. So we have

a0 e ap 0" /pep o ap Tg), ep
& (Yxp, yp € (S/p)") ((xp)(ap)(yp) € E(S /p) & (xp)(ep)(p) € E(S/p))
& (Vx,yeS") (xay)p € E(S [p) & (xey)p € E(S/p))
& (Vx,yeSY) (xay ekerp & xey € ker p)
& (a, e) € P,

Thus a € ker p™* = ker p. That is, ker 6 C ker p. Hence p « 6.
()=(@3). Foranya,beS,

ap Ts; bp © (Yxp, yp € (S p)") (xay)p € E(S/p) & (xby)p € E(S /p))
& (Vx,yeS") (xay ekerp & xby € ker p)
& (Yx,ye S (xay eker @ & xby € ker 6)
e (Vx,yeSh) ((xay)d € E(S/0) & (xey)d e E(S/0))
& ab TS/0 bo.

(3)=(1). Let a € ker p; then there exists e € E(S) such that (a, ¢) € p. Thus

(a,e) €p=(ap,ep) € 1/, S50
= (apts)pep © abrs getd)
& (Vx0, yi € (S/0)") ((x0)(ab)(y6) € E(S /6) & (x6)(ed)(y6) € E(S /6))
o (Vx,yeSh) ((xay)d € E(S/0) & (xey)d € E(S/0))
& (Vx,yeS") (xay € ker § & xey € ker 6).

Since e=1-e-1€kerf, a=1-a-1eker6, that is, kerp Cker6. By symmetry,
ker 6 C ker p. Thus p k 6. O

DerINITION 4.5. A subset K of S is called strongly orthodox normal, if K is the kernel
of a strongly orthodox congruence on S .

ProposiTiON 4.6. Let K be a strongly orthodox normal subset of S. Define a relation R
on S by
R ={(a,ad a), (a,d®): a €K, for some a’ € W(a)}.

Then R*, the congruence generated by R, is the least strongly orthodox congruence on
S with kernel equal to K, and we denote it by p™".

Proor. It suffices to prove K = ker R*. If K is a strongly orthodox normal subset of S,
clearly K C ker R*. Conversely, let a € K; then there exist e € E(S) and p € SOC(S)
such that a p e, and so a p a*. Since p is a strongly orthodox congruence, there exists
a’ € W(a) such that a p aa’a. Then R C p, and thus R* C p. Therefore ker R* Cker p =
K. Thus K = ker R*. O

ProrosiTioN 4.7. Let p, 8 € SRC(S). Then:

(1) ifpC6andctrp=ctrb, then (a,b) € p if and only if (a, b) € 6 and a’b € ker p
for any a’ € W(a);
) (a,b)epifandonlyif(a, b) € (ctr p)max and a’b € ker p for any a’ € W(a).
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Proor. (1) Assume that p C 6 and ctrp =ctr6. Let (a, b) € p; then (a,b) € 6. It is
clear that a’b € ker p for all a’ € W(a). Conversely, let (a, b) € 6 and a’b € ker p for
any a’ € W(a). Since p is a strongly regular congruence on S, for any a, b € S, there
exist a” € W(a) and b"” € W(b) such that a p aa”’a and b p bb"b. Since (a, b) €6,
then a” 0 a”’ba”. By Lemma 1.4, there exists b’ € W(b) such that a” 6 b’. Thus
aa” Obb" and a”’a 6 b’'b. Notice that ctr p = ctr 0, then we have aa”” p bb’ and a”’a p b'b.
Similarly, there exists a’” € W(a) such that aa’ p bb” and a’a p b”’b. Now a’b € ker p.
It follows that
bpbb"bpad'bpaa’bd’bp bd'b.

On the other hand,
apad’apbbapbb'bb apbb”a.
Therefore,
bpbb"bpbdapbabb’apbb’ap a.
(2) This is easy to show, so we omit the details. O

max

ProrosiTION 4.8. For any p € SOC(S), we have p = pmin V p™" = pmax N

Proor. Clearly, pmin V 0™" C p C pmax N ™. Then

Ctr(pmin \V pmin) CctrpC Ctr(pmax N pmaX),
ker(pmin \Vj pl‘ﬂln) - kCI'p C ker(pmax N pmaX).

Furthermore,

ctr(Omax N pmaX) C Ctr Prmax = Ctr p = Ctr Ppin € Ctr(Omin V pmin),
ker(Pmax N P™) C Ker pmax = ker p = ker pmin € Ker(omin V p™").

Therefore '
Ctr(Pmin V ™) = ctr p = Cti(Pmax N p™),
ker(omin V p™) = ker p = ker(pmax 1 p™™).

Thus p = pmin V pmin = Pmax N P, m|
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