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Abstract

In this paper we investigate some subclasses of strongly regular congruences on an E-inversive semigroup
S . We describe the minimum and the maximum strongly orthodox congruences on S whose characteristic
trace coincides with the characteristic trace of given congruences and, in each case, we present an
alternative characterization for them. A description of all strongly orthodox congruences on S with
characteristic trace τ is given. Further, we investigate the kernel relation of strongly orthodox congruences
on an E-inversive semigroup and give the least and the greatest element in the class of the same kernel
with a given congruence.
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1. Introduction and preliminaries

A semigroup S is called E-inversive if for any a ∈ S there exists x ∈ S such that
ax ∈ E(S ), the set of idempotents of S . This class of semigroups was introduced
by Thierrin [14], and it contains both the class of all eventually regular semigroups
(in which every element has a power that is regular; see [1]) and the class of all
Bruck semigroups over a monoid (and also includes all periodic semigroups, all
group bound semigroups and all semigroups with zero). The strategy for studying
E-inversive semigroups was to generalize known results for regular semigroups
and for periodic semigroups to E-inversive semigroups. Mitsch [10] studied the
subdirect product of E-inversive semigroups, and Zheng [17] characterized the group
congruences on an E-inversive semigroup. Some basic properties of E-inversive
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semigroups were given by Mitsch and Petrich [11]. Weipoltshammer [16] described
certain special congruences on E-inversive E-semigroups.

Hayes [3] investigated E∗-dense semigroups and gave a characterization theorem
for E∗-dense semigroups whose idempotents form a ∗-rectangular band. Recently,
Luo et al. [7] described regular congruences on an E-inversive semigroup S by means
of their kernels and traces and proved that each regular congruence on S is uniquely
determined by its kernel and trace.

The lattices of congruences on regular semigroups have been explored extensively.
Gomes [2] gave descriptions for the lattice of R-unipotent congruences on a regular
semigroup, and LaTorre [6] described the θ-classes inL-unipotent semigroups. Pastijn
and Petrich [12] considered three different subdirect decompositions of the congruence
lattice. The lattice of idempotent-separating congruences on a P-regular semigroup
was studied by Sen and Seth in [13].

The aim of this paper is to describe some subclasses of strongly regular congruences
on an E-inversive semigroup. After introducing some definitions and results in
this section, in Section 2 we describe the minimum strongly orthodox congruence
determined by its characteristic trace on an E-inversive semigroup, and we give an
alternative characterization for it. A description of all strongly orthodox congruences
on an E-inversive semigroup with characteristic trace τ is given in Section 3. In the
last section, we investigate strongly orthodox congruences determined by their kernel
and give the least and the greatest element of κ(ρ).

In this paper S denotes an E-inversive semigroup, unless otherwise stated. We
shall use the standard terminology and notation of semigroup theory, and the reader
is referred to Higgins [4] and Howie [5]. As usual, E(S ) is the set of idempotents
of a semigroup S , Reg(S ) is the set of regular elements of S and V(a) is the set of
all inverses of a in S . An element x of S is called a weak inverse of a if xax = x.
We denote by W(a) the set of all weak inverses of a in S . From [11, Lemma 3.1], a
semigroup S is E-inversive if and only if W(a) , ∅ for any a ∈ S . Luo and Li [8, 9]
described R-unipotent congruences and orthodox congruences on eventually regular
semigroups by means of the notion of ‘weak inverses’, which also play an important
role in this paper.

Recall from [15] that the core C(S ) =
〈
E(S )

〉
of S is its idempotent generated

subsemigroup. Define

Cc(S ) =

〈 ⋃
{aC(S )a′ ∪ a′C(S )a : a′ ∈W(a), a ∈ S }

〉
, C∞(S ) = Ccc···(S ).

Then C∞(S ) (or just C∞ if the context is clear) is the self-conjugate core of S . It is easy
to show that C∞ is the least self-conjugate full subsemigroup of S having the property
of including all weak inverses of its elements. Let ρ be a congruence on a semigroup
S . The subset {a ∈ S : a ρ ∈ E(S/ρ)} of S is called the kernel of ρ and is denoted by
ker ρ. The restriction of ρ to the subset C∞ of S is called the characteristic trace of ρ
and is denoted by ctr ρ.
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Let S be a semigroup and e, f ∈ E(S ). Define

M(e, f ) = {g ∈ E(S ) : ge = g = f g}

and
S (e, f ) = {g ∈ E(S ) : ge = g = f g, eg f = e f }.

S (e, f ) is called the sandwich set of e and f . It is known that M(e, f ) , ∅ (respectively,
S (e, f ) , ∅) for all e, f ∈ E(S ) in an E-inversive (respectively, a regular) semigroup S
(see [4]).

The following definition provides a central concept of this paper.

D 1.1. A congruence ρ on S is called a strongly regular congruence, if for
each a ∈ S there exists a′ ∈W(a) such that a ρ aa′a.

Recall that a congruence ρ on a semigroup S is called regular if S/ρ is regular.
In [7] strongly regular congruences on an E-inversive semigroup are called regular
congruences. An example in [7] illustrates that there exists a regular congruence on
an E-inversive semigroup S which does not satisfy the following property:

(∀a ∈ S ) (∃a′ ∈W(a)) a ρ aa′a.

For a class C, a C-congruence ρ on an E-inversive semigroup S is a strongly C-
congruence on S if ρ is a strongly regular. For example, an orthodox congruence ρ on
an E-inversive semigroup S is said to be strongly orthodox if ρ is strongly regular. It
is clear that C∞/ρ is a band if ρ is a strongly orthodox congruence on an E-inversive
semigroup S . We have seen that a congruence on an eventually regular semigroup
is regular if and only if it is strongly regular (see [16, Lemma 5.4]). Therefore a
congruence on an eventually regular semigroup S is a C-congruence on S if and only
if it is a strongly C-congruence on S . Notice the fact that all elements have a weak
inverse in an E-inversive semigroup. It follows from that the class of E-inversive
semigroups is the largest possible class on which strongly regular congruences exist.

We now list some known results for later use.

L 1.2 [7]. Let a, b ∈ S , a′ ∈W(a), b′ ∈W(b). If g ∈ M(a′a, bb′), then b′ga′ ∈
W(ab) ∩ V(agb).

L 1.3 [7]. If ρ is a strongly regular congruence on S and aρ is an idempotent of
S/ρ, then an idempotent e can be found in aρ such that He 6 Ha.

If ρ is a strongly regular congruence on an E-inversive semigroup S then, according
to Lemma 1.3,

ker ρ = {a ∈ S : (∃e ∈ E(S )) a ρ e}.

L 1.4 [7]. Let ρ be a strongly regular congruence on S . If x, y ∈ S such that
yxy ρ y, then there exists z ∈ yρ such that z ∈W(x) and Hz 6 Hy.

L 1.5 [7]. Let ρ be a strongly regular congruence on S . If e, f ∈ E(S ) such that
e ρ f , then there exists g ∈ E(S ) such that e ρ g ρ f and g ∈ M(e, f ).
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D 1.6. A congruence τ on the least self-conjugate full subsemigroup C∞ of S
is said to be regular normal if:

(i) (∀a ∈ S )(∃a+ ∈W(a))(∀a′ ∈W(a)) aa′ τ aa+aa′, a′a τ a′aa+a;
(ii) (∀x, y ∈C∞) x τ y⇒ (∀a ∈ S , ∀a′ ∈W(a)) axa′ τ aya′, a′xa τ a′ya.

L 1.7. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. Then τ is a
regular normal band congruence on C∞.

P. Since ρ is a strongly regular congruence, for any a ∈ S , there exists a+ ∈W(a)
such that a ρ aa+a. Thus aa+aa′ τ aa′ and a′aa+a τ a′a for any a′ ∈W(a). Let
x, y ∈C∞ be such that x τ y. Then for any a ∈ S and a′ ∈W(a), we have axa′ τ aya′

and a′xa τ a′ya. Hence τ is a regular normal congruence on C∞. It follows from ρ
being a strongly orthodox congruence on S that C∞/τ is a band. Thus τ is a regular
normal band congruence on C∞. �

2. The minimum strongly orthodox congruences determined by
characteristic traces

Let τ be an equivalence relation on C∞. Define the following relation τmin on S for
a, b ∈ S :

aτminb⇔
(∀a′ ∈W(a))(∃b′ ∈W(b))(∃x, y ∈C∞)(xa = by, xτaa′τbb′, yτa′aτb′b) &
(∀b′ ∈W(b))(∃a′ ∈W(a))(∃x, y ∈C∞)(xb = ay, xτaa′τbb′, yτa′aτb′b).

T 2.1. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. Then τmin

is the minimum strongly orthodox congruence on S with characteristic trace τ.

P. We first show that τmin is an equivalence relation. It is clear that τmin is reflexive
and symmetric. To show that τmin is transitive, let (a, b), (b, c) ∈ τmin. Then for any
a′ ∈W(a) there exist b′ ∈W(b), x, y ∈C∞ such that

xa = by, x τ aa′ τ bb′ and y τ a′a τ b′b,

and so for b′ ∈W(b), there exist c′ ∈W(c), z, v ∈C∞ such that

zb = cv, z τ bb′ τ cc′ and v τ b′b τ c′c.

Let x1 = zx, y1 = vy. Then x1, y1 ∈C∞ and x1 · a = zxa = zby = cvy = c · y1. Notice
x τ z and y τ v; we have that

x1 = zx τ aa′ τ cc′, y1 = vy τ a′a τ c′c.

Dually we may show that for any c′ ∈W(c), there exist a′ ∈W(a), p, q ∈C∞ such that
pc = aq, p τ aa′ τ cc′ and q τ a′a τ c′c. Therefore (a, c) ∈ τmin, as required.
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To show that τmin is a congruence, suppose that (a, b) ∈ τmin. For any c ∈ S ,
(ac)′ ∈W(ac), we have that a′ = c(ac)′ ∈W(a), c′ = (ac)′a ∈W(c) and (ac)′ = c′a′,
a′a = cc′. By the definition of τmin, there exist b′ ∈W(b), x, y ∈C∞ such that
xa = by, x τ aa′ τ bb′ and y τ a′a τ b′b. Now

bcc′b′x · ac = bc · c′b′byc.

Let s = bcc′b′x, t = c′b′byc. Then s, t ∈C∞ and s · ac = bc · t. It follows that

s = bcc′b′x = ba′ab′x τ bb′x τ aa′ = (ac)c′a′ = (ac)(ac)′

and
t = c′b′byc τ c′a′ac = (ac)′(ac).

On the other hand, by Lemma 1.5, there exists g ∈ M(b′b, a′a) = M(b′b, cc′) such that
b′b τ g τ a′a. Let (bc)′ = c′gb′. Then (bc)′ ∈W(bc). It now follows that

s τ (ac)(ac)′ = aa′ τ bb′ = bb′bb′ τ bgb′ = bcc′gb′ = (bc)(bc)′

and
t τ (ac)′(ac) = c′a′ac τ c′gc = (c′gb′)(bc) = (bc)′(bc).

A similar argument will show that for any (bc)′ ∈W(bc), there exist (ac)′ ∈W(ac), p, q
∈C∞ such that p(bc) = (ac)q and p τ (ac)(ac)′ τ (bc)(bc)′, q τ (ac)′(ac) τ (bc)′(bc).
Hence ac τmin bc, and so that τmin is a right congruence on S . Similarly, we can show
that τmin is a left congruence on S . Consequently, τmin is a congruence on S .

We now verify that ctr τmin = τ. Suppose first that (x, y) ∈ τ ∩C∞. Then for any
x′ ∈W(x) and x′ ρ x′yx′, by Lemma 1.4, there exists y′ ∈W(y) such that x′ ρ y′ and so
xx′ τ yy′ and x′x τ y′y. Since x′x τ y′y, by Lemma 1.5 there exists g ∈ M(x′x, y′y)
such that x′x τ g τ y′y. Put m = ygx′ and n = g; then m, n ∈C∞. It follows that
m · x = ygx′x = yg = y · n. Then

m = ygx′ τ yy′yy′ = yy′ τ xx′ and n = g τ x′x τ y′y.

A similar argument will show that for any y′ ∈W(y), there exist x′ ∈W(x), p, q ∈C∞
such that p · y = x · q and p τ xx′ τ yy′, q τ x′x τ y′y. Thus (x, y) ∈ τmin.

Conversely, let (x, y) ∈ ctr τmin. Since ρ is a strongly regular congruence on S , there
exist x′′ ∈W(x) and y′′ ∈W(y) such that x ρ xx′′x and y ρ yy′′y. By the definition of
τmin, there exist y′ ∈W(y), p1, q1 ∈C∞ such that

p1x = yq1, p1 τ xx′′ τ yy′ and q1 τ x′′x τ y′y,

and there exist x′ ∈W(x), m1, n1 ∈C∞ such that

m1y = xn1, m1 τ xx′ τ yy′′ and n1 τ x′x τ y′′y.

It follows that
x τ xx′′x τ p1x = yq1 τ yy′y τ xx′′y
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and
y τ yy′′y τ xx′y τ xx′′xx′y τ xx′′y.

Hence x τ y, as required.
To show that τmin is a strongly orthodox congruence, we first show that τmin is a

strongly regular congruence on S . By Lemma 1.7, τ is a regular normal congruence on
C∞; then for each a ∈ S , there exists a+ ∈W(a) such that aa′ τ aa+aa′ and a′a τ a′aa+a
for any a′ ∈W(a). Clearly, aa+a ∈ Reg(S ). Now we show that a τmin aa+a. Notice that
a′a = a′aa′a τ a′aa+aa′a, so by Lemma 1.4 there exists (a+a)′ ∈W(a+a) ∩C∞ such
that (a+a)′ τ a′a and H(a+a)′ 6 Ha′a. Notice that (a+a)′a′a = (a+a)′, hence

(a+a)′a′ · aa+a · (a+a)′a′ = (a+a)′a′ that is, (a+a)′a′ ∈W(aa+a).

Put s = aa+aa′, t = a′a; then s, t ∈C∞ and s · a = aa+aa′a = aa+a · t. It follows that

s = aa+aa′ τ aa′ τ (aa+a)(a+a)′a′

and
t = a′a τ a′aa+a τ (a+a)′a+a = (a+a)′a′(aa+a).

On the other hand, for any u ∈W(aa+a), we have a+au · a · a+au = a+au and
au · aa+ · au = au. It follows that a+au ∈W(a) and au ∈W(aa+) ∩C∞. Thus

aa+au · au · aa+au = a · a+au · au τ aa+auaa+au = aa+au.

So by Lemma 1.4 there exists v ∈W(au) such that v τ aa+au where v, aa+au ∈C∞. Let
a∗ = uv. Then uvauv = uv implies a∗ ∈W(a). Put l = au, h = uaa+a. Then l, h ∈C∞
and l · aa+a = a · h. It follows that

l = au = auaa+au τ auv = a · a∗ τ aa+auv τ aa+au · aa+au = aa+a · u

and

h = u · aa+a = uaa+auaa+a τ uvaa+a = a∗aa+a τ a∗ · a.

Therefore a τmin aa+a, as required.
Next let aτmin, bτmin ∈ E(S/τmin). Then by Lemma 1.3 there exist e, f ∈ E(S ) such

that a τmin e, b τmin f . It follows from the fact that τ is a strongly orthodox congruence
on C∞ that

(ab)2 τmin (e f )2 τ (e f ) τmin (ab).

Then aτminbτmin · aτminbτmin = aτminbτmin. Hence S/τmin is an orthodox semigroup
and τmin is a strongly orthodox congruence on S .

Finally, we show that τmin is the minimum strongly orthodox congruence on S
with characteristic trace τ. Let θ be any strongly orthodox congruence on S with
characteristic trace τ, and (a, b) ∈ τmin. Since θ is a strongly regular congruence on S ,
for any a, b ∈ S , there exist a′′ ∈W(a) and b′′ ∈W(b) such that a θ aa′′a and b θ bb′′b.
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By the definition of τmin, there exist a′ ∈W(a), b′ ∈W(b), x, y, l, h ∈C∞ such that

xb = ay, x τ aa′ τ bb′′, y τ a′a τ b′′b

and

la = bh, l τ aa′′ τ bb′, h τ a′′a τ b′b,

so that

x θ aa′ θ bb′′, y θ a′a θ b′′b

and

l θ aa′′ θ bb′, h θ a′′a θ b′b.

It follows that (b′a) θ b′aa′′a θ b′la = b′bh θ b′b, and so (b′a)θ ∈ E(S/θ). Now

a θ aa′′a θ bb′a θ b(b′a)(b′a) θ ab′a.

On the other hand,

b θ bb′′b θ aa′b θ aa′′aa′b θ (aa′′)(bb′′b) θ aa′′b.

It follows that

a θ aa′′a θ ab′b θ ab′ · aa′′b = ab′a · a′′b θ aa′′b θ b.

Therefore τmin ⊆ θ, as required. �

We now present an alternate characterization of τmin.

T 2.2. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. Define a
binary relation δmin on S as follows. For a, b ∈ S , let

a δmin b⇔
(∀a′ ∈W(a))(∃b′ ∈W(b)) (aa′ τ bb′, a′a τ b′b, a′b ∈ ker τmin) &
(∀b′ ∈W(b))(∃a′ ∈W(a)) (aa′ τ bb′, a′a τ b′b, b′a ∈ ker τmin).

Then δmin = τmin.

P. Let (a, b) ∈ τmin. Then for any a′ ∈W(a), there exists b′ ∈W(b) such that
aa′ τ bb′, a′a τ b′b. Also (a′b, a′a) ∈ τmin, and so a′b ∈ ker τmin. A similar argument
will show the dual case. Hence (a, b) ∈ δmin, as required.

Conversely, let (a, b) ∈ δmin. For any a′ ∈W(a), then there exists b′ ∈W(b) such that
aa′ τ bb′, a′a τ b′b and a′b ∈ ker τmin. Notice that τ = ctr τmin. Thus aa′ ctr τmin bb′,
a′a ctr τmin b′b and a′b ∈ ker τmin. Similarly, for any b′ ∈W(b), there exists a′ ∈
W(a) such that aa′ ctr τmin bb′, a′a ctr τmin b′b and b′a ∈ ker τmin. Since τmin is a
strongly orthodox congruence on S , it is easy to prove that a τmin b by imitating the
corresponding part of Theorem 2.1. Therefore δmin = τmin. �
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3. Strongly orthodox congruences determined by characteristic trace

D 3.1. Let S be a semigroup and τ be an equivalence relation on C∞. Define
a binary relation τmax on S for a, b ∈ S by

a τmax b⇔
(∀a′ ∈W(a)) (∃b′ ∈W(b)) (aa′ τ bb′, a′a τ b′b) &
(∀b′ ∈W(b)) (∃a′ ∈W(a)) (aa′ τ bb′, a′a τ b′b).

If τ is an equivalence relation on E(S ) then τmax is equivalent to the relation Hτ

given in [7, Definition 2.1]. It is clear that if τ is a congruence on E(S ) and e τmax f
for any e, f ∈ E(S ), then eτ = f τ.

T 3.2. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. Then τmax

is the maximum strongly orthodox congruence on S with characteristic trace τ.

P. It follows from the fact that ρ is a strongly orthodox congruence on S that
τ = ctr ρ is a band congruence on C∞.

To show that ctr τmax = τ, let x, y ∈C∞ be such that x τmax y. Since ρ is a strongly
regular congruence, there exist x′ ∈W(x) ∩C∞ such that x ρ xx′x. So by the definition
of τmax, there exist y′ ∈W(y) ∩C∞ such that xx′ τ yy′, x′x τ y′y. It follows from
τ = ctr ρ being a band congruence on C∞ that xy′y τ x τ xx′x τ yy′x. And so xy τ x τ yx.
Dually, we have that yx τ y τ xy. Hence x τ y, and so ctr τmax ⊆ τ. Conversely, let
x, y ∈C∞ be such that x τ y. For any x′ ∈W(x), then x′yx′ ρ x′. By Lemma 1.4, there
exists y′ ∈W(y) such that x′ ρ y′. Hence xx′ τ yy′ and x′x τ y′y. Dually, for any
y′ ∈W(y), there exists x′ ∈W(x) such that xx′ τ yy′, x′x τ y′y. Hence x τmax y and so
τ ⊆ τmax. Therefore τ = ctr τmax.

As in [7, Theorem 2.3] we may deduce that τmax is the maximum strongly regular
congruence on S . Then τmax is the maximum strongly orthodox congruence on S with
characteristic trace τ. �

P 3.3. Let ρ be any strongly orthodox congruence on S with τ = ctr ρ. Then
for all e ∈ E,

eρ = eτmax ∩ ker ρ.

P. Let a ∈ eτmax ∩ ker ρ, that is, (a, e) ∈ τmax and a ∈ ker ρ. Then there exists f ∈ E
such that (a, f ) ∈ ρ. It follows that f a f ρ f . By Lemma 1.4, there exists a′ ∈W(a) such
that a′ ρ f . Hence (aa′, f ) ∈ ρ, and a ρ aa′. It is easy to show that ρ ⊆ τmax, and so
a τmax aa′. By the definition of τmax, there exists a∗ ∈W(a) such that aa′ ρ aa∗ ρ a∗a.
Thus a ρ aa′ ρ aa∗. Since (a, e) ∈ τmax, there exists e∗ ∈W(e) such that aa∗ ρ ee∗.
Therefore

a ρ aa∗ ρ ee∗ = e · ee∗ ρ e · a ρ e f .

On the other hand,

a ρ aa∗ ρ f a∗ = f · f a∗ ρ f a.
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Since (a, e) ∈ τmax again, there exists a′′ ∈W(a) such that e ρ aa′′ ρ a′′a. Then
e ρ f a′′ ρ a′′ f , and so e ρ f e f ρ f a ρ a. Therefore a ∈ eρ, as required.

Conversely, let a ∈ eρ for some e ∈ E. Thus a ∈ ker ρ. For any a′ ∈W(a), then
a′ ρ a′ea′ and, by Lemma 1.4, there exists e′ ∈W(e) such that e′ ρ a′. Therefore
aa′ ρ ee′ and a′a ρ e′e, that is, aa′ τ ee′ and a′a τ e′e. A similar argument will show
that for any e′ ∈W(e) there exists a′ ∈W(a) such that aa′ τ ee′ and a′a τ e′e. Thus
a ∈ eτmax, and so a ∈ eτmax ∩ ker ρ. Consequently, eρ = eτmax ∩ ker ρ. �

We now present an alternate characterization of τmax. The following theorem is very
easily proved by imitating the style of Theorem 2.2. We omit the details.

T 3.4. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. Define the
following relation δmax on S for a, b ∈ S by

a δmax b⇔
(∀a′ ∈W(a)) (∃b′ ∈W(b)) (aa′ τ bb′, a′a τ b′b, a′b ∈ ker τmax) &
(∀b′ ∈W(b)) (∃a′ ∈W(a)) (aa′ τ bb′, a′a τ b′b, b′a ∈ ker τmax).

Then δmax = τmax.

D 3.5. A subset K of S is called complete if, for a, b ∈ S and x ∈C∞:

(i) E(S ) ⊆ K, that is, K is full;
(ii) xa ∈ K implies xaa+a ∈ K for each a+ ∈W(a);
(iii) b ∈ K implies (ab2 ∈ K⇔ ab ∈ K).

D 3.6. Let τ be a regular normal congruence on C∞. A subset K of S is called
τ-normal if, for any a, b ∈ S , x ∈C∞,

(C1) for y, z ∈ S , a′ ∈W(a) and b′ ∈W(b), aa′ τ bb′, a′a τ b′b, a′b ∈ K and
yb′z ∈ K⇒ ya′z ∈ K.

(C2) for any a′ ∈W(a), a′b ∈ K and (x, aa′) ∈ τ⇒ a′xb ∈ K.
(C3) for a+ ∈W(a), xa ∈ K and x τ aa+⇒ a ∈ K.

P 3.7. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. If
K = ker ρ, then K is a complete and τ-normal subset.

P. We first show that K is a complete subset. It is clear that K is full. Let
a ∈ S and x ∈C∞ be such that xa ∈ K = ker ρ. Then there exists e ∈ E(S ) such that
xa ρ e. Since ρ is a strongly regular congruence on S , there exists a′′ ∈W(a) such that
a ρ aa′′a. By Lemma 1.7, τ = ctr ρ is a regular normal band congruence on C∞. Then
aa′′ ctr ρ aa+aa′′ for each a+ ∈W(a), that is, aa′′ ρ aa+aa′′. It follows that

aρ = (aa′′a)ρ = (aa+aa′′a)ρ = (aa+a)ρ.

It follows that xaa+a ρ xa ρ e, and so xaa+a ∈ K. Now let b ∈ K. Then there exists
e ∈ E(S ) such that b ρ e. Thus ab ρ ae ρ ae2 ρ ab2, and so ab ∈ K⇔ ab2 ∈ K. Therefore
K is a complete subset.

Consider a, b, y, z ∈ S and a′ ∈W(a), b′ ∈W(b) with aa′ τ bb′, a′a τ b′b, a′b ∈ K
and yb′z ∈ K. Then (a′b)ρ, (yb′z)ρ ∈ E(S/ρ). It follows that

a′ = a′aa′ ρ a′bb′ ρ a′ba′bb′ ρ a′ba′
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and
b′ = b′bb′ ρ b′aa′ ρ b′aa′ba′ ρ b′ba′ ρ a′aa′ = a′.

Therefore (ya′z)ρ = (yb′z)ρ ∈ E(S/ρ). By Lemma 1.3, ya′z ∈ ker ρ, and so (C1) holds.
For any a ∈ S and x ∈C∞, a′ ∈W(a), if a′b ∈ K and (x, aa′) ∈ τ, then there exists

f ∈ E(S ) such that a′b ρ f . It follows that a′xb ρ a′aa′b = a′b ρ f , that is, a′xb ∈ K.
And so (C2) holds.

Let x ∈C∞ be such that xa ∈ ker ρ and x ctr ρ aa+ for a+ ∈W(a). Then (xa)ρ ∈
E(S/ρ). As ρ is a strongly regular congruence on S , one can deduce that a ρ aa+a as in
the proof above. Hence aρ = (aa+a)ρ = (xa)ρ ∈ E(S/ρ). Thus a ∈ ker ρ by Lemma 1.3,
and so (C3) holds. Therefore K is a complete and τ-normal subset. �

The following theorem gives a description of all strongly orthodox congruences
with characteristic trace τ on S . Denote

N = {K : ker τmin ⊆ K ⊆ ker τmax where K is a complete and τ-normal subset of S }.

Notice that ker τmin and ker τmax are both the kernels of strongly orthodox congruences.
It follows from Proposition 3.7 that ker τmin and ker τmax belong to N.

T 3.8. Let ρ be a strongly orthodox congruence on S with τ = ctr ρ. Define a
binary relation ρK on S as follows. For a, b ∈ S , let

a ρK b⇔
(∀a′ ∈W(a)) (∃b′ ∈W(b)) (aa′ τ bb′, a′a τ b′b, a′b ∈ K) &
(∀b′ ∈W(b)) (∃a′ ∈W(a)) (aa′ τ bb′, a′a τ b′b, b′a ∈ K).

Then the map K→ ρK is a one-to-one order-preserving map of N onto the set of all
strongly orthodox congruences on S with characteristic trace τ.

P. First we shall show that ρK is an equivalence relation on S . It is clear that ρK is
symmetric and reflexive. To prove that ρK is transitive, let (a, b) ∈ ρK , (b, c) ∈ ρK . For
any a′ ∈W(a), then there exists b′ ∈W(b) such that aa′ τ bb′, a′a τ b′b and a′b ∈ K,
and for b′ ∈W(b) there exists c′ ∈W(c) such that bb′ τ cc′, b′b τ c′c and b′c ∈ K. Since
τ is transitive, we have that aa′ τ cc′ and a′a τ c′c. Since b′c ∈ K and ab′ba′ τ aa′ τ bb′,
by (C2), b′ · ab′ba′ · c ∈ K. Since aa′ τ bb′, a′a τ b′b and a′b ∈ K, by (C1) we have
b′aa′ba′c ∈ K. Thus b′aa′b · (a′c)(a′c)+(a′c) ∈ K as K is a complete subset. Notice
that c(a′c)+ ∈W(a′), hence we have b′aa′b · a′c(a′c)+ τ a′c(a′c)+. By (C3), a′c ∈ K.
Dually, we may show that for any c′ ∈W(c), there exists a′ ∈W(a) such that aa′ τ cc′,
a′a τ c′c and c′a ∈ K. Hence a ρK c and ρK is transitive. Consequently, ρK is an
equivalence relation on S .

To show that ρK is a congruence, let a, b, c ∈ S be such that (a, b) ∈ ρK .
For any (ca)′ ∈W(ca), we have that a′ = (ca)′c ∈W(a), c′ = a(ca)′ ∈W(c) and
(ca)′ = a′c′, aa′ = c′c. By the definition of ρK , there exists b′ ∈W(b) such that
aa′ τ bb′, a′a τ b′b and a′b ∈ K. Hence (ca)′(cb) = a′b ∈ K. On the other hand,
by Lemma 1.5, there exists g ∈ M(aa′, bb′) = M(c′c, bb′) such that c′c = aa′ τ g τ bb′.
Let (cb)′ = b′gc′. Then (cb)′ = b′gc′ ∈W(cb). It now follows that

(ca)(ca)′ = caa′c′ τ cbb′gc′ = (cb)(cb)′
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and
(cb)′(cb) = b′gc′cb = b′gb τ b′b τ a′a = a′aa′a = a′c′ca = (ca)′(ca).

A similar argument will show that for any (cb)′ ∈W(cb), there exists (ca)′ ∈W(ca)
such that (ca)(ca)′ τ (cb)(cb)′, (ca)′(ca) τ (cb)′(cb) and (cb)′ca ∈ K. Hence (ca, cb) ∈
ρK , and so ρK is a left congruence on S . Similarly, we can show that ρK is a right
congruence on S . Consequently, ρK is a congruence.

It is easy to show that ρK is a strongly orthodox congruence by following exactly
the same argument of the corresponding part of Theorem 2.1.

Next we show that ctr ρK = τ. Let x, y ∈C∞ be such that x ρK y. Since ρK is a
strongly regular congruence, there exist x′ ∈W(x) ∩C∞ such that x ρ xx′x. So by the
definition of ρK , there exist y′ ∈W(y) ∩C∞ such that xx′ τ yy′, x′x τ y′y. It follows
from the fact that τ is a band congruence on C∞ that xy′y τ x τ xx′x τ yy′x. And so
xy τ x τ yx. Dually, we have that yx τ y τ xy. Hence x τ y, and so ctr ρK ⊆ τ.

Conversely, let x, y ∈C∞ be such that x τ y. Take any x′ ∈W(x); then x′yx′ ρ x′. By
Lemma 1.4, there exists y′ ∈W(y) such that x′ ρ y′. Hence xx′ τ yy′ and x′x τ y′y. Now
y′y ∈ K and xx′ τ yy′, then by (C2) we have y′xx′y ∈ K, and so y′xx′y(x′y)+(x′y) ∈ K as
K is a complete subset. It follows that

y′xx′y(x′y)+ τ x′x(x′y)+ τ x′y(x′y)+.

By (C3), we have x′y ∈ K. Dually, for any y′ ∈W(y), there exists x′ ∈W(x) such that
xx′ τ yy′, x′x τ y′y and y′x ∈ K. Hence x ρK y and so τ ⊆ ρK . Therefore τ = ctr ρK .

Next, to prove that the given map is onto, let µ be a strongly orthodox congruence
with τ = ctr µ on S and let (a, b) ∈ ρker µ. Then for any a′ ∈W(a), there exists b′ ∈W(b)
such that aa′ ctr µ bb′, a′a ctr µ b′b and a′b ∈ ker µ. Dually for any b′ ∈W(b), there
exists a′ ∈W(a) such that aa′ ctr µ bb′, a′a ctr µ b′b and b′a ∈ ker µ. Recall that µ
is a strongly orthodox congruence. Then it is easy to show that a µ b. Conversely,
let a µ b. Then for any a′ ∈W(a), a′ µ a′ba′. By Lemma 1.4, there exists b′ ∈W(b)
such that a′ µ b′. Thus aa′ µ bb′ and a′a µ b′b, that is, aa′ τ bb′ and a′a τ b′b.
Also (a′b, a′a) ∈ µ, and so a′b ∈ ker µ. A similar argument will show that for any
b′ ∈W(b), there exists a′ ∈W(a) such that aa′ τ bb′, a′a τ b′b and b′a ∈ ker µ. Hence
(a, b) ∈ ρker µ, as required.

The given map is clearly order-preserving. We shall now show that the given map
is one-to-one. To this end, let K, L ∈ N with ρK = ρL and let a ∈ K. Since K ⊆ ker τmax,
a ∈ ker τmax. Therefore (a, e) ∈ τmax for some e ∈ E(S ). Then (a, a2) ∈ τmax. By the
definition of τmax, for any a′ ∈W(a), there exists c ∈W(a2) such that aa′ τ a2c and
a′a τ ca2. Since a ∈ K and a′a ∈ K, a′aa ∈ K as K is a complete subset. On the other
hand, for any c ∈W(a2), there exists a′ ∈W(a) such that aa′ τ a2c and a′a τ ca2. Since
ca2 ∈ K and a ∈ K, ca ∈ K as K is complete subset. Thus (a, a2) ∈ ρK = ρL. Then there
exists f ∈ E(S ) such that a ρL f . For a+ ∈W(a), by the definition of ρL, there exists
f ′ ∈W( f ) such that aa+ τ f f ′, a+a τ f ′ f and a+ f ∈ L. On the other hand, for f ∈W( f ),
there exists a′ ∈W(a) such that aa′ τ f τ a′a and f a ∈ L. Since f a ∈ L, f aa+a ∈ L as
L is a complete subset. Now f aa+ τ f · f f ′ = f f ′ τ aa+. By (C3), we have a ∈ L.
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Thus K ⊆ L. Similarly, we can prove that L ⊆ K. Therefore K = L. We conclude that
the given map is one-to-one. �

4. Strongly orthodox congruences determined by kernel

In this section we investigate the κ-relation of strongly orthodox congruences on an
E-inversive semigroup and give the least and the greatest element of κ(ρ).

D 4.1 [5]. If θ and ρ are congruences on S such that θ ⊆ ρ, then the relation
ρ/θ on S/θ is defined by

(xθ, yθ) ∈ ρ/θ if and only if (x, y) ∈ ρ.

This relation ρ/θ is in fact a congruence on S/θ.
The set of all strongly regular (orthodox) congruences on S is denoted by SRC(S )

(SOC(S )).

D 4.2. Define

κ = {(ρ, θ) ∈ SOC(S ) × SOC(S ) : ker ρ = ker θ}

and denote the κ-class containing ρ ∈ SOC(S ) by κ(ρ).

The following is a direct analogue of [7, Lemma 2.7] and the proof carries across
with minimal change. We omit the details.

P 4.3. For any ρ ∈ SOC(S ), the relation

ρmax = {(a, b) ∈ S × S : (∀x, y ∈ S 1) xay ∈ ker ρ⇔ xby ∈ ker ρ}

is the greatest element of κ(ρ).

Let
τS = {(a, b) ∈ S × S : (∀x, y ∈ S 1) xay ∈ E(S )⇔ xby ∈ E(S )}.

T 4.4. Let ρ, θ ∈ SRC(S ). Then the following statements are equivalent:

(1) ρ κ θ;
(2) ρ ⊆ θmax and θmax/ρ = τS/ρ;
(3) aρ τS/ρ bρ⇔ aθ τS/θ bθ.

P. (1)⇒(2). Let ρ κ θ; then ker ρ = ker θ. Thus ρ ⊆ ρmax = θmax. For any a, b ∈ S ,
from the definition of τS/ρ,

aρ θmax/ρ bρ⇔ a θmax b
⇔ (∀x, y ∈ S 1) (xay ∈ ker θ⇔ xby ∈ ker θ)
⇔ (∀x, y ∈ S 1) (xay ∈ ker ρ⇔ xby ∈ ker ρ)
⇔ (∀x, y ∈ S 1) ((xay)ρ ∈ E(S/ρ)⇔ (xby)ρ ∈ E(S/ρ))
⇔ (∀xρ, yρ ∈ (S/ρ)1) ((xρ)(aρ)(yρ) ∈ E(S/ρ)⇔ (xρ)(bρ)(yρ) ∈ E(S/ρ))
⇔ aρ τS/ρ bρ.
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(2)⇒(1). By ρ ⊆ θmax, we have ker ρ ⊆ ker θmax = ker θ. Conversely, let a ∈ ker θ =

ker θmax; then there exists e ∈ E(S ) such that (a, e) ∈ θmax. So we have

a θmax e⇔ aρ θmax/ρ eρ⇔ aρ τS/ρ eρ
⇔ (∀xρ, yρ ∈ (S/ρ)1) ((xρ)(aρ)(yρ) ∈ E(S/ρ)⇔ (xρ)(eρ)(yρ) ∈ E(S/ρ))
⇔ (∀x, y ∈ S 1) ((xay)ρ ∈ E(S/ρ)⇔ (xey)ρ ∈ E(S/ρ))
⇔ (∀x, y ∈ S 1) (xay ∈ ker ρ⇔ xey ∈ ker ρ)
⇔ (a, e) ∈ ρmax.

Thus a ∈ ker ρmax = ker ρ. That is, ker θ ⊆ ker ρ. Hence ρ κ θ.
(1)⇒(3). For any a, b ∈ S ,

aρ τS/ρ bρ⇔ (∀xρ, yρ ∈ (S/ρ)1) ((xay)ρ ∈ E(S/ρ)⇔ (xby)ρ ∈ E(S/ρ))
⇔ (∀x, y ∈ S 1) (xay ∈ ker ρ⇔ xby ∈ ker ρ)
⇔ (∀x, y ∈ S 1) (xay ∈ ker θ⇔ xby ∈ ker θ)
⇔ (∀x, y ∈ S 1) ((xay)θ ∈ E(S/θ)⇔ (xey)θ ∈ E(S/θ))
⇔ aθ τS/θ bθ.

(3)⇒(1). Let a ∈ ker ρ; then there exists e ∈ E(S ) such that (a, e) ∈ ρ. Thus

(a, e) ∈ ρ⇒ (aρ, eρ) ∈ 1S/ρ ⊆ τS/ρ

⇒ (aρτS/ρeρ⇔ aθτS/θeθ)
⇔ (∀xθ, yθ ∈ (S/θ)1) ((xθ)(aθ)(yθ) ∈ E(S/θ)⇔ (xθ)(eθ)(yθ) ∈ E(S/θ))
⇔ (∀x, y ∈ S 1) ((xay)θ ∈ E(S/θ)⇔ (xey)θ ∈ E(S/θ))
⇔ (∀x, y ∈ S 1) (xay ∈ ker θ⇔ xey ∈ ker θ).

Since e = 1 · e · 1 ∈ ker θ, a = 1 · a · 1 ∈ ker θ, that is, ker ρ ⊆ ker θ. By symmetry,
ker θ ⊆ ker ρ. Thus ρ κ θ. �

D 4.5. A subset K of S is called strongly orthodox normal, if K is the kernel
of a strongly orthodox congruence on S .

P 4.6. Let K be a strongly orthodox normal subset of S . Define a relation R
on S by

R = {(a, aa′a), (a, a2) : a ∈ K, for some a′ ∈W(a)}.

Then R∗, the congruence generated by R, is the least strongly orthodox congruence on
S with kernel equal to K, and we denote it by ρmin.

P. It suffices to prove K = ker R∗. If K is a strongly orthodox normal subset of S ,
clearly K ⊆ ker R∗. Conversely, let a ∈ K; then there exist e ∈ E(S ) and ρ ∈ SOC(S )
such that a ρ e, and so a ρ a2. Since ρ is a strongly orthodox congruence, there exists
a′ ∈W(a) such that a ρ aa′a. Then R ⊆ ρ, and thus R∗ ⊆ ρ. Therefore ker R∗ ⊆ ker ρ =

K. Thus K = ker R∗. �

P 4.7. Let ρ, θ ∈ SRC(S ). Then:

(1) if ρ ⊆ θ and ctr ρ = ctr θ, then (a, b) ∈ ρ if and only if (a, b) ∈ θ and a′b ∈ ker ρ
for any a′ ∈W(a);

(2) (a, b) ∈ ρ if and only if (a, b) ∈ (ctr ρ)max and a′b ∈ ker ρ for any a′ ∈W(a).
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P. (1) Assume that ρ ⊆ θ and ctr ρ = ctr θ. Let (a, b) ∈ ρ; then (a, b) ∈ θ. It is
clear that a′b ∈ ker ρ for all a′ ∈W(a). Conversely, let (a, b) ∈ θ and a′b ∈ ker ρ for
any a′ ∈W(a). Since ρ is a strongly regular congruence on S , for any a, b ∈ S , there
exist a′′ ∈W(a) and b′′ ∈W(b) such that a ρ aa′′a and b ρ bb′′b. Since (a, b) ∈ θ,
then a′′ θ a′′ba′′. By Lemma 1.4, there exists b′ ∈W(b) such that a′′ θ b′. Thus
aa′′ θ bb′ and a′′a θ b′b. Notice that ctr ρ = ctr θ, then we have aa′′ ρ bb′ and a′′a ρ b′b.
Similarly, there exists a′ ∈W(a) such that aa′ ρ bb′′ and a′a ρ b′′b. Now a′b ∈ ker ρ.
It follows that

b ρ bb′′b ρ aa′b ρ aa′ba′b ρ ba′b.

On the other hand,
a ρ aa′′a ρ bb′a ρ bb′′bb′a ρ bb′′a.

Therefore,
b ρ bb′′b ρ ba′a ρ ba′bb′′a ρ bb′′a ρ a.

(2) This is easy to show, so we omit the details. �

P 4.8. For any ρ ∈ SOC(S ), we have ρ = ρmin ∨ ρ
min = ρmax ∩ ρ

max.

P. Clearly, ρmin ∨ ρ
min ⊆ ρ ⊆ ρmax ∩ ρ

max. Then

ctr(ρmin ∨ ρ
min) ⊆ ctr ρ ⊆ ctr(ρmax ∩ ρ

max),
ker(ρmin ∨ ρ

min) ⊆ ker ρ ⊆ ker(ρmax ∩ ρ
max).

Furthermore,

ctr(ρmax ∩ ρ
max) ⊆ ctr ρmax = ctr ρ = ctr ρmin ⊆ ctr(ρmin ∨ ρ

min),
ker(ρmax ∩ ρ

max) ⊆ ker ρmax = ker ρ = ker ρmin ⊆ ker(ρmin ∨ ρ
min).

Therefore
ctr(ρmin ∨ ρ

min) = ctr ρ = ctr(ρmax ∩ ρ
max),

ker(ρmin ∨ ρ
min) = ker ρ = ker(ρmax ∩ ρ

max).

Thus ρ = ρmin ∨ ρ
min = ρmax ∩ ρ

max. �
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