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Abstract

Inlining and specialization appear in various forms throughout the implementation of modern

programming languages. From mere compiler optimizations to sophisticated techniques in

partial evaluation, they are omnipresent, yet each application is treated differently. This paper

is an attempt at uncovering the relations between inlining (as done in production compilers)

and staged computation (as done in partial evaluators) in the hope of bringing together

the research advances in both fields. Using a two-level lambda calculus as the intermediate

language, we show how to model inlining as a staged computation while avoiding unnecessary

code duplication. The new framework allows us to define inlining annotations formally and to

reason about their interactions with module code. In fact, we present a cross-module inlining

algorithm that inlines all functions marked inlinable, even in the presence of ML-style

parameterized modules.

1 Introduction

Clear and maintainable code requires modularity and abstraction to enforce well-

designed interfaces between software components. The module language of Standard

ML (Milner et al., 1997) provides powerful tools for such high-level code structuring.

But these constructs often incur a considerable performance penalty which forces

the programmer to break abstraction boundaries or to think twice before using

advanced features like parameterized modules (e.g. ML functors).

Efficient implementation of these high-level language constructs often rely crucially

on function inlining. Inlining algorithms have been used for many years, but their

‘best-effort’ behavior prevents us from knowing or making sure that a function will

always be inlined (at least, wherever possible given the compilation model). For

example, SML/NJ (Appel & MacQueen, 1991) has several ad hoc tricks sprinkled

in the code to expand primitive operations. These tricks tend to muddy up the

abstraction boundaries so it would be nice if they could be replaced by a general-

purpose inlining algorithm.

But would the inliner perform as good a job inlining those primitive operations

as with the ad hoc approaches? For simple cases, it is straightforward to ensure

that primitive operations are always inlined, but when higher-order functions or

even higher-order modules (such as SML/NJ functors or Java generics) come into

play, coupled with separate compilation, the question becomes more challenging.

In the course of implementing an extension of Blume and Appel’s cross-module
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inlining algorithm (1997), we tried to understand the relationship between inlining

opportunities and separate compilation. We felt a need to formalize our solution to

better understand its behavior.

This paper is the result of our efforts to formalize our inlining algorithm. More

specifically, we borrow from the partial-evaluation community (Jones et al., 1993)

to model inlining as a staged computation. By using a two-level λ-calculus (Moggi,

1997) as our intermediate language, we can assign each function (in our program)

with a binding-time annotation of static or dynamic: a static function call is executed

at compile time thus is always inlined, while a dynamic call is executed at run time

thus is not inlined. The inlining optimization is then equivalent to the standard off-

line partial evaluation: first use the binding-time analysis to locate all the inlining

candidates, then run the specialization phase to do the actual inlining. The binding-

time attributes can also be exported to the source level (or the compiler front-end)

to serve as inlining annotations and to allow programmers (or the compiler writer)

to control various inlining decisions manually.

Apparently, all partial evaluators support some form of β-reductions as part of the

specialization, however, these techniques do not immediately apply to the inlining

optimization. Because of the different application domains, partial evaluators are

generally much more aggressive than compiler optimizers. Even the binding time

annotations can pose problems at the source level because they can clutter the

module interface and interact badly with ML functors; for example, we would have to

add abstraction over binding-time (commonly called ‘binding-time polymorphism’)

in the type if we want to apply a functor to modules with different binding time

(but with same signature otherwise).

The main objective of this paper is to hammer out these details and to see what it

would take to launch various partial-evaluation techniques into real compilers. Our

paper builds upon previous work on cross-module inlining (Blume & Appel, 1997;

Shao, 1998; Leroy, 1995) and two-level λ-calculus (Moggi, 1997; Nielson & Nielson,

1992; Davies & Pfenning, 1996; Taha & Sheard, 1997) but makes the following new

contributions:

• As far as we know, our work is the first comprehensive study on how to model

inlining as staged computation. The formalism from the staging calculus allows

us to explicitly reason about and manipulate the set of inlinable functions.

Doing such reasoning is much harder with a traditional inlining algorithm,

especially in the presence of ML-style parameterized modules.
• By careful engineering of binding-time coercions, and combined with proper

staging and splitting, we show how to model inlining as staged computation

without introducing unwanted code duplication (see section 5).
• Adding inlining annotations to a surface language allows a programmer to

mark a function as inlinable explicitly. Inlining annotations, however, could

pollute the module interface with additional binding-time specifications. This

makes the underlying module language more complex. We show how to

support inlining annotations while still avoiding such pollution. In fact, our

scheme is fully compatible with ML-style modules and requires no change to

its module language.
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Source Language

�

Typed SRC (Sec. 3)

�
(Sec. 5) Staging+Split

TLC (Sec. 4)

�
Import Summaries (Sec. 6)

�
Partial Evaluation (Sec. 4)

TLC

(no static redexes)

� Export Summary (Sec. 6)

�
BTR+Opts

�
(Sec. 5.3) λ-Split

Residual Code

�
Machine Code

Fig. 1. Structure of the compiler.

• Using a two-level λ-calculus, we show how inlining annotations are compiled

into the internal binding-time annotations and how they interact with the mod-

ule code. This allows us to propagate inlining information across arbitrarily

functorized code, even in the presence of separate compilation.

• We extend binding-time coercions to work with parametric polymorphism.

The rest of this paper is organized as follows: Section 2 gives an overview of a

compiler that supports cross-module inlining and shows how inlining annotations

(at the source level) and two-level λ-calculus (as intermediate language) fit into

the picture. Section 3 formally defines our source language SRC which supports

inlining annotations and (indirectly) ML-style modules, and section 4 formally

defines our target language TLC which is a two-level λ-calculus supporting staged

computation. Section 5 presents our detailed algorithm for compiling SRC programs

into TLC; the algorithm involves staging, splitting, and careful insertion of binding-

time coercions. Section 6 shows how to handle top-level issues for inlining across

multiple compilation units. Section 7 then presents several extensions over the basic

algorithm. Finally, sections 8 and 9 describe related work and then conclude.

2 The Big Picture

To model inlining as staged computation, we first give an overview of a compiler

that supports cross-module inlining. We use our FLINT compiler (Shao, 1997b;
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Shao et al., 1998) as an example. Figure 1 shows various stages of compilation used

in the compiler. The source code is first turned into a strongly typed intermediate

language based on a predicative System-F calculus (we name it SRC and present

its details in section 3). The SRC calculus contains a module language and a core

language. Each core-language function is annotated with inlining hints to indicate

whether the function should be inlined or not. Those hints could be provided by the

user or by the earlier phases of a compiler (using some inlining heuristics).

The inlining hints are then turned into staging annotations, mapping inlinable

functions to static functions (functions executed at compile-time) and the rest to

dynamic code (executed at run-time), by translating the code into a two-level

intermediate language extended with polymorphism (we name it TLC and present

its details in section 4).

To minimize the performance cost of the module code, we want to mark it as static

so as to expose as many inlining opportunities as possible. But this would imply that

each functor application (SML’s equivalent to template instantiation) would create a

duplicate copy of the full functor body. This approach, while sometimes acceptable,

can lead to excessive code growth and compilation times for heavily functorized

code, as any programmer who has worked with C++ templates knows.

We use a variant of the λ-splitting technique (Blume & Appel, 1997) to split

each module function into a static part and a dynamic part. This splitting is done

carefully to ensure that it does not obfuscate any inlining opportunity. Splitting is

done together with staging in the main translation algorithm (see section 5.4). The

resulting code is completed by incorporating a copy of the summaries from all the

import modules (see section 6); a summary contains the code that should be inlined

across compilation-units, similarly to OCaml’s approximations (Leroy, 1995).

The static part of the code is then reduced by a straightforward partial evaluation

returning the same code but with no remaining static redexes. This code then goes

through a Binding-Time Refinement (BTR) or other optimization phases which

could introduce new static code requiring a new pass through the partial evaluator.

Once these optimization steps are finished, we reuse the λ-splitting algorithm

to split the compilation-unit itself into a summary containing all the remaining

static code (i.e. inlinable code for future cross-compilation-unit inlining) and a fully

dynamic residual code (encompassing the bulk of the program) which is then passed

to the code generator.

Inlining across compilation units increases the coupling between those units. If

a unit is modified, all units that import it will now need to be recompiled, even

if the modification was only internal and did not change the interface. This is

automatically handled in our case by a compilation manager (Blume, 1995).

3 The source calculus SRC

This section formally defines our source language SRC which is a variant of

the polymorphic lambda calculus System-F (Girard, 1972; Reynolds, 1974). SRC

differs from System-F in that it has inlining annotations on the core functions

and it has a stratified structure with a polymorphic module language layered on

top of a monomorphic core language. Also the module language uses A-normal
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(ctypes) τ ::= int | t | τ1 → τ2

(mtypes) σ ::= V(τ) | 〈 σ1, . . . , σn〉 | σ1 → σ2 | ∀t.σ
(inline) a ::= | i

(cterms) c ::= n | z | πvx | λaz :τ.c | c1c2

(mterms) m ::= x | ιv(c) | 〈 x1, . . . , xn〉 | πix | λx :σ.m | @x1x2 | Λt.m | x[τ]

| let x = m1 in m2

Fig. 2. Syntax for the source calculus SRC.

form (Flanagan et al., 1993) which means that all intermediate values need to be

named via let-binding, thus making all sharing between expressions explicit.

The syntax of SRC is given in figure 2. Here, an SRC program is just a module term

(m). Each module term can be either a variable (x), a structure (ιv(c)) consisting of a

single core term (c), a compound module consisting of a collection of other modules

(〈 x1, . . . , xn〉), an i-th component from another module (πix), a parameterized module

(over other modules: λx :σ.m or over types: Λt.m), a module application (over other

modules: @x1x2 or over types: x[τ]), or a let declaration.

Because the module language can already express polymorphic functions, we

intentionally restrict the core language to be a simply typed lambda calculus. A core

term can be either an integer constant (n), a variable (z), a value field of a module

(πvx), a function definition (λaz : τ.c) with inlining annotation (a), or a function

application (c1c2).

A module type can either be a singleton-value type (V(τ) which refers to a module

consisting of a core term of type τ), a compound module type (〈 σ1, . . . , σn〉 with n

sub-modules, each with type σi for i = 1, . . . , n), or a parameterized module (over

other modules: σ1 → σ2 or over types: ∀t.σ). A core type can be either the integer

type (int), a type variable, or a function type (τ1 → τ2). The singleton-value type

V(τ) is used to distinguish between cases like V(int → int) and V(int) → V(int).

The SRC language was chosen to be expressive enough to exhibit the main

difficulties that an optimizer based on staged computation might encounter. The

language is split between the module and the core languages because the inliner

needs to use two different compilation strategies. Of course, we could merge the

two languages and annotate the terms to indicate whether or not to treat them like

module code. Recent work (Shao, 1998; Shao, 1999; Harper et al., 1990) has shown

that Standard ML can be compiled into an SRC-like typed intermediate language.

Figure 3 gives the static semantics for SRC. The environment ∆ is the list of

bound type variables; the type environment Γ maps both core and module variables

to their respective types. Both the type- and the term-formation rules are rather

straight-forward. The language is predicative in that the module language supports

polymorphism but type variables can only be instantiated to core types. SRC uses

a call-by-value semantics (omitted since it is straightforward); it is easy to show

that the typing system for SRC is sound with respect to the corresponding dynamic

semantics.
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kind environment∆::=· | ∆, t

type environmentΓ::=· | Γ, z :τ | Γ, x :σ

�

�

�

�∆ � τ and ∆ � σ and ∆ � Γ

∆ � int

t ∈ ∆

∆ � t

∆ � τ1 ∆ � τ2

∆ � τ1 → τ2

∆ � τ

∆ � V(τ)

∆ � σi (1� i�n)

∆ � 〈 σ1, . . . , σn〉

∆ � σ1 ∆ � σ2

∆ � σ1 → σ2

∆, t � σ

∆ � ∀t.σ ∆ � ·
∆ � Γ ∆ � τ

∆ � Γ, z :τ
∆ � Γ ∆ � σ

∆ � Γ, x :σ

�

�

�

�
∆; Γ � m : σ and ∆; Γ � c : τ

∆ � Γ
∆; Γ � n : int

∆ � Γ
∆; Γ � z : Γ(z)

∆; Γ � x : V(τ)

∆; Γ � πvx : τ

∆; Γ, z :τ1 � c : τ2

∆; Γ � λaz :τ1.c : τ1 → τ2

∆; Γ � c1 : τ2 → τ1 ∆; Γ � c2 : τ2

∆; Γ � c1c2 : τ1

∆ � Γ
∆; Γ � x : Γ(x)

∆; Γ � c : τ

∆; Γ � ιv(c) : V(τ)

∆; Γ � xi : σi (1� i�n)

∆; Γ � 〈 x1, . . . , xn〉 : 〈 σ1, . . . , σn〉

∆; Γ � x : 〈 σ1, . . . , σn〉 1� i�n

∆; Γ � πix : σi

∆; Γ, x :σ1 � m : σ2

∆; Γ � λx :σ1.m : σ1 → σ2

∆; Γ � x1 : σ2 → σ1 ∆; Γ � x2 : σ2

∆; Γ � @x1 x2 : σ1

∆, t; Γ � m : σ

∆; Γ � Λt.m : ∀t.σ

∆; Γ � x : ∀t.σ
∆; Γ � x[τ] : {τ/t}σ

∆; Γ � m1 : σ1 ∆; Γ, x :σ1 � m2 : σ2

∆; Γ � let x = m1 in m2 : σ2

Fig. 3. Static semantics for SRC.

The most interesting feature of SRC is the inlining annotation a. The annotation

i means that the underlying lambda expression should be inlined while the empty

annotation means it should not. Notice that we do not track inlining annotations

in the types; a core function λaz :τ.c is still assigned with the same type whether the

annotation a is i or empty.

This design choice is deliberate. We believe inlining annotations should be

made as non-intrusive as possible. Tracking them in the types would significantly

complicate the module language; for example, we would have to add binding-time

polymorphism in the type if we want to apply a functor to modules with different

inlining annotations (but with the same signature otherwise).

When compiling SML to an SRC-like language, the SML module language maps

to the SRC module language as expected, but polymorphic core SML functions also

map to module-level type abstractions (together with a core-level function) in SRC.

https://doi.org/10.1017/S0956796802004616 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004616


Inlining as staged computation 653

(kind ) b, k ::= s | d

(type) σ ::= int | t | 〈 σ1, . . . , σn〉b | σ1
b→ σ2 | ∀bt :k.σ

(term) e ::= v | πb
i v | @bv1 v2 | v[σ]b | let x = e1 in e2

(value) v ::= n | x | 〈 v1, . . . , vn〉b | λbx :σ.e | Λbt :k.e

Fig. 4. Syntax for the target calculus TLC.

This does not introduce any problem, however; since polymorphic recursion is not

available, type instantiations can be done statically, or hoisted to the top-level (Saha

& Shao, 1998).

4 The target calculus TLC

This section formally defines our target language TLC. As a typed intermediate

language, TLC is is essentially a hybrid of System-F in A-normal form (Flanagan

et al., 1993) and the two-level lambda calculus λ2sd by Moggi (1997).

The syntax of TLC is given in figure 4. A TLC term (e) can be either a value

(v), a record selection, a function application, a type application, or a let expression.

A TLC value (v) is either an integer constant, a variable, an n-tuple, a function, or

a type function. A TLC type is either the integer type, a type variable, a record

type, a function type, or a polymorphic type. Many of these are annotated with a

binding-time annotation (called ‘kind’) that can either be s for static code (evaluated

at compile-time) or d for dynamic code (evaluated at run-time).

Compared to SRC, TLC replaces inlining hints on core functions with staging

annotations on tuples, functions and type-abstractions and merges the module and

the core languages since the distinction between the two is only needed to direct the

translation from SRC. Notice also how ∀ types have two binding-time annotations,

one for the type abstraction itself and another that constrains the possible types it

can be instantiated to.

To simplify the presentation, we force the ground types (i.e. int) to be considered

as dynamic. This is justified by the fact that we are only interested in function-level

reductions. We may lift this restriction if we want to model constant propagation.

In the rest of this paper, we will also use the following syntactic sugar:

πb
i e ≡ let x = e in πb

i x

e[σ]b ≡ let x = e in x[σ]b

@be1 e2 ≡ let x1 = e1 in let x2 = e2 in @bx1 x2

〈 e1, . . . , en〉b ≡ let x1 = e1 in . . . let xn = en in 〈 x1, . . . , xn〉b
λb〈 x1, . . . , xn〉b′

:σ.e ≡ λbx :σ.let x1 = πb′

1 x in . . . let xn = πb′
n x in e

Essentially, we will put an e term where only v is allowed, leaving the let transform-

ation implicit and we will use a pattern-matching variant of let; we will also assume

that alpha-renaming is used so variables are never shadowed.
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kind environment∆::=· | ∆, t :k

type environmentΓ::=· | Γ, x :σ

�

�

�

�
b1 � b2

d � d d � s s � s

�

�

�

�∆ � σ : k and ∆ � Γ

∆ � int : d ∆ � t : ∆(t)

∆ � σ : b1 b1 � b2

∆ � σ : b2

∆ � σi : b (1� i�n)

∆ � 〈 σ1, . . . , σn〉b : b

∆ � σ1 : b ∆ � σ2 : b

∆ � σ1
b→ σ2 : b

∆, t :k � σ : b k � b

∆ � ∀bt :k.σ : b ∆ � ·
∆ � Γ ∆ � σ : s

∆ � Γ, x :σ

�

�

�

�
∆; Γ � e : σ and ∆; Γ � v : σ

∆ � Γ
∆; Γ � n : int

∆ � Γ
∆; Γ � x : Γ(x)

∆; Γ � v1 : σ2
b→ σ1 ∆; Γ � v2 : σ2

∆; Γ � @bv1 v2 : σ1

∆; Γ � vi : σi (1� i�n) ∆ � 〈 σ1, . . . , σn〉b : b

∆; Γ � 〈 v1, . . . , vn〉b : 〈 σ1, . . . , σn〉b
∆; Γ � v : 〈 σ1, . . . , σn〉b 1� i�n

∆; Γ � πb
i v : σi

∆; Γ, x :σ1 � e : σ2 ∆ � σ1
b→ σ2 : b

∆; Γ � λbx :σ1.e : σ1
b→ σ2

∆; Γ � e1 : σ1 ∆; Γ, x :σ1 � e2 : σ2

∆; Γ � let x = e1 in e2 : σ2

∆, t :k; Γ � e : σ ∆ � ∀bt :k.σ : b

∆; Γ � Λbt :k.e : ∀bt :k.σ

∆; Γ � v : ∀bt :k.σ2 ∆ � σ1 : k

∆; Γ � v[σ1]
b : {σ1/t}σ2

Fig. 5. Static semantics for TLC.

Figure 5 gives the typing rules for TLC. In addition to the usual type safety, these

rules also ensure binding-time correctness. Here the kind environment ∆ maps type

variables to their binding time; the type environment Γ maps variables to their types.

To enforce the usual restriction that no dynamic entity can contain or manipulate

a static value, types are classified as being either of dynamic kind or static kind,

with a subkind relationship between the two: a type σ of dynamic kind can also be

considered to have static kind but not vice versa.

Figures 6–9 give the dynamic semantics for TLC as a set of primitive reductions

and single-step evaluation relations that determine where those reductions can be

applied. Figure 6 defines the primitive static reduction e �s e
′. Figure 7 defines the

single-step partial evaluation e 
→s e′ together with the corresponding v 
→v
s v′ used

for values. Note how partial evaluation in this language amounts to reducing all the

static redexes of a term. Figures 8 and 9 show the corresponding reductions � and 
→
of a standard call-by-value evaluator. In contrast to the partial evaluation case, those

reductions apply to both static and dynamic redexes but only to the outermost ones.
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(βλ) @s(λsx :σ.e) (v) �s {v/x}e
(βΛ) (Λst :k.e)[σ]s �s {σ/t}e
(π) πs

i 〈 v1, . . . , vn〉s �s vi if1� i�n

(let) let x = v in e �s {v/x}e
(asc) let x2 = (let x1 = e1 in e2) in e3

�s let x1 = e1 in let x2 = e2 in e3

Fig. 6. Primitive static reduction for TLC

e �s e
′ ⇒ e 
→s e

′

e 
→s e
′ ⇒ let x = e in e2 
→s let x = e′ in e2

e 
→s e
′ ⇒ let x = e2 in e 
→s let x = e2 in e′

e 
→s e
′ ⇒ λbx :σ.e 
→v

s λ
bx :σ.e′

e 
→s e
′ ⇒ Λbt :k.e 
→v

s λ
bt :k.e′

v 
→v
s v

′ ⇒ 〈 v1, . . . , v, . . . , vn〉b 
→v
s 〈 v1, . . . , v

′, . . . , vn〉b
v 
→v

s v
′ ⇒ @bv v2 
→s @bv′ v2

v 
→v
s v

′ ⇒ @bv2 v 
→s @bv2 v
′

v 
→v
s v

′ ⇒ v[σ]b 
→s v
′[σ]b

v 
→v
s v

′ ⇒ πb
i v 
→s π

b
i v

′

Fig. 7. Single-step partial evaluation for TLC

(�s) e � e′ ife �s e
′

(βλ) @d(λdx :τ.e) (v) � {v/x}e
(βΛ) (Λdt :k.e)[τ]d � {τ/t}e
(π) πd

i 〈 v1, . . . , vn〉d � vi if1� i�n

Fig. 8. Primitive reduction relation for TLC

e � e′ ⇒ e 
→ e′

e 
→ e′ ⇒ let x = e in e2 
→ let x = e′ in e2

Fig. 9. Single-step call-by-value standard evaluation for TLC.

TLC is a variant of Moggi’s computational lambda calculus λc (1988) restricted to

A-normal form; in fact, the primitive reduction relations in figures 6 and 8 are same

as that for λc (except that we added type applications and removed η-reductions).

We can easily show that the type system for TLC is sound and the static reduction


→s is strongly normalizing and confluent. We can thus define a partial evaluation

function Pe(e) that returns the static normal form of e. Similarly it is easy to show

that 
→ is confluent, so we can also define a partial function Re(e) which does the

standard evaluation of e:

Pe(e) = e′suchthate 
→∗
s e

′andthereisnoe”forwhiche′ 
→s e
′′

Re(e) = e′suchthate 
→∗ e′andthereisnoe”forwhiche′ 
→ e′′

where 
→∗ and 
→∗
s are the reflexive transitive closures of 
→ and 
→s. TLC satisfies

the following important residualization property:
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Theorem 4.1 (Residualization)

If ∆; Γ � e : σ and ∆ � σ : d and ∀x∈ fv(e). ∆ � Γ(x) : d, then Pe(e) is free of any

static subterms.

In other words, given an expression e with dynamic type σ, partially evaluating

e will inline all of its inlinable functions and result in an expression free of static

subterms.

Next we show why inlining does not affect the semantics of the program. We first

introduce a notion of semantic equivalence on well-typed TLC values:

Definition 4.1 (Equivalence)

If ·; · � v : σ and ·; · � v′ : σ, we say that v 
 v′ if one of the following holds:

(int) v ≡ v′.

(×) v = 〈 v1, . . . , vn〉b and v′ = 〈 v′
1, . . . , v

′
n〉b and ∀i∈ [1..n].vi 
 v′

i .

(→) σ = σ1
b→ σ2 and for any value w of type σ1 then Re(@

bv w) 
 Re(@
bv′ w).

(∀) σ = ∀bt :k.σ1 and for any well-formed type σ2 :k then Re(v[σ2]
b) 
 Re(v

′[σ2]
b).

The correctness theorem can then be proved by induction over the reduction steps

of Pe(e).

Theorem 4.2 (Correctness)

If ·; · � e : σ and · � σ : d then Re(Pe(e)) 
 Re(e).

5 Translation from SRC to TLC

The translation from SRC to TLC involves both staging and splitting, executed in an

interleaved manner. Staging translates inlining annotations in the core language into

binding-time annotations. It also calls the splitting algorithm to divide each module

term into a static part and a dynamic part. The static part is used to propagate

inlining information and implement cross-module inlining. In the rest of this section,

we first give a quick overview of our approach; we then show how to stage core

terms and split module terms; finally, we give the main translation algorithm that

links all the parts together.

5.1 A quick overview

The translation from SRC to TLC mostly consists of adding staging annotations.

This is usually known as binding-time analysis and has been extensively studied in

the partial evaluation community.

One desirable goal is to make sure that binding-time annotations do not hide

opportunities for static evaluation. For example, let us take the inlinable compose

function o defined as follows:

o = λif :τ1 → τ2.λ
ig :τ2 → τ3.λx :τ1.g(fx)
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When translating it, we probably do not want to assign it the following type:

o : (τ1
d→ τ2)

s→ (τ2
d→ τ3)

s→ (τ1
d→ τ3)

(i.e. a static function that composes two dynamic functions) since it would force

us to make sure that all the functions passed to it are not inlinable, which mostly

defeats the purpose of inlining it in the first place. Now clearly, if we mark it

as:

o : (τ1
s→ τ2)

s→ (τ2
s→ τ3)

s→ (τ1
d→ τ3)

that will make it impossible to call it with a non-inlinable function. We could work

around this problem by using polymorphism at the binding-time level (Henglein &

Mossin, 1994; Glynn et al., 2001), but we decided to keep our calculus simple. With

monomorphic staging annotations, we have two options: code duplication to provide

a poor man’s polymorphic binding-time, or coercions in the form of binding-time

improvements (Danvy et al., 1996; Danvy, 1996).

A compiler needs to be very careful about duplicating code so we decided to

use coercions instead, especially since they provide us with a lot of flexibility. More

specifically, we can completely avoid the need for a full-blown binding-time analysis

and use a simple one-pass translation instead, by optimistically marking s any

place that might need to accommodate a static value and inserting coercions when

needed, just like the unboxing coercions (Leroy, 1992; Shao, 1997a). It also allows

us to simplify our types: all types are either (completely) dynamic or completely

static.

5.2 Staging the core

Staging could be done via any kind of binding-time analysis (Consel, 1993; Birkedal

& Welinder, 1995), but this would be too costly for our application, so instead of

performing global code analysis to add the annotations, we add them in a single

traversal of the code using only local information. In order to maximize the amount

of static computation, we make extensive use of binding-time improvements (Danvy

et al., 1996).

Binding-time improvements are usually some form of η-redexes that coerce an

object between its static and dynamic representations. They improve the binding-time

annotations by allowing values to be used statically at one place and dynamically

at another and even to make this choice ‘dynamically’ during specialization.

Staging is then simple: based on the inlining annotations, SRC terms can either

be translated to completely static or dynamic entities (except for int, which is always

dynamic). Because inlining annotations are not typechecked in SRC, the resulting

TLC terms may use dynamic subterms in a static context or vice versa. We insert

coercions whenever there is such a mismatch.

We define two type-translation functions | · |s and | · |d that turn any SRC type

into either its fully static or its fully dynamic TLC equivalent, and two coercion

functions ↓τ : |τ|s s→ |τ|d and ↑τ : |τ|d s→ |τ|s. Those coercions (and corresponding
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type translations) could simply be:

↓intx = x

↓τ1→τ2x = λdx1 : |τ1|d. ↓τ2(@sx (↑τ1x1))

· · ·
↑intx = x

↑τ1→τ2x = λsx1 : |τ1|s. ↑τ2(@dx (↓τ1x1))

· · ·

|int|d = int

|τ1 → τ2|d = |τ1|d d→ |τ2|d
· · ·

|int|s = int

|τ1 → τ2|s = |τ1|s s→ |τ2|s
· · ·

But this would run the risk of introducing unexpected code duplication.

Spurious copies A naive coercion of a static function to its dynamic equivalent tends

to introduce static redexes which cause the function to be inlined unnecessarily at

the place where it escapes. Consider the following piece of SRC code:

let id = λix : int.x

big = λf : int → int. ...big body...

in 〈 id ,@big id〉

A simple-minded staging scheme would turn it into:

let id = λsx : int.x

big = λdf : int
d→ int. ...big body...

in 〈 ↓int→intid ,@dbig (↓int→intid )〉d

where the coercions get expanded to:

let id = λsx : int.x

big = λdf : int
d→ int. ...big body...

in 〈 λdx : int.@sid x ,@dbig (λdx : int.@sid x )〉d

Note that the two escaping uses of id have been turned now into η-redexes where

id is called directly. Thus specialization will happily inline two copies of id even

though no optimization will be enabled since both uses are really escaping. We do

not want to introduce such wasteful code duplication.

In other words, we want to ensure that there can be only one non-inlined copy of

any function, shared among all its escaping uses. To this end, we must arrange for

↓σ not to introduce spurious redexes. We could simply introduce a special coerce

primitive operation with an ad-hoc treatment in the partial-evaluator, but depending

on the semantics chosen (e.g. binding-time erasure) it can end up leaking static code

to run-time, introducing unwanted run-time penalties and it does not easily solve

the problem of ensuring a unique dynamic copy of a function, even in the presence

of cross-module inlining.

So we decided to choose a fancier representation for the static translation of a

function, where each static function is now represented as a pair of the real static

function and the already-coerced dynamic function. Now ↓σ1→σ2 becomes πs
2 and

the only real coercion happens once, making it clear that only one instance of the

dynamic version will exist. The definition of our type translations | · |s and | · |d and

coercions ↓τ and ↑τ for the core calculus is shown in figure 10. The previous example
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|int|d = int

|τ1 → τ2|d = |τ1|d d→ |τ2|d

↓τ : |τ|s s→ |τ|d
↓intx = x

↓τ1→τ2x = πs
2x

|int|s = int

|τ1 → τ2|s = 〈 |τ1|s s→ |τ2|s, |τ1 → τ2|d〉s

↑τ : |τ|d s→ |τ|s
↑intx = x

↑τ1→τ2x = 〈 λsx1 : |τ1|s. ↑τ2(@dx (↓τ1x1)), x〉s

| ∆; Γ; Σ | = ∆; Γ′

whereΓ′ = {x : |Γ(x)|s | x ∈ dom(Γ)} ∪ {z : |τ|b | τ = Γ(z)andb = Σ(z)}
and(binding-time environment) Σ ::= · | Σ, z :b

Fig. 10. Core type translations | · | and coercions ↓ and ↑.

is now staged as follows:

let id = 〈 λsx : int.x, λdx : int.x〉s

big = λdf : int
d→ int. ...big body...

in 〈 ↓int→intid ,@dbig (↓int→intid )〉d

Since the coercion ↓int→int is now πs
2, it just selects the dynamic version of id , with

no code duplication.

Partial evaluators have long used such paired representation in their specializer

for similar reasons (Asai, 1999), although our case is slightly different in that the

pairs are explicit in the program being specialized rather than used internally by the

specializer.

This pairing approach can also be seen as a poor man’s polymorphic binding-time

where we only allow the two extreme cases (all dynamic or all static). Minamide

& Garrigue (1998) used the same pairing approach when trying to avoiding the

problem of accumulative coercion wrappers that appears when unboxing coercions

are used to reconcile polymorphism and specialized data representation.

The staging algorithm is shown in Fig. 11. The judgment ∆; Γ; Σ � �c : τ�
b⇒ e

says that a core SRC term c of type τ (under contexts ∆ and Γ) is translated into

a TLC term e. The environment Σ maps core variables to the binding-time of the

corresponding variable in e. The b on the arrow indicates whether a static or a

dynamic term e is expected.

Most rules come in two forms, depending on whether the context expects a

dynamic or static term. The dynamic case is trivial (it corresponds to the no-inlining

case so we do not need to do anything) while the static case needs to build the

static/dynamic pair (in the λ case) or to extract the static half of the pair before

applying it (in the @ case).

5.3 Splitting

Module-level functions are typically used differently from core-level functions. They

also do not have any inlining annotations thus deserve special treatment during
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�

�

�

�
∆; Γ; Σ � �c : τ�

b⇒ e such that | ∆; Γ; Σ | � e : |τ|b

∆ � Γ

∆; Γ; Σ � �n : int�
b⇒ n

∆ � Γ Σ(z) = b

∆; Γ; Σ � �z : Γ(τ)�
b⇒ z

∆; Γ � x : V(τ)

∆; Γ; Σ � �πvx : τ�
s⇒ x

∆; Γ, z :τ1; Σ, z :s � �c : τ2�
s⇒ e

∆; Γ; Σ � �λiz :τ1.c : τ1 → τ2�
s⇒

let xs = λsz : |τ1|s.e
xd = λdz : |τ1|d. ↓τ2(@sxs (↑τ1z))

in 〈 xs, xd〉s

∆; Γ, z :τ1; Σ, z :d � �c : τ2�
d⇒ e

∆; Γ; Σ � �λz :τ1.c : τ1 → τ2�
d⇒ λdz : |τ1|d.e

∆; Γ; Σ � �c1 : τ1 → τ2�
d⇒ e1 ∆; Γ; Σ � �c2 : τ1�

d⇒ e2

∆; Γ; Σ � �c1c2 : τ2�
d⇒ @de1 e2

∆; Γ; Σ � �c1 : τ1 → τ2�
s⇒ e1 ∆; Γ; Σ � �c2 : τ1�

s⇒ e2

∆; Γ; Σ � �c1c2 : τ2�
s⇒ @s(πs

1e1) e2

∆; Γ; Σ � �c : τ�
d⇒ e

∆; Γ; Σ � �c : τ�
s⇒↑τe

∆; Γ; Σ � �c : τ�
s⇒ e

∆; Γ; Σ � �c : τ�
d⇒↓τe

Fig. 11. Core code translation.

the translation. As noted earlier, it is desirable to mark all the module code as

static to ‘compile it away’ or at least, to allow inlining information to flow freely

through module boundaries. But that would imply that every single module-level

function application gets its own copy of the body, which leads to unnecessary code

duplication.

To overcome this difficulty, we use a form of partial inlining inspired from Blume

and Appel’s λ-splitting (1997) that splits each function into a static and a dynamic

part. It rewrites a TLC expression e into a list of let bindings and copies every

inlinable (i.e. static) binding from e into ei, and puts the rest into the expression ee

(the e subscript stands for ‘expansive’) in such a way that the two can be combined

to get back an expression equivalent to e with e 
 let 〈 fv〉 = ee in ei where fv is

the list of free variables of ei. Since ei is small, it can be copied wherever e was

originally used, while the main part of the code is kept separate in ee.

Basically, ei is just like e but where all the non-inlinable code has been taken out

(and the variables that refer to it are thus free), whereas ee is a complete copy of e

except that it returns all those values that have been taken out of ei, so it can be

used to close over the free variables of ei. Take for example the following expression

e where lookup is inlinable but balance is not (note that the algorithm assumes that

the return value of e is completely static):

e = let balance = λd〈 t, x〉d :〈 treed, elemd〉d. . . .

lookup = λs〈 t, p〉s :〈 trees, elems s→ bool〉s.

let x = @s(@sfind p) t in @dbalance 〈 ↓treet, ↓elemx〉d

in lookup
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�

�

�

�
∆; Γ �split �e�

σ
=⇒⇒ Ee ; ei where ∆; Γ � e : |σ|s

∆; Γ �split �let x1 = e1 in let x2 = e2 in e3�
σ

=⇒⇒ Ee ; ei

∆; Γ �split �let x2 = let x1 = e1 in e2 in e3�
σ

=⇒⇒ Ee ; ei

(sp − asc)

x �∈ fv(ei) ∨ ∆ � σ1 : d

∆; Γ � e1 : σ1 ∆; Γ, x :σ1 �split �e2�
σ

=⇒⇒ Ee ; ei

∆; Γ �split �let x = e1 in e2�
σ

=⇒⇒ (let x = e1 in Ee) ; ei

(sp − share)

∆; Γ � e1 : σ1 ∆; Γ, x :σ1 �split �e2�
σ

=⇒⇒ Ee ; ei

∆; Γ �split �let x = e1 in e2�
σ

=⇒⇒
(let x = e1 in Ee) ; (let x = e1 in ei)

(sp − dup)

Ee = (let xfv = • in 〈 ↓σx, xfv〉d)

∆; Γ �split �x�
σ

=⇒⇒ Ee ; x
(sp − var)

∆; Γ �split �let x = e in x�
σ

=⇒⇒ Ee ; ei

∆; Γ �split �e�
σ

=⇒⇒ Ee ; ei

(sp − exp)

Fig. 12. The λ-split algorithm.

This expression e will be split into a dynamic ee and a static ei where balance has

been taken out since it is not inlinable. ei will look like:

ei = let lookup = λs〈 t, p〉s :〈 trees, elems s→ bool〉s.

let x = @s(@sfind p) t in @dbalance 〈 ↓treet, ↓elemx〉d

in lookup

The free variables of ei are provided by ee which carries all the old code and returns

all the missing bindings for ei to use. In this example, balance is the only free

variable, so the result looks like:

ee = let balance = λd〈 t, x〉d :〈 treed, elemd〉d. . . .

lookup = λs〈 t, p〉s :〈 trees, elems s→ bool〉s.

let x = @s(@sfind p) t in @dbalance 〈 ↓treet, ↓elemx〉d

in 〈 balance〉d

And we can combine ee and ei back together with e 
 let 〈 fv〉d = ee in ei where

fv is the list of free variables of ei. We could of course remove lookup from ee, but

we might need it for something else (as will be shown in the next section) and it is

easier to take care of it in a separate dead code elimination pass.

Because ee has to return all the free variables of ei, which are not known until

ei is complete, we cannot conveniently build ee directly as we build ei. Instead we

build an expression with a hole Ee such that ee ≡ Ee[〈 fv〉d]:

Ee = let balance = . . . lookup = . . . in 〈 •〉d

Here a TLC term with a hole E is formally defined as follows:

E ::= let x = • in e | let x = e in E
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E[e] then fills the hole in E by textually substituting e for • without avoiding name

capture:

(let x = • in e)[e1] ≡ (let x = e1 in e)

(let x = e in E)[e1] ≡ (let x = e in E[e1])

The splitting rules are shown in Fig. 12. The judgment ∆; Γ �split �e�
σ

=⇒⇒ Ee ; ei

states that Ee and ei are a valid split of e in contexts ∆ and Γ assuming that e : |σ|s.
The rules only guarantee correctness of the split, but do not specify a deterministic

algorithm. In practice, whenever several rules can apply, the splitting algorithm

chooses the first rule shown that applies: sp-asc is preferred over sp-share which is

preferred over sp-dup, while sp-exp is only applied when there is no other choice (i.e.

when e is neither a let binding nor a mere variable). This ensures that we return the

smallest ei.

The way the rules work is as follows: sp-asc together with sp-exp turn e into a list

of let bindings that ends by returning a variable; sp-share copies dynamic bindings

to Ee but omits them from ei while sp-dup copies static bindings to both Ee and ei;

finally sp-var replaces the terminating variable with a hole in Ee.

5.3.1 Splitting functions

When splitting a function f, we could apply the above algorithm to the body, and

then combine the two results into two functions fe and fi:

f = λsx : |σ|s.e =⇒ fe = λdxd : |σ|d.let x =↑σxd in ee

fi = λsx : |σ|s.let 〈 fv〉d = @dfe (↓σx) in ei

From then on fi can be used in place of f (assuming that fe is in scope), so that ei

will be inlined without having to ever duplicate ee.

As we have seen before when staging inlinable core functions, the static represent-

ation of a function is a pair of the dynamic and the static version of that function

f = 〈 fd, fs〉s. A similar representation needs to be used for module-level functions.

One would be tempted to just use fi for fs and fe for fd, but a bit more work is

required. First, we cannot use fe directly because it only returns the free variables

of fi instead of the expected return value of fd, but we can simply coerce fi (which

has fe as a free variable) to a dynamic value:

fs = fi fd = λdxd : |σ1|d. ↓σ2(@sfi (↑σ1xd))

The problem with this approach is that there might be some code duplication

between ei and ee, so fd might contain unnecessary copies of code already existing

in fe. To work around this, we slightly change the way splitting is done, so that ee

returns not only the free variables of ei, but also the original output of e (see the

sp-var rule):

Ee = let balance = . . . lookup = . . . in 〈 ↓σlookup, •〉d

Of course, we need to adjust fi so as to select the second component of fe’s result
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to bind to its free variables. On the other hand, fe is unchanged:

f = λsx : |σ|s.e =⇒ fe = λdxd : |σ|d.let x =↑σxd in ee

fi = λsx : |σ|s.let 〈 fv〉d = πd
2 (@

dfe (↓σx)) in ei

Since fe now returns the original result in its first field, we can use it directly almost

as is to build fd and we can of course still use fi as fs:

fs = fi fd = π1 ◦ fe = λdxd : |σ1|d.πd
1 (@

dfe xd)

5.3.2 Properties

To define and show correctness of the splitting algorithm, we need an extended

notion of equivalence that applies to expressions rather than just values:

e 
 e′ifandonlyif

foranyEsuchthat·; · � E[e] : σthen·; · � E[e′] : σandRe(E[e]) 
 Re(E[e′])

Splitting turns an expression e into a dynamic part Ee and a static part ei. The

following theorems state that combining Ee and ei yields a well-typed term that is

semantically equivalent to e.

Theorem 5.1 (Type preservation)

if ∆; Γ � e : |σ|s and ∆; Γ �split �e�
σ

=⇒⇒ Ee ; ei and fv = fv(ei) − dom(Γ) then

∆; Γ � let 〈 fv〉d = πd
2 (Ee[〈 fv〉d]) in ei : |σ|s.

Theorem 5.2 (Correctness)

if ∆; Γ � e : |σ|s and ∆; Γ �split �e�
σ

=⇒⇒ Ee ; ei and fv = fv(ei) − dom(Γ) then

e 
 let 〈 fv〉d = πd
2 (Ee[〈 fv〉d]) in ei.

Both theorems can be proved via induction on the splitting derivation with the help

of an invariant. For correctness, the invariant is:

Foranyterme′andsetofvariablesxs

suchthat(fv(e′) − fv(Ee[e
′]) ⊆ xs ⊆ fv(e′)

thenEe[e
′] 
 let 〈 xs〉d = πd

2 (Ee[〈 xs〉d]) in e′

The invariant for type preservation is similar.

The splitting algorithm also satisfies the following property:

Theorem 5.3 (Static closure)

if ∆; Γ � e : |σ|s and ∆; Γ �split �e�
σ

=⇒⇒ Ee ; ei then all free variables in ei are either

bound in Γ or they have dynamic type (in the context of Ee).

We prove this property by inspection of the rules: if a variable is free in ei but not

in Γ it can only be because the sp-share rule was used, but that rule only applies to

dynamic variables or variables which are not free in ei.

Static closure implies that ei contains all the inlinable sub-terms in e so splitting

does not hide any inlining opportunities. In other words, when doing partial

evaluation of a term containing e, we can substitute ei for e without preventing

any reduction (except reductions internal to the terms omitted in ei, obviously). This
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tco = 〈 td
s→ ts, ts

s→ td〉s

|int|s = int

|t|s = ts

|τ1 → τ2|s = 〈 |τ1|s s→ |τ2|s, |τ1 → τ2|d〉s

|V(τ)|s = |τ|s
|〈 σ1, . . . , σn〉|s = 〈 〈 |σ1|s, . . . , |σn|s〉s, |〈 σ1, . . . , σn〉|d〉s

|σ1 → σ2|s = 〈 |σ1|s s→ |σ2|s, |σ1 → σ2|d〉s

|∀t.σ|s = 〈 ∀sts :s.∀std :d.tco
s→ |σ|s, |∀t.σ|d〉s

|int|d = int

|t|d = td

|τ1 → τ2|d = |τ1|d d→ |τ2|d
|V(τ)|d = |τ|d

|〈 σ1, . . . , σn〉|d = 〈 |σ1|d, . . . , |σn|d〉d

|σ1 → σ2|d = |σ1|d d→ |σ2|d
|∀t.σ|d = ∀dt :d.|σ|d

| ∆; Γ; Σ | = ∆′; Γ′

where∆′={ts :s , td :d | t ∈ dom(∆)}
andΓ′={x : |Γ(x)|s | x ∈ dom(Γ)} ∪ {xt : tco | t ∈ dom(∆)}

∪ {z : |τ|b | τ = Γ(z)andb = Σ(z)}
Fig. 13. Type and environment translation.

in turn implies that compilation-unit boundaries have no influence on whether or

not a core function gets inlined at a particular call site. We call it the completeness

property.

5.4 The main algorithm

The main algorithm is the translation of the module language, which works similarly

to (and uses) the core translation presented earlier, but is interleaved with the splitting

algorithm. It also relies on the use of pairs that keep both a dynamic and a static

version of every module-level value to avoid unnecessary code duplication.

Figures 13 and 14 extend the type translations | · |s and | · |d and the coercions ↓
and ↑ to the module calculus. The main change is the case for the type abstraction

which we will explain later.

The full staging algorithm is shown in figure 15. The judgment ∆; Γ � �m : σ�
m⇒ e

means that under the environments ∆ and Γ, the SRC module m of type σ is

translated into the TLC term e. Most rules are straightforward. The translation of

expressions ιv(c) is delegated to the core translation.

The case for module-level function and type abstraction are most interesting. The

translation of a module-level function λx :σ.m begins by recursively translating the

body m, and then splitting it. This is done with the judgment ∆; Γ � �m : σ� =⇒⇒
ee ; Ei. We then build a pair f = 〈 fd, fs〉s as described in the previous section.

The translation of a type abstraction Λt.m follows the same pattern, except for a

subtle complication introduced by typing problems discussed below.

Since all module-level code is considered static, it is tempting to think that we

do not need pairing at all and can simply represent module entities with the static

counterpart. But the ee component obtained from λ-split is dynamic and we thus

need coercions to interact with it: both the sp-var rule of λ-split (see figure 12) and

the construction of fi out of ei (see section 5.3.1) introduce coercions. And since

modules tend to be larger than core functions, it is even more important to avoid

spurious copies.
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�

�

�

�
↓σ: |σ|s s→ |σ|d and ↑σ: |σ|d s→ |σ|s

↓intx = x

↓tx = @s(πs
2xt) x

↓τ1→τ2x = πs
2x

↓V(τ)x = ↓τx

↓〈 σ1 ,... ,σn〉x = πs
2x

↓σ1→σ2x = πs
2x

↓∀t.σx = πs
2x

↑intx = x

↑tx = @s(πs
1xt) x

↑τ1→τ2x = 〈 λsx1 : |τ1|s. ↑τ2(@dx (↓τ1x1)), x〉s

↑V(τ)x = ↑τx

↑〈 σ1 ,... ,σn〉x = 〈 〈 ↑σ1(πd
1x), . . . , ↑σn(πd

nx)〉s, x〉s

↑σ1→σ2x = 〈 λsx1 : |σ1|s. ↑σ2(@dx (↓σ1x1)), x〉s

↑∀t.σx = 〈 Λsts :s.Λstd :d.λsxt : tco. ↑σ(x[td]
d), x〉s

Fig. 14. Binding-time coercions.

�

�

�

�
∆; Γ � �m : σ�

m⇒ e such that | ∆; Γ; · | � e : |σ|s

∆ � Γ

∆; Γ � �x : Γ(x)�
m⇒ x

∆; Γ; · � �c : τ�
s⇒ e

∆; Γ � �ιv(c) : V(τ)�
m⇒ e

∆; Γ � xi : σi (1� i�n) σ = 〈 σ1, . . . , σn〉

∆; Γ � �〈 x1, . . . , xn〉 : σ�
m⇒

let xs = 〈 x1, . . . , xn〉s

xd = 〈 ↓σ1x1, . . . , ↓σnxn〉d

in 〈 xs, xd〉s

∆; Γ � x : 〈 σ1, . . . , σn〉 1� i�n

∆; Γ � �πix : σi�
m⇒ πs

i (π
s
1x)

∆; Γ � x1 : σ2 → σ1 ∆; Γ � x2 : σ2

∆; Γ � �@x1 x2 : σ2�
m⇒ @s(πs

1x1) x2

∆; Γ, x :σ1 � �m : σ2� =⇒⇒ ee ; E i

∆; Γ � �λx :σ1.m : σ1 → σ2�
m⇒

let xe = λdxd : |σ1|d. let x =↑σ1xd in ee

xi = λsx : |σ1|s. E i[π
d
2 (@

dxe (↓σ1x))]

in 〈 xi, λ
dxd : |σ1|d.πd

1 (@
dxe xd)〉s

∆, t; Γ � �m : σ� =⇒⇒ ee ; E i

∆; Γ � �Λt.m : ∀t.σ�
m⇒

let xe = Λdt :d. {t/td, t/ts, 〈 ids
t , id

s
t 〉s/xt}ee

xi = Λsts :s.Λstd :d.λsxt : tco. E i[π
d
2 (xe[td]

d)]

in 〈 xi,Λ
dt :d.πd

1 (xe[t]
d)〉s

∆; Γ � x : ∀t.σ

∆; Γ � �x[τ] : {τ/t}σ�
m⇒ @s(πs

1x)[|τ|s]s[|τ|d]s 〈 ↓τ, ↑τ〉

∆; Γ � �m1 : σ1�
m⇒ e1 ∆; Γ, x :σ1 � �m2 : σ2�

m⇒ e2

∆; Γ � �let x = m1 in m2 : σ2�
m⇒ let x = e1 in e2

�

�

�

�
∆; Γ � �m : σ� =⇒⇒ ee ; E i

such that | ∆; Γ; · | � E i[π
d
2ee] : |σ|s

∆; Γ � �m : σ�
m⇒ e | ∆; Γ; · | �split �e�

σ
=⇒⇒ Ee ; ei

fv = fv(ei) − dom(Γ) E i = (let 〈 fv〉d = • in ei)

∆; Γ � �m : σ� =⇒⇒ Ee[〈 fv〉d] ; E i

Fig. 15. Module code translation. idb
t is a shorthand for λbx : t.x.

https://doi.org/10.1017/S0956796802004616 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004616


666 S. Monnier and Z. Shao

Type abstractions As mentioned above, type abstractions introduce some complic-

ations. The problem appears when we try to define coercion functions. The naive

approach would look like:

↓∀t.σx=Λdt :d. ↓σ(x[t]s)

↑∀t.σx=Λst :s. ↑σ(x[t]d)

but this is not type correct, since t in the second rule can be static and hence

cannot be passed to the dynamic x. Obviously, we need here the same kind of

(contra-variant) argument coercion as we use on functions, but our language does

not provide us with any way to create a ↓ operator to apply to types.

Furthermore, the two inner coercions ↓σ and ↑σ are not very well defined since σ

can have a free variable t. This begs the question: what should ↑t do ?

There are several ways to solve these two problems:

• Give up on static type arguments and force any type-variable to be dynamic.

This restriction is fairly minor in practice. It only manifests itself when a

function is manipulated as data by polymorphic code, such as when a function

is passed to the identity function id: the function returned by @id f cannot

be inlined even if f is.

• Extend our language with a more powerful type-system that allows intensional

type-analysis (Harper & Morrisett, 1995). This seems possible, but would

complicate the type-system considerably and potentially the staging and the

coercions as well.

• Use a dictionary-passing approach (Wadler & Blott, 1989): instead of trying

to coerce our static t into a dynamic t, we can simply always provide both

versions ts and td along with both ↓tand ↑tso that the coercions are constructed

at the type application site, where t is statically known.

The first solution is simple and effective, but we opted for the third alternative

because it has fewer limitations. The static version of Λt.m (before pairing with its

dynamic counterpart) looks like:

Λsts :s.Λstd :d.λsxt : tco.e

This means that for every t in the SRC ∆ environment, we now have two

corresponding type variables ts and td plus one value variable xt which holds

the two coercion functions ↓t and ↑t As can be seen in Fig. 13 (which refines

figure 10) where tco is also defined. This notation is used for convenience in all the

figures.

Such an encoding might look convoluted and cumbersome, but type abstractions

only represent a small fraction of the total code size and the run-time code size is

unaffected, so it is a small price to pay in exchange for the ability to inline code that

had to pass through a function like id.

Theorem 5.4 (Type preservation)

If ∆; Γ � m : σ and ∆; Γ � �m : σ� =⇒⇒ ee ; Ei then | ∆; Γ; · | � E i[π
d
2ee] : |σ|s.

Together with the residualization theorem 4.1, this means that after specialization

all the inlinable code has been inlined away.
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6 Handling the top level

The above presentation only explains how to translate each SRC compilation unit

into its TLC counterpart. This section describes in detail how to handle top-level

issues to link multiple compilation units together.

Handling of compilation units is not difficult, but is worth looking at not only

to get a better idea of how the code flows through the compiler, but also because

the treatment of side-effects depends on the specifics of the evaluation of each

compilation unit (see section 7.1).

As can be seen in figure 1, we apply λ-split twice. This derives from the need to

handle the top-level of the compilation unit in a special way where splitting internal

module functions should be done early, while splitting the top-level should be done

late. Here is a slightly more detailed diagram:

sum1..n

↘
sum

↗
PRGS

stage+split
−−−−−−−→ PRG1

⊕−−→ PRG2
Pe−−→ PRG3

split
−−−→ PRG4

Instead of spreading the split into two parts, we could of course do it once and

for all at the very beginning, but then we would lose the opportunity to move into

the export summary copies of wrapper functions (used e.g. for uncurrying, unboxing

or flattening) introduced by the intermediate optimization phases.

Doing the split in two steps also forces us to apply the split to TLC terms (it

would be silly to have two splitting algorithms). This also motivates our choice to

interleave the staging and splitting since the splitting algorithm needs to know which

functions are modules and which are not because splitting core functions is often

detrimental to performance.

The top-level also gets a special treatment because of separate compilation. A

compilation-unit can contain free variables, which are essentially the imports of

the unit. Instead of considering such an open term, we close it by turning it into

a function from its imports to its exports. More specifically, a compilation-unit in

SRC will look like:

PRGS = λ〈 imp1, . . . , impn〉 :〈 σ1, . . . , σn〉.m

The translation to TLC assumes that the function is static as well as the imports

(these will be import summaries, which are by essence inlinable, after all) and simply

translates the body using:

·; {imp i : |σi|s | 1 � i � n} � �m : σ�
m⇒ e

This recursively splits each and every internal module-level function (the recursion

is done by the staging part of the translation which calls λ-split when needed, see the

rules for λ and Λ in figure 15), but leaves the top-level function alone. These internal

splits are necessary to allow inlining across module boundaries but still within a

compilation unit. The program now looks like:

PRG1 = λs〈 imp1, . . . , impn〉s :〈 |σ1|s, . . . , |σn|s〉s.e

The next step is to bring in copies of the import summaries. Every imp i has a

https://doi.org/10.1017/S0956796802004616 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004616


668 S. Monnier and Z. Shao

corresponding summary sum i generated when that import was compiled. Summaries

are the ei half of a split and thus contain free dynamic variables. So we replace each

imp i argument with a copy of sum i, and add the corresponding new free variables

imp ij as new arguments:

PRG2 = λs〈 imp11, . . . , impnk〉d :〈 σ11, . . . , σnk〉d.

let imp1 = sum1
· · ·

impn = sumn

in e

After that comes the actual partial-evaluation and optimization which ends with a

term PRG3 very much like PRG2 but with an optimized body eo exempt of any

static redex:

PRG3 = Pe(PRG2) = λs〈 imp11, . . . , impnk〉d :〈 σ11, . . . , σnk〉d. eo

We then pass it to the second λ-split, along with the SRC σ output type that we

remembered from the staging phase:

∆; Γ �split �eo�
σ

=⇒⇒ Ee ; ei

This split gives us a residual program and an export summary sum that will be used

as a sum i next time around:

sum = λs〈 fv〉d :〈 σfv〉d.ei wherefv = fv(ei)

PRG4 = λd〈 imp11, . . . , impnk〉d :〈 σ11, . . . , σnk〉d.Ee[〈 fv〉d]

The export summary sum will be stashed somewhere to be used when a com-

pilation unit wants to import it. As for PRG4, it continues through the remaining

compilation stages down to machine code.

When the program is run, all the compilation units need to be instantiated in the

proper order. Once all the imports imp ij of our unit have been built, PRG4 is run

as follows:

〈 exp, 〈 fv〉d〉d = Re(@
dPRG4 〈 imp11, . . . , impnk〉d)

Here exp is the original exports of this compilation unit. They will be ignored

for all but the main compilation unit (unless one of the dependent units was

compiled without cross-module inlining, in which case exp will be used by that

unit). 〈 fv〉d is the set of exports generated by the λ-split and needed for all the

compilation units that depend on the current unit and hence imported sum . When

running those dependent units, the current 〈 fv〉d will then appear as the arguments

imp i1 . . . imp ik .

Note that PRG4 will only be run once and for all whereas sum will be evaluated

as many times as it is imported by dependent compilation units. Also, PRG4 is not

completely dynamic since the coercion ↓σx of the sp-var rule (in figure 12) introduces

static redexes; we have to perform another round of partial evaluation on PRG4

before feeding it to the backend code generator.
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(type) σ ::= ... | ∃bt :k.σ

(term) e ::= ... | openb v as (t, x) in e

(value) v ::= ... | packb(t = σ :k, e)

|σ1 → σ2|s = ∃st :d.〈 |σ1|s s→ t
s→ |σ2|s, |σ1|d d→ 〈 |σ2|d, t〉d〉s

↓σ1→σ2x = λdx1 : |σ1|d.opens x as (t, x) in πd
1 (@

d(πs
2x) x1)

↑σ1→σ2x = packs(t = 〈 〉d :d,

let xs = λsx1 : |σ1|s.λsx2 : t. ↑σ2(@dx x1)

xd = λdx3 : |σ1|d.〈 @dx x3, 〈 〉d〉d

in 〈 xs, xd〉s )

∆; Γ � x1 : σ2 → σ1 ∆; Γ � x2 : σ2

∆; Γ � �@x1 x2 : σ2�
m⇒

opens x1 as (t, x)

in let xe = @d(πs
2x) (↓σ1x2)

in @s(@s(πs
1x) x2) (πd

2xe)

∆; Γ, x :σ1 � �m : σ2� =⇒⇒ ee ; E i

∆; Γ � �λx :σ1.m : σ1 → σ2�
m⇒

packs(t = σfv :d,

let xe = λdxd : |σ1|d. let x =↑σ1xd in ee

xi = λsx : |σ1|s.λsy : t. E i[y]

in 〈 xi, xe〉s )
Fig. 16. New rules using existential types.

The type, kind, and evaluation semantics should be extended correspondingly. Furthermore,

the last rule needs the type σfv of the free variables of ei which can easily be propagated

during splitting.

7 Extensions

In order to model real world inliners faithfully, our translation still needs various

additions which we have not explored in depth yet. We present some here along

with other potential extensions.

7.1 Side effects

Introducing side-effects is mostly straightforward, with just one exception: The sp-

dup rule in figure 12 cannot be applied to non-pure terms since it would duplicate

their effects. But reverting to the sp-share rule (also in figure 12) for those side-

effecting terms is not an option either because we would then lose the completeness

property that we are looking for. An alternative is to use the following sp-move rule

that moves the binding to ei instead of merely copying it:

∆; Γ � e1 : σ1 ∆; Γ, x :σ1 �split �e2�
σ

=⇒⇒ Ee ; ei

∆; Γ �split �let x = e1 in e2�
σ

=⇒⇒
let x1 = λdx :σ1.Ee[〈 fv〉d] in • ;

let x = e1 in let 〈 fv〉d = @dx1 (↓σ1x) in ei

As presented, this rule is not quite correct because the coercion ↓σ1 assumes σ1 is

an SRC type but σ1 is really a TLC type. This can be easily resolved by passing

all the SRC types during the translation. Alternatively, we could represent |int|s as

〈 int, int〉s, then the coercion ↓ simply becomes πs
2 for all types.

A potential issue is that, as can be seen in section 6, the top-level Ee is evaluated
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once and for all in a global environment, while ei will be evaluated each time it is

imported into a client unit. This means that the top-level ei must be free of side-

effects. Luckily, we can show that this problem does not appear: the compilation

unit does not contain any static free variables or static redexes; so the only static

code to split into ei is composed exclusively of values, which have no side effects.

This sp-move rule could also be used for other purposes, such as specializing a

binding in the context of the client, as was suggested briefly in Blume and Appel’s

paper (they did not have such a rule).

Another approach altogether to the handling of side-effects is to notice that since

ei has to be pure, we can turn @sx1 x2 into @d(@sxi x2) (πd
2 (@

dxe (↓x2))) and then

split out the remaining static application which is known to be pure. We do not

even need to change the splitting algorithm itself, but just two rules in figure 15.

The key is that we can do this rewrite even if we do not know x1. We simply need

to represent x1 as a pair 〈 xi, xe〉s. But of course, this is already the case for other

reasons, so the changes are very minor.

Of course, there is a catch: the type of the free variables of ei suddenly leak into

the type of |σ1 → σ2|s which becomes an existential type.

Figure 16 shows what the rules would look like. Some of the work is now shifted

from the function definition to the function application, but overall, the complexity

of terms is not seriously impacted. Apart from the introduction of existential types,

this translation variant also requires an impredicative calculus. TLC was already

impredicative, so no changes were required there.

7.2 Recursion

The TLC calculus lacks fixpoint. Adding recursive functions does not pose any

conceptual problem, except for the risk of compilation not terminating. There are

several reasonable solutions to this problem either from the inlining community or

from the partial evaluation community. The most trivial solution is to allow fixpoint

on dynamic terms only, which amounts to disallowing inlining of recursive functions,

but since it can be important to allow inlining even in the presence of recursion, one

can also do a little bit of analysis to find a conservative estimate of whether or not

a risk of infinite recursion is present (Peyton Jones & Marlow, 1999).

Recursion on types is more challenging since recursive data-structures cannot

(or should not) be coerced. In our case, however, this restriction only applies to

coercions from d to s, so we can always work around the problematic cases by

forcing recursive data-structures to be dynamic.

7.3 Optimizations as staged computation

With a full λ-calculus available at compile-time, we can now provide facilities

similar to macros, or rather to Lisp’s compiler macros. For example, a compiler

macro for multiplication could test its arguments at compile time and replace the

multiplication with some other operations depending on whether or not one of the

value is statically known and what value it takes. Using such a facility we could
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move some of the optimizations built into the compiler into a simple library, making

them easily extensible.

A more realistic use in the short term is to encode the predicate for conditional

inlining directly into the language. The current inliner allows inlining hints more

subtle than the ones present in SRC. They can express a set of conditions that

should hold at the call site in order for the call to be inlined. For example, map will

only be inlined if it is applied to a known function.

We could now strip out those ad-hoc annotations and simply write map as a

compile-time function that intensionally analyzes its arguments and either returns a

copy of its body if the function argument is a λ-expression or returns just a call to

the common version if the argument is a variable (i.e. an escaping function).

7.4 Staging refinement

Partial evaluation as well as other optimizations will sufficiently change the shape

of the code to justify or even require refining the binding-time annotations. This can

happen because a function has been optimized down to just a handful of statements,

or because it has been split into a wrapper and a main body or any other reason.

Turning a dynamic function into a static one is not very difficult to implement,

but more work needs to be done to express it cleanly within our framework.

It seems to require among other things the ability to optimize away pairs of

coercions that cancel each other out such as not only ↓σ↑σx (which is trivially done

by the partial evaluator) but also ↑σ ↓σx which appears to involve evaluation of

dynamic code at compile-time.

7.5 Link-time optimizations

Another extension is to add multiple levels so that we can express compile-time

execution, link-time execution, run-time code generation and more.

This will require extending a calculus such as λ© (Davies, 1996) with at least some

form of polymorphism, but should not pose any real problem, except that the kind

of tricks we used to work around the lack of simple coercion for type abstraction

might need to be generalized to n-levels. If n is unbounded, it might not be possible

and even if it is bounded, it might be impractical.

Also, the use of pairs of fully-static and fully-dynamic representations of the same

original expressions would not generalize to n-levels easily, but could still be kept

for the benefit of the compile stage.

7.6 Implementation

As mentioned in the introduction, this paper was motivated by the need to better

understand the behavior of our inliner in SML/NJ. Since our implementation

handles the complete SML language in a production compiler, it has to deal with

all the issues mentioned above. Here are the most important differences between the

model presented in this paper and the actual code:
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• For historical reasons, our intermediate language is predicative, which prevents

us from using existential packages to solve the problem of side effects. Instead

we simply revert to using the sp-share rule and lose the completeness property.

• Our language allows recursion both for dynamic and for static functions.

Termination of Pe(e) is ensured by a simple conservative loop detection.

• The dynamic and static pairs we use to avoid spurious code duplication are

represented in an ad-hoc way that eliminates the redundancy. This ad-hoc

representation looked like a good idea at the time, but made it unnecessarily

painful to add the refinement described in section 5.3.1.

8 Related work

Functional-language compilers such as O’Caml (Leroy, 1995), SML/NJ (Appel,

1991), GHC (Peyton Jones & Marlow, 1999) and TIL (Tarditi, 1996) all spend great

efforts to provide better support to inlining. Although none of them models inlining

as staged computation, the heuristics for detecting what functions should be inlined

are still useful in our framework. In fact, our FLINT optimizer (Monnier et al.,

1999) inherits most of the heuristics used in the original SML/NJ compiler.

Control-Flow Analysis (CFA) (Shivers, 1991; Ashley, 1997) is an alternative to

λ-splitting to propagate inlining information across functions and functors. It tries

to find, for example via abstract interpretation, the set of functions possibly invoked

at each call site in the program. It offers the advantage of requiring less code

duplication and may expose more opportunities for inlining inside a compilation

unit. For example, in a code such as:

let f x y = ..y x.. and g x = ... in 〈 f 1 g, f 2 g〉

CFA can inline the function g into f without inlining f whereas our inliner will

only reach the same result if it can first inline the two calls to f. On the other hand,

in a code such as f g x where f is a functor that ends up returning its argument

unchanged, our inliner will be able to replace the code with g x, no matter how f is

defined, whereas in the case of CFA, if the definition of f is sufficiently complex, a

costly polyvariant analysis is needed to discover that the code can be replaced with

g x.

Partial evaluation is a very active research area. Jones et al. (1993) gives a good

summary about some of the earlier results. Danvy’s paper (1996) on type-directed

partial evaluation inspired us to look into sophisticated forms of binding-time

coercions.

Tempo (Consel & Noël, 1996; Marlet et al., 1999) is a C compiler that makes

extensive use of partial-evaluation technologies. Its main emphasis is however on

efficient runtime code generation. Sperber & Thiemann (1996, 1997) worked on

combining compilation with partial evaluation, however they were not concerned

with modeling the inlining optimization as done in a production compiler.

Nielson & Nielson (1992) gave an introduction to a two-level λ-calculus. Davies

& Pfenning (1996) proposed to use modal logic to express staged computation.

Moggi (1997) pointed out that both of these calculi are subtly different from the
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two-level calculus used in partial evaluation (Jones et al., 1993). Taha et al. (Taha,

1999; Taha & Sheard, 1997; Moggi et al., 1999) showed how to combine these

different calculi into a single framework.

Our TLC calculus (see section 4) is an extension of Moggi’s two-level λ2sd calculus

(Moggi, 1997) with the System-F-style polymorphism (Girard, 1972; Reynolds, 1974).

Davies (1996) used the temporal logic to model an n-level calculus which naturally

extends λ2sd.

Foster et al. (1999) proposed to use qualified types to model source-level program

directives. Their framework can be applied to binding time annotations but these

annotations would have to become parts of the type specifications. Our inlining

annotations on the other hand do not change the source-level type specifications.

Blume & Appel (1997) suggested λ-splitting to support cross module inlining.

Their algorithm is based on a weakly-typed λ-calculus and provides a convenient

cross-module inlining algorithm. Our work extends theirs by porting their algorithm

to a much more powerful language and formalizing it. By using the two-level

λ-calculus we can express some of the inliner’s behavior in the types.

O’Caml (Leroy, 1995) collects the small inlinable functions of a module into its

approximation and then reads in this extra info (if available) when compiling a

client module. It works very well across modules and can even inline functions from

within a functor to the client of the functor, but is unable to inline the argument of

a functor. For example, passing a module through a trivial ‘adaptor’ functor (which

massages a module to adapt it to some other signature, for example) will lose the

approximation, preventing inlining.

By encoding the equivalent of approximations directly into types, Shao (1998)

presents an alternative approach which allows the full inlining information to be

completely propagated across functor applications by propagating it along with the

types. But this comes at the cost of a further complication of the module elaboration.

Another problem is that some of the functions we might want to inline (such as

uncurry wrappers) do not yet exist at the time of module elaboration.

Recently, Ganz et al. (2001) presented an expressive, typed language that supports

generative macros. The language, MacroML, is defined by an interpretation into

MetaML (Taha & Sheard, 1997). This is similar to our approach because macros can

also be viewed as inlinable functions; the translation from MacroML to MetaML

resembles our translation from the source calculus SRC to the target calculus

TLC. There are, however, several major differences. First, in MacroML, macros

and functions are different language constructs; macros never escape so they can

be unconditionally marked as ‘static’ and no coercions or polymorphic binding-

time annotations are ever needed; in our SRC calculus, however, functions that

are marked as inlinable are still treated as regular functions so they can escape

in any way they like. Secondly, it is unclear how MacroML can be extended

to support ML-style modules; MacroML assigns different types to macros and

functions so exporting macros would require adding new forms of specifications

into ML signatures; in our SRC language, however, a function is always assigned

the same type whether it is marked as inlinable or not, so we can just reuse the

existing ML module language. Thirdly, unlike MacroML, we presented various
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techniques to control code duplication – this is cruicial for cross-module inlining

since naively expanding every functor in ML would certainly cause code explosion.

9 Conclusions and future work

Expressing inlining in terms of a staged computation allows us to better formalize

the behavior of the inliner and provide strong guarantees of what gets inlined where.

We have shown how this can be done in the context of a realistic two-level poly-

morphic language and how it interacts with cross-module inlining. The formalism

led us to a clean design in which we can easily show that code is only and always

duplicated when useful.

The present design eliminates run-time penalties usually imposed by the powerful

abstraction mechanism offered by parameterized modules, enabling a more natural

programming style. More importantly, our algorithm provides such flexibility while

still maintaining separate compilation.

An interesting question is whether or not using monomorphic staging annotations

was a good choice. It seems that polymorphism could allow us to do away with the

coercions, although it would at least require the use of continuation passing style in

order to maintain precision of annotations.
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