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Recent years have seen the emergence of new technologies that exploit nanoscale
evaporation, ranging from nanoporous membranes for distillation to evaporative cooling
in electronics. Despite the increasing depth of fundamental knowledge, there is still a lack
of simulation tools capable of capturing the underlying non-equilibrium liquid–vapour
phase changes that are critical to these and other such technologies. This work presents
a molecular kinetic theory model capable of describing the entire flow field, i.e. the
liquid and vapour phases and their interface, while striking a balance between accuracy
and computational efficiency. In particular, unlike previous kinetic models based on the
isothermal assumption, the proposed model can capture the temperature variations that
occur during the evaporation process, yet does not require the computational resources of
more complicated mean-field kinetic approaches. We assess the present kinetic model in
three test cases: liquid–vapour equilibrium, evaporation into near-vacuum condition, and
evaporation into vapour. The results agree well with benchmark solutions, while reducing
the simulation time by almost two orders of magnitude on average in the cases studied.
The results therefore suggest that this work is a stepping stone towards the development
of an accurate and efficient computational approach to optimising the next generation of
nanotechnologies based on nanoscale evaporation.
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1. Introduction

Evaporation is a ubiquitous phenomenon in nature and has many practical applications,
such as evaporative cooling, material coating and disease diagnosis (Pinto et al. 2018;
Yang, Cui & Lan 2019; Brutin et al. 2011). With the emergence of nanotechnologies,
these applications have now ventured into the realm of the nanoscale. One example is
evaporative distillation using nanoporous membranes with pore diameters of the order
of nanometres (∼100 nm), which allows unprecedented efficiency in the separation
of substances (Khayet 2011; Dong et al. 2022). In addition, nanoscale evaporation
processes are being exploited in electronic components to enable highly efficient heat
dissipation (Khodabandeh & Furberg 2010; Vaartstra et al. 2020). It is clear, therefore,
that computational tools capable of accurately simulating nanoscale evaporative flow
are paramount to the effective design and operation of these nanoscale devices. The
accurate modelling of nanoscale evaporation processes poses, however, significant
physical challenges due to the involvement of distinct spatial domains spanning multiple
lengths and time scales.

As depicted in figure 1, four regions can typically be distinguished in the flow field
of an evaporating liquid: the liquid bulk, the interface, the Knudsen layer (which marks
the initial region of the vapour phase) and the vapour bulk (Frezzotti 2011; Frezzotti &
Barbante 2017; Aursand & Ytrehus 2019). The interface (with a size of the order of a
molecular diameter) and the Knudsen layer (with a size of the order of the mean free path)
connect the liquid and vapour bulk regions. In these transitional layers, the fluid is in a
non-equilibrium state, and the macroscopic variables are subject to substantial variations,
which manifest themselves as ‘jumps’ on the macroscopic scale. Accurately representing
the exchange of mass, momentum and energy between the vapour and the liquid bulk is a
key problem in properly accounting for evaporation.

The vapour within the Knudsen layer is rarefied, and so extensive studies have been
undertaken to investigate the flow dynamics within this region using classical gas kinetic
theory (Ytrehus 1997; Frezzotti & Barbante 2017). Approximately 140 years ago, Hertz
and Knudsen formulated an expression for the evaporation mass flux in this region,
known as the Hertz–Knudsen (H–K) formula (Hertz 1882; Knudsen 1915). While the H–K
formula can capture some aspects of the evaporation process, its inability to account for
the downstream vapour velocity hinders its accuracy in predicting flow properties (Persad
& Ward 2016; Aursand & Ytrehus 2019). The H–K formula was later improved by Schrage
(1953). While this modified equation is still widely used, it has shortcomings, such as
inapplicability beyond weak evaporation conditions (Vaartstra et al. 2022). This gap in
knowledge has been filled by subsequent contributions that incorporate the conservation
of mass, momentum and energy. For evaporation from a planar liquid surface, the structure
of the Knudsen layer and the jump relationships along this region have been well described
using moment methods (Labuntsov & Kryukov 1979; Ytrehus 1997; Meland & Ytrehus
2003). In parallel with the theoretical investigation, numerical simulations have been
developed to address this problem under different flow conditions based on the Boltzmann
equation or related kinetic models. For example, the evaporation of monatomic liquids
has been simulated using the Bhatnagar–Gross–Krook model and the Shakhov model
(Sone et al. 1988; Aoki, Sone & Yamada 1990; Graur et al. 2021). Evaporation flow
properties in two-dimensional geometries, such as nanoporous membranes, have also been
studied using the Direct Simulation Monte Carlo (DSMC) method (John et al. 2019,
2021; Li, Wang & Xia 2021; Wang, Xia & Li 2022; Li, Yan & Xia 2023). Although
the above theoretical and numerical methods are well established, their treatment of
evaporation is limited by the lack of resolution of the structure and dynamics of the

994 A16-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.605


Kinetic modelling of non-equilibrium evaporative flows

Liquid bulk

0 x

n

u

T

Interface Knudsen layer Vapour bulk

Figure 1. In evaporation, a bulk liquid region and a bulk vapour region are separated by a molecular scale
interface. Adjacent to the interface on the vapour side is the non-equilibrium region Knudsen layer of the
order of the mean free path. Across the interface and Knudsen layer, macroscopic quantities such as density n,
velocity u, and temperature T undergo sharp transitions that appear discontinuous on the macroscale.

liquid–vapour interface. As a result, the molecular exchange process with the liquid
phase relies on a phenomenological boundary condition, which requires an evaporation
coefficient parameter as an input. However, reported values for this coefficient in the
literature span three orders of magnitude (Persad & Ward 2016), introducing significant
uncertainty.

In an attempt to determine the evaporation coefficient, the Enskog–Vlasov (EV)
equation (Frezzotti, Gibelli & Lorenzani 2005) was used as it allows one to describe both
the liquid and vapour phases, including the interfacial region. The EV equation builds on
the Boltzmann equation for dilute gases by incorporating two important extensions (de
Sobrino 1967; Grmela 1971; Karkheck & Stell 1981). First, the Enskog collision term is
used to account for the dense fluid effects of increased molecular collision frequency and
non-local interactions due to finite molecular volume, which are crucial for the description
of the liquid phase and the interfacial region. Second, a Vlasov self-consistent force term
is included to account for long-range molecular attractive forces, which are crucial for
capturing liquid–vapour phase transitions. Interestingly, a similar treatment of long-range
interactions has been used in lattice Boltzmann models for multiphase fluid flows (Luo
1998, 2000; He & Doolen 2002; Huang, Wu & Adams 2021). The EV equation has been
solved mainly by a particle method, which is an extension of the DSMC method to dense
fluids (Frezzotti et al. 2005; Frezzotti, Barbante & Gibelli 2019). Numerical studies have
provided many interesting insights into the evaporation of monatomic and polyatomic
fluids (Frezzotti et al. 2005, 2019; Busuioc & Gibelli 2020; Ohashi et al. 2020).

The EV equation has two main limitations that have prevented its widespread practical
application in engineering flows. First, it treats molecules as hard spheres, resulting in
transport coefficients of a hard-sphere fluid. However, the model can be extended to
emulate real fluids by including a state-dependent hard-sphere diameter, where higher
temperatures correspond to smaller molecular diameters (Karkheck & Stell 1981), and
by considering attractive contributions from the intermolecular potential (Shan et al.
2023). Second, the numerical solution of the EV equation proves to be computationally
demanding, largely due to the complexity of the Enskog collision term. Consequently,
there is a growing interest in developing kinetic models for liquid–vapour flows based
on simpler collision terms (Takata & Noguchi 2018; Zhang et al. 2020; Chen et al.
2023). However, existing models rely on the assumption of constant temperature, which
limits their usefulness in scenarios with minimal temperature variations. While Takata,
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Matsumoto & Hattori (2021) has proposed a kinetic model that removes this isothermal
constraint, further studies are needed to validate its effectiveness in handling evaporation
processes.

In this work, we develop a kinetic model that can be easily extended to account for real
fluid effects on the transport coefficients, and that is simpler than the EV equation, both
in its mathematical formulation and in its numerical solution, but with a similar level of
accuracy. Building on our previous work (Wang et al. 2020; Shan et al. 2023; Su et al.
2023), we simplify the Enskog collision term by approximating its non-local terms in
space by a Taylor series expansion truncated to the first-order derivatives in the molecular
diameter, replacing the zero-order term by the Shakhov model. The proposed kinetic model
is tested on three different scenarios to assess its ability to capture the essential physics
and its accuracy: liquid–vapour equilibrium, evaporation into near-vacuum condition,
and evaporation into vapour. The simulation results are compared with those obtained
from the EV equation and analytical solutions. The very good agreement shows that our
approximate kinetic model can provide a realistic description of liquid–vapour flows.

The rest of the paper is organised as follows. Section 2 presents the kinetic model.
Section 3 outlines the simulation set-up and addresses several aspects of the evaporation
processes, namely the liquid–vapour equilibrium, evaporation into near-vacuum condition,
and the structure of the Knudsen layer during evaporation into vapour. Finally, § 4
concludes with a summary of our work and future research directions.

2. Kinetic model

We consider a fluid consisting of identical spherical atoms with mass m and diameter σ

interacting via the Sutherland potential φ(r) defined by the superposition of the repulsive
hard-sphere core and an attractive smooth tail, i.e.

φ(r) =
⎧⎨
⎩

+∞, r < σ,

−φσ

( r
σ

)−γ

, r � σ,
(2.1)

where φσ and γ are two positive constants related to the depth of the potential well
and the extent of the soft interaction, respectively, and r = ‖x1 − x‖ is the distance
between the interacting atoms at x1 and x. Compared to more realistic potentials, such
as the Lennard-Jones potential, the Sutherland potential strikes a good balance between
accuracy and simplicity in representing intermolecular interactions. On the one hand,
the hard-sphere component accounts for finite intermolecular repulsion at short distances,
preventing unrealistic molecular overlap, which is particularly important in dense fluids;
on the other hand, the attractive tail captures the forces that hold molecules together, which
is essential for accurately describing the liquid–vapour phase transition.

The fluid is then described statistically by introducing the molecular distribution
function f (x, ξ , t), which gives the number of atoms at time t in the elementary
volume of the single-particle phase space around the position x and the velocity ξ .
A closed-form evolution equation for the distribution function can be derived, assuming
that long-range particle correlations are negligible, and short-range particle correlations
can be approximated by the Enskog theory of dense gases (de Sobrino 1967; Grmela
1971; Karkheck & Stell 1981; Frezzotti et al. 2005). The resulting equation, called the
EV equation, reads

∂f
∂t

+ ξ · ∂f
∂x

+ F
m

· ∂f
∂ξ

= Ω, (2.2a)
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where F is the self-consistent force field generated by the soft attractive potential tail,

F (x, t) =
∫

‖x1−x‖>σ

dφ

dr
x1 − x

‖x1 − x‖ n(x1, t) d x1, (2.2b)

and Ω is the hard-sphere collision integral derived within Enskog theory,

Ω = σ 2
∫ {

χ
(

x + σ

2
k
)

f ′(x) f ′
1(x + σk)−χ

(
x − σ

2
k
)

f (x) f1(x − σk)
}

g · k dk dξ1.

(2.2c)

Here, g = ξ1 − ξ is the relative velocity of two collision molecules, and k is the unit
vector, which is related to the relative position of the collision molecules. In terms of the
distribution functions in the Enskog collision term, f ′(x) = f (x, ξ ′, t), f ′

1(x) = f (x, ξ ′
1, t),

f (x) = f (x, ξ , t), f1(x) = f (x, ξ1, t), where the relations between pre-collision molecular
velocities ξ ′ and ξ ′

1, and post-collision molecular velocities ξ and ξ1, are ξ ′ = ξ + (g · k)k
and ξ ′

1 = ξ1 − (g · k)k. Following the standard Enskog theory, χ in (2.2c) is the pair
correlation function of a hard-sphere fluid in equilibrium valued at the contact point,
which accounts for correlations between colliding particles. The pair correlation function
is related to the local density ρ(x, t) and can be calculated by (Chapman & Cowling 1970)

χ(ρ) = 1 − 0.125bρ

(1 − 0.25bρ)3 , (2.3)

where b = 2πσ 3/3m, which is related to the reduced density η = bρ/4.
Despite its ability to provide accurate results for dense gases, the EV equation

suffers from high computational cost, limiting its practical application in engineering.
To overcome this limitation, we have introduced a simplified Enskog collision term by
approximating the non-local terms with a first-order Taylor series expansion truncated
after the first derivative terms in the molecular diameter. The zero-order terms are then
replaced by the Shakhov model to correctly represent the Prandtl number (Pr), and
the first-order derivatives are evaluated by replacing the distribution function with a
Maxwellian distribution, while a term involving the second derivative of the velocity is
to recover the correct bulk viscosity (Wang et al. 2020; Su et al. 2023). For dense gases
and liquids, the molecular distribution is typically close to the Maxwellian, making such
a velocity distribution effective for capturing denseness effects. The resulting simplified
Enskog collision term can be expressed mathematically as

Ω = JS + Je, (2.4a)

where the Shakhov-model-like part JS is

JS = f eq − f
τ

+ f eq

τ

2m(1 − Pr)qK · C
5n(kBT)2

(
mC2

2kBT
− 5

2

)
, (2.4b)

and the excess part Je is

Je = −ρbχ f eq
{

C ·
[

2
n

∂n
∂x

+ 1
T

∂T
∂x

(
3mC2

10kBT
− 1

2

)]
+ 2m

5kBT
CC :

∂

∂x
u

−
(

1 − mC2

5kBT

)(
∂

∂x
· u

)}
− ρbCf eq · ∂χ

∂x

+ ∂

∂x
·
[

f eq �

nkBT

(
∂

∂x
· u

)
C

(
mC2

2kBT
− 3

2

)]
. (2.4c)
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Here, � is the bulk viscosity, f eq is the local Maxwellian distribution function

f eq = n
(

m
2πkBT

)3/2

exp
(

− mC2

2kBT

)
, (2.5)

n is the number density, T is the temperature, u is the bulk velocity, and qK is the kinetic
contribution to the heat flux (see also Appendix A). These macroscopic quantities are
determined by the velocity moments:

n(x, t) =
∫

f (x, ξ , t) dξ ,

u(x, t) = 1
n

∫
ξ f (x, ξ , t) dξ ,

T(x, t) = 1
2ncv

∫
C2 f (x, ξ , t) dξ ,

qK(x, t) = m
2

∫
CC2 f (x, ξ , t) dξ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where cv = 3kB/2m is the specific heat capacity at constant volume, kB is the Boltzmann
constant, and C = ξ − u is the peculiar velocity. The relaxation time τ = μ/nkBT is
calculated based on the shear viscosity of dense gas

μ = μ∗

χ

(
1 + 2

5
ρbχ

)2

+ 3
5

�, (2.7)

where μ∗ is the gas shear viscosity at reference temperature, and the bulk viscosity is
� = μ∗χ(ρb)2. The thermal conductivity κ for dense gas can be calculated as

κ = κ∗

χ

(
1 + 3

5
ρbχ

)2

+ cv�, (2.8)

where κ∗ is the thermal conductivity at reference pressure. Thus the Prandtl number is
calculated as

Pr = 2
3

(1 + 2
5ρbχ)2 + 3

5 (ρbχ)2

(1 + 3
5ρbχ)2 + 2

5 (ρbχ)2
. (2.9)

It is worth noting that the equation of state of the fluid described by the Sutherland
potential includes not only the kinetic contribution but also the collisional contribution
and the influence of the force field, resulting in a generalised van der Waals form (Frezzotti
et al. 2005)

p = nkBT(1 + nbχ) − 2πσ 3

3
γ

γ − 3
φσ n2. (2.10)

As expected, when b → 0, the shear viscosity, thermal conductivity and Prandtl number
approach the values observed in dilute hard-sphere monatomic gases, i.e. χ → 1 and
� → 0. The detailed derivation of the kinetic model and the method for correcting the
transport properties to represent real fluids can be found in our previous publications
(Wang et al. 2020; Su et al. 2023), with the latter specifically described in Shan et al.
(2023).
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Vapour

–L/2 L/2
x

Δ(T�)

Liquid

W
Vapour

Figure 2. Simulation set-up. A slab of liquid of width W is placed in the centre of the computational domain,
surrounded by vapour. The central part of the liquid Δ (red area) is thermostatted at a fixed temperature T�.

3. Results discussion

3.1. Simulation set-up
As depicted in figure 2, the simulation set-up consists of a liquid slab of width W
occupying the central region of the computational domain [−L/2, L/2], surrounded by
the vapour phase. The liquid slab is thermostatted throughout the simulations in the slab
centre Δ by setting the distribution function to be a Maxwellian with the local density but
fixed temperature T�.

The kinetic model is assessed by examining three simulation test cases:
(a) liquid–vapour equilibrium, (b) evaporation into near vacuum, and (c) evaporation into
vapour. Different boundary conditions are used in each case, as follows.

In case (a), periodic boundary conditions are applied to allow the system to reach
equilibrium:

f
(

∓L
2
, ξx

)
= f

(
±L

2
, ξx

)
, ξx ≷ 0. (3.1)

In case (b), absorbing wall boundary conditions are applied to simulate a near-vacuum
environment surrounding the domain:

f
(

∓L
2
, ξx

)
= 0, ξx ≷ 0. (3.2)

In case (c), far-field boundary conditions are applied to represent the vapour region at a
distance, where the distribution is a drifting Maxwellian with velocity u∞ (Frezzotti 2011):

f
(

∓L
2
, ξx

)
= n∞

(
m

2πkBT∞

)3/2

exp
(

−m(ξx − u∞)2

2kBT∞

)
, ξx ≶ 0. (3.3)

In all these cases, the quantities of interest vary only along the x direction, so the
analysis is simplified by introducing reduced distribution functions, which are obtained
by integrating the full distribution function over the ξy and ξz velocity components (Wang
et al. 2020). The resulting coupled system of two reduced distribution equations has been
made dimensionless using the molecular diameter as the reference length �0, and the most
probable molecular velocity at the reference temperature T0 as the reference velocity
u0 = √

2kBT0/m. The corresponding reference time is then defined as t0 = �0/u0, the
reference mean force field as u2

0/�0, the reference distribution function as f0 = n0/u3
0, and

the reference number density as n0 = 1/�3
0. The equations were solved using the discrete

velocity method (Wang et al. 2020). This method uses uniform meshes in both spatial and
velocity space, with derivatives approximated by second-order finite differences in both
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domains, while time integration uses an explicit Euler scheme. As a result, the scheme is
second-order accurate in space, and first-order accurate in time. After conducting mesh
independence studies, the spatial domain was discretised with grid size �0/10, and the
velocity domain was discretised with grid size u0/20 over the range [−4u0, 4u0] for all
simulations.

From here on, a tilde will be used to distinguish dimensionless quantities from
dimensional ones.

3.2. Liquid–vapour equilibrium
In this subsection, we determine the equilibrium solution for a liquid coexisting with its
vapour at constant temperature. The main aim is to assess the ability of our kinetic model
to capture the structure of the liquid–vapour interface.

The computational domain was set to L = 60σ , with the liquid phase confined within
a slab of width W = 30σ and the system fully thermostatted, i.e. Δ = L. For the first
simulation, the system temperature T̃ was kept constant at 0.65, the number densities of
the liquid and vapour phases were set higher and lower than the theoretical equilibrium
values, respectively, and the system was then allowed to evolve to a steady state. The
theoretical equilibrium values of the density in the liquid and vapour bulks follow from the
mechanical and chemical equilibrium conditions, which require the pressure and chemical
potential of the two bulk phases to be equal at the given temperature. When using the
Sutherland potential, the chemical potential ε and the pressure p have two contributions –
one from the hard-sphere potential (Heyes & Santos 2016) and the other from the soft
attractive potential tail (Karkheck & Stell 1981) – and the resulting expressions are
(Frezzotti et al. 2018)

ε = kBT
[
η

8 − 9η + 3η2

(1 − η)3 + ln(η)

]
− 8φση

γ

γ − 3
, (3.4a)

p = 6
π

η
1 + η + η2 − η3

(1 − η)3 kBT − 24
πσ 3 φση2 γ

γ − 3
. (3.4b)

The resulting number density profiles are shown in figure 3(a), with both phases reaching
their respective theoretical equilibrium number densities as indicated by the dotted lines.

A further insight into the relaxation dynamics can be gained by observing that in
equilibrium, the gradient of the kinetic and collisional contributions to the xx-component
of the stress tensor must balance the self-consistent force field (Frezzotti & Gibelli 2003).
The derivations of the kinetic and collisional contributions to the stress tensor and the
heat flux are given in Appendix A. As shown in figure 3(b), there is initially an imbalance
between the kinetic and collisional contributions to the stress tensor and the self-consistent
force field, causing a flow from the liquid to the vapour phase. This transition leads to a
simultaneous decrease in the gradients of these contributions and of the force field, but the
latter experiences a comparatively smaller decrease. As a result, an equilibrium is reached
eventually.

Numerical simulations similar to those discussed above were carried out at different
temperatures to map the phase coexistence curve, as shown in figure 3(c). Here, the number
density and temperature are normalised by the critical reduced number density ηc and
critical temperature Tc, respectively, which are given by (Frezzotti et al. 2005)

ηc = πσ 3nc

6
≈ 0.13, Tc = 0.094

4γ

γ − 3
φσ

kB
. (3.5a,b)
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ñ ñ
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Figure 3. (a) Number density profile in the initial and equilibrium states, where the two dotted lines represent
the theoretical equilibrium number densities in the liquid and vapour bulk at T̃ = 0.65. (b) Force balance
between the gradient of the kinetic and collisional contributions to the xx-component of the stress tensor and
the self-consistent force field. (c) Liquid–vapour coexistence curve, where the points are obtained from the
numerical simulation, and the lines are theoretical predictions. (d) Reciprocal liquid–vapour interface thickness
as a function of system temperature.

It is clear that our kinetic model accurately captures the equilibrium liquid and vapour
densities across the coexistence curve, with results in perfect agreement with the
theoretical values from (3.4).

The interface thickness ΔI is also calculated for different system temperatures by fitting
the equilibrium density profile to a hyperbolic tangent profile, which has been shown to
accurately capture the interface structure (Frezzotti & Gibelli 2003),

n = nv + n� − nv

2

[
1 + tanh

(
2

x − x�

ΔI

)]
, (3.6)

where x� is the centre of the liquid–vapour interface, and the subscripts v, � represent the
vapour and liquid bulk, respectively. The results from our kinetic model are compared
in figure 3(d) with those from the EV equation and a simplified equilibrium density
profile equation derived from the Taylor expansion of the integral equation for the
equilibrium density profile (Frezzotti et al. 2005). While our model slightly overestimates
the interfacial thickness compared to the EV equation, especially at lower temperatures,
it successfully captures the qualitative trend of thickness variation with temperature.
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This quantitative discrepancy is to be expected, given the simplifications introduced by
the approximate collision integral of our model.

3.3. Evaporation into near-vacuum
In this subsection, we study the evaporation of a liquid under near-vacuum condition.
The main aim is to estimate the evaporation coefficient using the simulation results of
our kinetic model. This coefficient is a key parameter in the formulation of boundary
conditions at the liquid–vapour interface required for kinetic theory modelling of vapour
dynamics.

The computational domain was set to L = 30σ , with the liquid phase confined within a
slab of width W = 17σ , the vapour region being deliberately kept thin to enforce the free
molecular flow of the vapour (Frezzotti et al. 2005). The thermostatted region was set to
Δ = 4σ .

Figures 4(a) and 4(b) show the number density and temperature profiles for different
liquid bulk temperatures as given by our kinetic model. In contrast to the equilibrium
solution, the number density profile has a concave shape in the central region, which
becomes more pronounced as T� increases. Correspondingly, the temperature is no longer
uniform throughout the system, but a temperature gradient emerges from the centre
towards the boundaries, with the steepest gradient occurring in the interface region. The
kinetic and collisional contributions to the heat flux and stress tensor across the system
for different liquid bulk temperatures are shown in figures 4(c) and 4(d). The heat flux
is proportional to the temperature gradient and the thermal conductivity, which varies
with the number density. As a result, the heat flux increases in the liquid phase, while
it drops to a very small value in the vapour phase. By contrast, the behaviour of the
stress tensor closely follows the variations of the number density. A detailed comparison
of the macroscopic quantities – including number density, total temperature, transversal
temperature T⊥, longitudinal temperature T‖, mean force field and bulk velocity – is shown
in figure 4(e) between the results of our kinetic model and the EV equation (Frezzotti et al.
2005). Here, the transversal and longitudinal temperatures are defined as

T⊥ = k
2nm

∫
(ξ2

y + ξ2
z ) f (x, ξ , t) dξ , (3.7a)

T‖ = k
nm

∫
(ux − ξx)

2 f (x, ξ , t) dξ , (3.7b)

with the total temperature given by T = (T‖ + 2T⊥)/3. As shown in figure 4(e), our kinetic
model has an accuracy in predicting macroscopic flow properties comparable to the EV
equation.

In this simulation set-up, the evaporation coefficient σe can be calculated using the
equation

σe ng(Te)

√
RTe

2π
= Jm, (3.8)

where Te is the temperature attributed to the liquid–vapour interface, and Jm is the
outgoing mass flux that can be evaluated numerically at the boundary of the computational
domain (Frezzotti et al. 2005). The temperature Te in (3.8) requires careful consideration,
with two standard choices being the liquid bulk temperature T� and the separation
temperature Ts, defined as the temperature at the point where the transversal and
longitudinal temperatures separate, marking the beginning of the non-equilibrium region
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Figure 4. (a) Number density, (b) temperature and sum of kinetic and collisional contributions to (c) the heat
flux and (d) the stress tensor under different T̃�. (e) Comparison of macroscopic quantities between the present
kinetic model and the EV equation (Frezzotti et al. 2005) at T̃� = 0.45. The solid line indicates the results
obtained from the present kinetic model, while the hollow points depict the results obtained from the EV
equation. ( f ) Evaporation coefficients under different T̃�. Here, two reference temperatures are adopted.

on the vapour side. The bulk temperature T� is often used in kinetic theory studies because
it is a known parameter, whereas the separation temperature Ts is not known a priori and
must therefore be estimated (Frezzotti et al. 2005, 2019).

The results for the evaporation coefficient are shown in figure 4( f ). When Te = T�,
σe decreases as T� increases, while when Te = Ts, σe has less variation, with the
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value remaining at approximately 0.8. Although our model is in qualitative agreement
with the EV equation in terms of macroscopic properties such as the temperature and
density fields, it underestimates the evaporation coefficient over the temperature range
studied. If Te = Ts is chosen, then the difference to the EV equation, decreasing with
increasing temperature, is approximately 15 % for T� = 0.45, and approximately 7 %
for T� = 0.55. Additionally, the different choices of temperature in (3.8) can lead to
a significant discrepancy in the evaporation coefficient. And this discrepancy is small
for weak evaporation, and diminishes when the temperature gradient along the liquid
phase becomes zero. Consequently, when the evaporation coefficient is used as an
input parameter in kinetic or macroscopic simulations for strong evaporation, making
an appropriate choice of liquid–vapour interface temperature is a daunting task that will
inevitably lead to errors in predicting the macroscopic properties in the dilute phase.

3.4. Evaporation into vapour
In this subsection, we study the evaporation of a liquid into its vapour. The main aim is to
assess the ability of our kinetic model to capture the structure of the Knudsen layer, and in
particular the jumps suffered by macroscopic quantities across this region.

Previous studies have accurately described the Knudsen layer structure in planar
evaporation by solving the one-dimensional Boltzmann equation with a moment method
(Labuntsov & Kryukov 1979; Ytrehus 1997). Assuming an evaporation condensation
coefficient of unity, σe = 1, these studies determined the jumps in temperature and number
density across the Knudsen layer as

(
T∞
Ts

)1/2

σe=1
= −π1/2 S∞

8
+

[
1 + π

(
S∞
8

)2
]1/2

, (3.9a)

(
nsv

n∞

)
σe=1

=
2 exp(−S2∞)

T∞
Ts

F− +
(

T∞
Ts

)1/2

G−
, (3.9b)

where S∞ = u∞(2RT∞)−1/2 is the dimensionless evaporation velocity, nsv is the saturated
vapour number density under Ts, and F− and G− are functions of S∞ given by

F− = −π1/2S∞ erfc(S∞) + exp(−S2
∞), (3.10a)

G− = (2S2
∞ + 1) erfc(S∞) − 2S∞

π1/2 exp(−S2
∞), (3.10b)

where erfc(S∞) is the complementary error function,

erfc(S∞) = 1 − erf(S∞) = 2π−1/2
∫ ∞

S∞
e−t2 dt. (3.11)

If the evaporation coefficient is different from unity, σe /= 1, then the temperature jump
remains the same, while the jump in the number density changes to(

nsv

n∞

)
σe /=1

=
(

nsv

n∞

)
σe=1

+ 1 − σe

σe
2π1/2

(
T∞
Ts

)1/2

S∞. (3.12)
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ũ∞ = 0.3

x̃ x̃
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Figure 5. Number density, temperature and velocity profiles across the Knudsen layer for two evaporation
velocities: (a) ũ∞ = 0.2 and (b) ũ∞ = 0.3. Lines represent kinetic model results; symbols show DSMC method
results. The colours indicate different macroscopic quantities: yellow, number density ñ; blue, velocity ũ; red,
temperature T̃ . (c) Jump relations across the Knudsen layer. The analytical solution is the dashed line. Blue
symbols are kinetic model results; red symbols are from the DSMC method.

Simulations were performed here for different far-field velocities u∞ and by varying
L accordingly in the range L = [400σ, 1200σ ] to resolve the structure of the Knudsen
layer accurately. In fact, the thickness of the Knudsen layer varies from several molecular
diameters for very weak evaporation to approximately 20λe, where λe = 1/

√
2 πnsvσ

2,
which corresponds to approximately 600σ as the far-field velocity approaches the
transonic value (Sibold & Urbassek 1993; Ytrehus 1997; Frezzotti et al. 2019). The
computational cost of these simulations was reduced by examining only half of the domain,
i.e. [0, L/2], assuming specular boundary conditions at x = 0 and a self-consistent zero
force enforced near this boundary. The liquid phase was confined within a slab of width
W = 60σ , and the thermostatted region was set to Δ = 4σ .

The variation of density, velocity and temperature across the Knudsen layer at T̃� = 0.5
is shown for evaporation velocities ũ∞ = 0.2 in figure 5(a), and ũ∞ = 0.3 in figure 5(b).
These results are compared with those obtained from the DSMC method. It should be
emphasised that our kinetic model, like the EV equation, provides the solution for both the
liquid and vapour phases, including the interfacial region. In contrast, the DSMC method
simulates only the vapour behaviour and therefore requires boundary conditions at the
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liquid–vapour interface. In the comparison, we assumed that the vapour region begins
at the point where the parallel and transverse temperatures separate. Accordingly, at
the liquid–vapour interface, we prescribed a Maxwellian boundary condition with a
temperature given by the separation temperature, a density given by the saturation density
at the separation temperature, and an evaporation coefficient as calculated by our model in
the vacuum evaporation studies. In the far field, the DSMC method assumes the same
boundary condition (3.3) as in the kinetic model. A more detailed description of the
simulation set-up for the DSMC method can be found in our previous work (Frezzotti
2007, 2011).

As figures 5(a) and 5(b) show clearly, the results obtained by the two methods are in
good agreement, although the kinetic model predicts a slightly larger decrease in density
and a smaller decrease in temperature. This can be seen more clearly in figure 5(c), where
the jump relations of density and temperature computed numerically over a wide range
of temperatures are compared with the DSMC predictions and the analytical solutions
obtained from (3.9a) and (3.12).

4. Conclusions

A kinetic model has been developed to efficiently simulate liquid–vapour flows. The
model approximates particle interactions using a Sutherland potential, which combines
a hard-sphere repulsive potential and a soft-attractive potential tail. The repulsive
interactions are represented by an approximated collision integral obtained by expanding
the Enskog collision integral in Taylor series, approximating the zero-order term by a
Shakhov-like relaxation term, and the higher-order terms by assuming that the distribution
function is local Maxwellian. The attractive interactions are modelled using a mean-field
approximation so that the particles experience a self-consistent force field generated by
their interactions.

This approximate kinetic model has been validated by comparison with analytical
solutions and with numerical solutions of the EV equation for equilibrium and
non-equilibrium evaporation scenarios. Excellent agreement was obtained, especially at
higher temperatures. At lower temperatures, some deviations were observed, but the
model still captured the essential physics adequately. Most importantly, the kinetic
model presented here significantly reduces the computational cost by almost two orders
of magnitude compared to solving the EV equation for the one-dimensional problems
discussed. It is expected that the computational gain decreases for higher-dimensional
problems due to the increased effort required to compute the self-consistent force
field. However, in such scenarios, significant reductions in computational time can
still be achieved by using adaptive grids instead of simple uniform grids and/or by
implementing standard parallelisation strategies based on domain decomposition, which
can be implemented easily and efficiently.

The favourable trade-off between accuracy and performance suggests that our
approximate kinetic model can become a valuable asset for the efficient simulation of
liquid–vapour flows. To further its applicability, our future research will focus on two
main directions. First, we aim to extend it to higher physical dimensions, allowing the
consideration of more complicated fluid dynamics scenarios such as droplet coalescence
and capillary waves. Second, we aim to formulate boundary conditions to emulate solid
walls, thus addressing the challenge of capturing non-local, non-instantaneous effects on
the liquid wall scattering dynamics that are crucial at the nanoscale. This will facilitate the
study of fluid wetting properties and contact line motion. Together, these advances will
enhance the effectiveness of our kinetic model as a useful engineering tool.
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Appendix A

In a dense fluid, the stress tensor and the heat flux contain kinetic and collisional
contributions, the former associated with the flow of molecules, and the latter associated
with the collisional transfer of molecules (Kremer 2010). The kinetic contributions to the
stress tensor and the heat flux are given by

pK =
∫

mCC f (x, ξ , t) dξ (A1)

and (2.6), respectively.
To derive the collisional part of the stress tensor pC and heat flux qC, we first multiply

(2.2a) by the collision invariants m, mξ , 1
2 mξ2 and integrate over the molecular velocity ξ .

The resulting balance equations for mass, momentum and energy are

∂ρ

∂t
+ ∇ · (ρu) =

∫
mΩ dξ , (A2a)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇ · pK = ρ

F
m

+
∫

mξΩ dξ , (A2b)

∂(ρe)
∂t

+ ∇ · (ρeu) + ∇ · (qK + pK · u) = ρ
F
m

· u +
∫

m
2

ξ2Ω dξ , (A2c)

where e = cvT + 1
2 u2 is the total energy per unit mass of the gas. For dense gases, the

integral terms on the right-hand sides of the equations do not vanish. These non-local
transport terms can be written as (Cercignani & Lampis 1988; Frezzotti 1999)∫

mΩ dξ = 0, (A3a)∫
mξΩ dξ = −∇ · pC, (A3b)∫

m
2

ξ2Ω dξ = −∇ · (qC + pC · u). (A3c)
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Substituting (2.4b) and (2.4c) into the left-hand side of (A3b) and (A3c), the following
equations are obtained: ∫

mξJS dξ = 0, (A4a)∫
mξJe dξ = −∇ · [ρbχnkBT − �(∇ · u)]I, (A4b)∫

m
2

ξ2JS dξ = 0, (A4c)∫
m
2

ξ2Je dξ = −∇ · [ρbχnkBT − �(∇ · u)]u, (A4d)

where I is the unit tensor. Accordingly, the collisional contributions to the stress tensor
and heat flux turn out to be

pC = [ρbχnkBT − �(∇ · u)]I, (A5a)

qC = 0. (A5b)

Note that in equilibrium, the gradient of the kinetic and collisional contributions to the
xx-component of the stress tensor must balance the self-consistent force field (Frezzotti &
Gibelli 2003),

d
dx

( pK
xx + pC

xx) = n(x) Fx(x), (A6)

where the one-dimensional kinetic and collisional contributions to the stress tensor are

pK
xx = nkBT, (A7a)

pC
xx = ρbχnkBT − �

∂ux

∂x
. (A7b)
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