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The affine part of the Picard scheme

Thomas Geisser

Abstract

We describe the maximal torus and maximal unipotent subgroup of the Picard variety
of a proper scheme over a perfect field.

1. Introduction

For a proper scheme p :X → k over a perfect field, the Picard scheme PicX representing the
functor T 7→H0(Tet, R

1p∗Gm) exists, and its connected component Pic0
X is separated and of

finite type [Mur64, II.15]. By Chevalley’s structure theorem [Che60], the reduced connected
component Pic0,red

X is an extension of an abelian variety AX by a linear algebraic group LX :

0→ LX → Pic0,red
X →AX → 0. (1)

The commutative, smooth affine group scheme LX is the direct product of a torus TX and a
unipotent group UX . The following theorem completely characterizes TX .

Theorem 1. If X is proper over a perfect field, then the cocharactermodule Homk̄(Gm, TX) of
the maximal torus of PicX is isomorphic to H1

et(X̄, Z) as a Galois module.

To analyze the unipotent part, we let Pic(X[t])[1] be the typical part, that is, the subgroup
of elements x of Pic(X[t]) such that the map X[t]→X[t], t 7→ nt sends x to nx.

Theorem 2. Let X be proper over a perfect field. Then Pic(X[t])[1] is isomorphic to the group
of morphisms of schemes f : Ga→ UX satisfying f(nx) = nf(x) for every n ∈ Z. In particular,
Homk(Ga, UX)⊆ Pic(X[t])[1], and this is an equality in characteristic zero.

To obtain another description of UX , we assume that X is reduced (the map of Picard schemes
induced by the map Xred→X is well understood by the work of Oort [Oor62]). The semi-
normalization X+→X is the largest scheme between X and its normalization which is strongly
universally homeomorphic to X in the sense that the map X+→X induces an isomorphism on
all residue fields. A theorem of Traverso [Tra70] implies that Pic(X[t])[1], hence UX , vanishes if
X is reduced and seminormal. We use this to show the following result.

Theorem 3. Let X be reduced and proper over a perfect field.

(a) There is a short exact sequence

0→ UX → PicX → PicX+ → 0,

and UX = p∗(Gm,X+/Gm,X).
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(b) The group scheme UX represents the functor

T 7→ {OX×T -line bundles L ⊆OX+×T which are invertible in OX+×T }.

Notation. For a field k, we denote by k̄ its algebraic closure, and for a scheme X over k we let
X̄ =X ×k k̄. Unless specified otherwise, all extension and homomorphism groups are considered
on the large étale site.

2. The torus

Lemma 4. Let K and Q be abelian group schemes over a scheme S, and assume that
H1

et(Q, K|Q) = 0. Then every extension of Q by K of sheaves of abelian groups on the big
étale site of S is representable, that is, the group of extensions of Q by K in the category of
group schemes and in the category of sheaves agree.

Proof. Given an extension of sheaves K i−→G
p−→Q, it suffices to show that G is representable

as a sheaf of sets. By hypothesis, we can find a section η ∈G(Q) with p(η) = id. Define a (set-
theoretic) splitting s :Q→G to p by sending a section g : T →Q of Q(T ) to g∗(η) = η ◦ g ∈G(T ).

But, then K ×Q (i,s)−−→G is an isomorphism of sheaves. 2

Proposition 5. Let k be algebraically closed. Then Ext1
k(Gm, K) vanishes for every smooth,

connected, commutative affine group scheme K over k. In particular, Ext1
k(Gm, p∗Gm,X) = 0 for

every proper scheme p :X → k.

Proof. The group scheme K has a filtration consisting of schemes of the form Gm and Ga. This
is shown in [SGA3, Exposé XVII, proposition 4.1.1 and théorème 7.2.1] for the flat topology,
and follows with [Mil80, Theorem 3.9] for the étale topology. Looking at long exact sequences,
it suffices to show Ext1

k(Gm,Gm) = Ext1
k(Gm,Ga) = 0. Now H1

et(Gm,Gm) = Pic(Gm) = 0, and
H1

et(Gm,Ga) = 0 since higher cohomology of a quasi-coherent sheaf on an affine scheme vanishes.
Thus, by Lemma 4, it suffices to show that the corresponding extension groups in the category
of group schemes vanish. However, there are no extensions of groups schemes between Gm and
Gm, or Gm and Ga by [SGA3, Exposé XVII, théorème 5.1.1].

If X is proper over k, then by the Stein factorization, we can write p as the composition
X

g−→ L
h−→ k, where L is the spectrum of an Artin k-algebra, and g∗OX =OL. In particular,

g∗Gm = Gm, and we can assume that X is finite of some degree m over k. In this case, the
Weil-restriction p∗Gm is an open subscheme of p∗A1 ∼= Am by [BLR90, Propostion 7.6/2], hence
smooth, connected and affine, and we can apply the above. 2

Remark . The hypothesis that k is algebraically closed is necessary. For example, if S1 is the
anisotropic form of Gm, then Ext1

R(Gm, S
1) = Z/2, generated by the Weil restriction RC/RGm.

Proof of Theorem 1. Since the maps defined below are natural, we can assume that k is
algebraically closed. We can also assume that X is reduced, because H1

et(X, Z) ∼−→H1
et(X

red, Z),
and because the map PicX → PicXred has unipotent kernel and cokernel [Oor62, p. 9, Corollary].
It suffices to calculate Homk(Gm, PicX), because there are no homomorphisms from Gm to
commutative group schemes other than tori [Oor66]. By Yoneda’s lemma, the latter group is
isomorphic to the group of homomorphisms of sheaves on the big (étale) site Homk(Gm, R

1p∗Gm).
From the duality of diagonal group schemes and locally constructible sheaves, we obtain
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HomX(Gm,Gm)∼=HomX(Z, Z)∼= Z and Ext1
X(Gm,Gm) = Ext1

X(Z, Z) = 0, hence the spectral
sequence [Mil80, III, Theorem 1.22]

Es,t2 =Hs
et(X, ExttX(Gm,Gm))⇒ Exts+tX (Gm,Gm)

gives an isomorphism H1
et(X, Z)∼= Ext1

X(Gm,Gm). The Leray spectral sequence

Es,t2 = Extsk(Gm, R
tp∗Gm)⇒ Exts+tX (Gm,Gm) (2)

gives an exact sequence

0→ Ext1
k(Gm, p∗Gm)→ Ext1

X(Gm,Gm)
βX−−→Homk(Gm, R

1p∗Gm) δX−−→ Ext2
k(Gm, p∗Gm).

By Proposition 5, βX is injective. If X is normal, then Homk(Gm, R
1p∗Gm) = 0 by [Gro62,

théorème 2.1], hence δX is the zero-map. We will show by induction on the dimension of X

that δX is the zero-map in general. Let X ′
f−→X be the normalization of X, and consider the

conductor square

Z ′
i′ //

f ′

��

X ′

f

��
Z

i // X

(3)

where Z is the closed subscheme (of smaller dimension) where f is not an isomorphism. It suffices
to show that the lower horizontal map in the following commutative diagram is injective.

Homk(Gm, R
1p∗Gm,X) //

δX
��

Homk(Gm, R
1p∗i∗Gm,Z)⊕Homk(Gm, R

1p∗f∗Gm,X′)

0
��

Ext2
k(Gm, p∗Gm,X) // Ext2

k(Gm, p∗i∗Gm,Z)⊕ Ext2
k(Gm, p∗f∗Gm,X′)

This will follow if Ext1
k(Gm, C) = 0, where C is the cokernel of the injection p∗Gm,X →

p∗i∗Gm,Z ⊕ p∗f∗Gm,X′ . However, this cokernel is a quotient of a commutative, smooth, connected
linear algebraic group, hence is a commutative, smooth, connected linear group itself, and we
can apply Proposition 5. 2

Remark . The example in [Gei06, Proposition 8.2] shows that the map H i
et(X̄, Z)→

Exti
X̄

(Gm,Gm) is not an isomorphism for i > 2. One can ask whether it is an isomorphism
if one replaces H i

et(X̄, Z) by the eh-cohomology group H i
eh(X̄, Z) of [Gei06].

Example. If X is the node over an algebraically closed field, then H1
et(X, Z)∼= Z, and TX ∼= Gm.

Let X be a node with non-rational tangent slopes at the singular point. Base changing to the
algebraic closure, one sees that H1

et(X̄, Z)∼= Z, with Galois group acting as multiplication by −1,
hence TX is an anisotropic torus.

Using the theorem, we are able to recover the torsion of TX , AX and the diagonalizable part
of NSX := PicX / Pic0,red

X in terms of étale cohomology.

Corollary 6. Let X be proper over a perfect field k. Then we have canonical isomorphisms:

H1
et(X̄, Z)⊗Q/Z∼= colim Homk̄(µm, TX);

Div(torH
2
et(X̄, Z))∼= colim Homk̄(µm, AX);

torH
2
et(X̄, Z)/Div ∼= colim Homk̄(µm, NSX).
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Proof. Taking the colimit of the isomorphism H1
et(X̄, Z/m)∼= Homk̄(µm, PicX) of [Mil80,

Proposition 4.16] or [Ray70, § 6.2], we obtain H1
et(X̄,Q/Z)∼= colim Homk̄(µm, PicX). Since

there are no extensions of group schemes of µm by a smooth commutative group scheme
G, and since H1

et(µm,k̄, G) = 0, we can apply Lemma 4 to conclude that Ext1
k̄
(µm, G) = 0.

In particular, Theorem 1 implies that Homk̄(µm, TX)∼= Homk̄(Gm, TX)/m∼=H1
et(X̄, Z)/m.

Consider the following commutative diagram.

colim Homk̄(µm, TX)

��

H1
et(X̄, Z)⊗Q/Z

��
colim Homk̄(µm, Pic0,red

X ) //

��

colim Homk̄(µm, PicX)

��

// colim Homk̄(µm, NSX)

colim Homk̄(µm, AX)
f //

torH
2
et(X̄, Z) // coker f

The middle column is the short exact coefficient sequence, and the left column and middle row
are short exact by the above. A diagram chase shows that f is injective, and the right vertical
map is an isomorphism. The corollary follows because the group colim Homk̄(µm, AX) is divisible
and the group colim Homk̄(µm, NSX) is finite. 2

The above result should be compared with [Gei09, Proposition 6.2], where we show that,
for every proper scheme over an algebraically closed field, the higher Chow group of zero-cycles
CH0(X, 1, Z/m) is the Pontrjagin dual of H1

et(X, Z/m). This implies a short exact sequence

0→ torA
t
X(k)→ CH0(X, 1,Q/Z)→ χ(TX)⊗Q/Z→ 0,

for AtX the dual abelian variety of AX , and χ(TX) the character module of TX . However, in this
case the contribution from the torus and from the abelian variety are not compatible with the
coefficient sequence

0→ CH0(X, 1)⊗Q/Z→ CH0(X, 1,Q/Z)→ torCH0(X)→ 0

as in Corollary 6.
Looking at tangent spaces, the previous corollary gives a dimension formula.

Corollary 7. Let l be a prime different from char k. Then

dimk H
1(X,OX) = dim UX + dimk Lie(NS0

X) + 1
2 rankH1

et(X, Z) + 1
2 corankl H1

et(X̄,Ql/Zl).

3. The unipotent part

Let N Pic(X) := ker
(
Pic(X[t]) 0∗−→ Pic(X)

)
. Since t 7→ 0t induces x 7→ 0x on the typical part,

Pic(X[t])[1] is a subgroup of N Pic(X). In [Wei91], Weibel shows that for every scheme there is
a direct sum decomposition

Pic(X[t, t−1])∼= Pic(X)⊕N Pic(X)⊕N Pic(X)⊕H1
et(X, Z).

Proof of Theorem 2. We show first that N Pic(X) = ker(UX(A1)→ UX(k)). Since there are
no non-trivial morphisms of schemes from A1

k to an abelian variety, a torus, an infinitesimal
group, or a discrete group, we see that the kernel of UX(A1

k)→ UX(k) agrees with the kernel
of PicX(A1

k)→ PicX(k). Let p :X → k and p′ :X × A1
k→ A1

k be the structure morphisms. Then
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the Leray spectral sequence gives a commutative diagram

0 // H1
et(A1

k, p
′
∗Gm) //

��

Pic(X × A1
k) //

��

PicX(A1
k) //

��

H2
et(A1

k, p
′
∗Gm)

��
0 // H1

et(k, p∗Gm) // Pic(X) // PicX(k) // H2
et(k, p∗Gm)

and it suffices to show that the outer vertical maps are isomorphisms. LetX
g−→ L→ k be the Stein

factorization of p, such that OL ∼= g∗OX and L is the spectrum of an Artinian k-algebra. Since

A1
k→ k is flat, p′∗OX×A1

k
=OA1

k
⊗k p∗OX , and X × A1

k

g′−→ A1
L −→ A1

k is the Stein factorization
of p′. We obtain

H i
et(A1

k, p
′
∗Gm)∼=H i

et(A1
L, g

′
∗Gm)∼=H i

et(A1
L,Gm),

and H i
et(k, p∗Gm)∼=H i

et(L,Gm). Hence, the terms on the left vanish because Pic(L) = Pic(A1
L)

= 0. To show that H2
et(A1

L,Gm)→H2
et(L,Gm) is an isomorphism, we can assume that L is a local

Artinian k-algebra with (perfect) residue field k′. By [Mil80, III, Remark 3.11] we are reduced to
showing that H2

et(A1
k′ ,Gm)→H2

et(k
′,Gm) is an isomorphism, and this can be found in [Mil80,

IV, Exercise 2.20].

Given an element x of N Pic(X), the condition x ∈ Pic(X[t])[1] implies that the corresponding
f ∈HomSch(A1, UX) satisfies f(nx) = nf(x) for all n. If k has characteristic zero, then UX ∼= Gr

a

for some r, and the map f : Ga→ UX corresponds to a morphism of Hopf algebras f∗ :
k[x1, . . . , xr]→ k[t]. If f∗(xi) =

∑
j ajt

j , then∑
j

aj(nt)j = f∗(nxi) = nf∗(xi) = n
∑
j

ajt
j

only if nj = n for all n, hence j = 1. 2

Example. If k has characteristic p, then t 7→ t2p−1 induces a map Ga→Ga which is compatible
with multiplication by n, but not a homomorphism of group schemes.

Corollary 8. We have UX = 0 if and only if N Pic(X) = 0.

Proof. This follows from N Pic(X) = ker
(
UX(A1)→ UX(k)

)
, because any unipotent, connected,

smooth affine group is an affine space as a scheme, hence admits a non-trivial morphism from
A1 which sends 0 to 0 if it is non-trivial. 2

The kernel and cokernel of PicX → PicXred has been described in [Oor62], hence from now we
will assume that X is reduced. If X+ is the semi-normalization of X, then the map OX →OX+

is an injection of sheaves on the same topological space. For X+ reduced and semi-normal,
N Pic(X+) = 0 by Traverso’s theorem [Tra70] together with [Wei91, Theorem 4.7]. Hence, the
corollary implies that UX+ = 0, and that

UX = ker(Pic0,red
X → Pic0,red

X+ ).

(For curves, this recovers [BLR90, Proposition 9.2/10].) Indeed, by Corollary 6, the map
Pic0,red

X → Pic0,red
X+ induces an isomorphism on the torus and abelian variety part, because it

induces an isomorphism on étale cohomology.

419

https://doi.org/10.1112/S0010437X08003710 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003710


T. Geisser

Proposition 9. Let p :X → k be reduced and proper, and f :X ′→X be a bijection which
induces an isomorphism on residue fields.

(a) If X ′ is reduced, then there is an isomorphism p∗Gm,X
∼= p∗Gm,X′ .

(b) We have that p∗(Gm,X′/Gm,X) is a smooth, connected, unipotent commutative group
scheme, and for j > 0, Rjp∗(Gm,X′/Gm,X) = 0.

Proof. (a) Since any scheme T over k is flat, we have by flat base change Rjq∗OXT
=

Hj(X,OX)⊗k OT , where q :XT → T is the projection. In particular,

p∗Gm,X(T ) := Γ(X × T,OX×T )× = (Γ(X,OX)⊗ Γ(T,OT ))×,

and it suffices to show that Γ(X,OX) = Γ(X ′,OX′). Since Γ(X̄,OX̄)Gal(k̄/k) = Γ(X,OX), we
can assume that k is algebraically closed and that X is connected. But, X ′→X is a universal
homeomorphism, so that Γ(X,OX)∼= Γ(X ′,OX′)∼= k because X and X ′ are reduced, proper,
connected, and have a k-rational point.

(b) We proceed by induction on the dimension of X. If dimX = 0, then Rjp∗(Gm,X′/Gm,X)
= 0 for j > 0 because p∗ is exact for finite maps, and to show that p∗(Gm,X′/Gm,X) is a smooth,
connected, unipotent group scheme, we can assume that X = Spec L is a finite field extension
of k, and that X ′ = Spec k′ is a local Artin algebra over L with residue field L. Since the Weil
restriction is compatible with extensions, and since the Weil restriction of Ga along a finite flat
map of degree m is Gm

a , we can assume that L= k and k′ = k ⊕N with N a nilpotent ideal. We
can find a sequence of local Artin algebras ki such that k0 = k, kn = k′ and ki+1 = ki ⊕Ni with
N2
i = 0. Since an extension of smooth, connected, unipotent commutative group schemes is of

the same type, we can assume that k′ = k ⊕N with N2 = 0. For a given scheme T → k,

Γ(T ×k k′,OT×kk′)
× ∼= (Γ(T,OT )⊗k k′)×
∼= (Γ(T,OT )⊕ Γ(T,OT )⊗k N)× ∼= Γ(T,OT )× ⊕ Γ(T,OT )⊗k N,

hence the cokernel of Gm,k→Gm,k′ is represented by the vector group N .
If dimX > 0, we consider the conductor square (3). By hypothesis, Z ′→ Z is a bijection of

schemes of lower dimension which induces isomorphism on residue fields, and Z is still reduced.
From the injectivity of Gm,Z →Gm,Z′ and the short exact sequence

0→Gm,X →Gm,X′ ⊕ i∗Gm,Z → i∗Gm,Z′ → 0

we conclude that the map Gm,X →Gm,X′ is injective with cokernel equal to the cokernel of
i∗Gm,Z → i∗Gm,Z′ . The proposition follows because

Rjp∗(Gm,X′/Gm,X) =Rjp∗(i∗Gm,Z′/i∗Gm,Z) =Rj(pi)∗(Gm,Z′/Gm,Z). 2

Proof of Theorem 3. (a) This follows from the exact sequence of étale sheaves

0→ p∗Gm,X → p∗Gm,X+ → p∗(Gm,X+/Gm,X)→ PicX → PicX+ →R1p∗(Gm,X+/Gm,X)

and Proposition 9.
(b) Recall that q :XT → T , and consider the following diagram.

0 // H1
et(T, q∗Gm,X×T ) //

��

Pic(X × T ) //

r

��

PicX/k(T ) //

s

��

H2
et(T, q∗Gm,X×T )

��
0 // H1

et(T, q∗Gm,X+×T ) // Pic(X+ × T ) // PicX+/k(T ) // H2
et(T, q∗Gm,X+×T )
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Since q∗Ga,X×T =H0(X,OX)⊗OT =H0(X+,OX+)⊗OT = q∗Ga,X+×T is an isomorphism as
in Proposition 9(a), the outer maps are isomorphisms, and it suffices to calculate ker r. Let
Y =X × T and Y ′ =X+ × T , and consider the tautological map

f : {OY -line bundles L ⊆OY ′ which are invertible in OY ′}→ Pic(Y ).

It suffices to show the following statements:

(a) the image of f is contained in ker(Pic(Y )→ Pic(Y ′));
(b) f surjects onto ker(Pic(Y )→ Pic(Y ′));
(c) f is injective.

(a) We claim that the map L ⊗OY
OY ′ →OY ′ ⊗OY

OY ′
µ−→OY ′ is an isomorphism. We can

check this on an affine covering, and in this case it is proved in [RS93, Lemma 2.2(4)].
(b) Let L ∈ Pic(Y ) with L ⊗OY

OY ′ ∼=OY ′ . Since L is flat, we obtain an injection L=
L ⊗OY

OY →L⊗OY
OY ′ ∼=OY ′ . We claim that the inverse of L in OY ′ is the sheaf associated

to the presheaf U 7→ {x ∈ OY ′(U) | xL(U)⊆OY (U)} ⊆ OY ′(U). This can be checked on an affine
covering, and then it is [RS93, Lemma 2.2(2)].

(c) Let L and L′ be subsheaves of OY ′ which are invertible in OY ′ and isomorphic as abstract
invertible sheaves. Multiplying with the inverse of L′ inside OY ′ , it suffices to show that if L is a
subsheaf of OY ′ , and f :OY →L an isomorphism, then L=OY ⊆OY ′ . However, f(1) is a global
unit of OY ′(Y ) and, by Proposition 9(a), OY (Y )× =OY ′(Y )×. Hence, L= f(1)−1L=OY . 2
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