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A VARIATIONAL INEQUALITY IN NON-COMPACT SETS
AND ITS APPLICATIONS

WoN Kyu KiMm AND KoK-KEONG TAN

In this note, we shall prove a new variational inequality in non-compact sets and
as an application, we prove a generalisation of the Schauder-Tychonoff fixed point
theorem.

Let E be a Hausdorff topological vector space. Denote the dual space of E by E*
and the pairing between E* and E by (w,z) foreach w € E* and 2 € E. If Aisa
subset of E, we shall denote by 24 the family of all non-empty subsets of A and by
cl A the closure of A in E, and co A the convex hull of A.

The following Fan-Browder fixed point theorem [2] is essential in convex analysis
and is also the basic tool in proving many variational inequalities and intersection
theorems in nonlinear functional analysis:

THEOREM. [2] Let X be a non-empty compact convex subset of a Hausdorff
topological vector space and let T : X — 2% be a multimap satisfying the following:
(1) for each z € X, T(z) is convex,
(2) for each y € X, T~ (y) is open.
Then T has a fixed point T € X, that is Z € T(Z).

The Fan-Browder theorem can be proved by using Brouwer’s fixed point theorem
or the KKM-theorem. Until now, there have been numerous generalisations and appli-
cations of this Theorem by several authors; for example, see [4, 7] and the references
there.

In a recent paper [4], Ding, Kim and Tan further generalise the above result to
non-compact sets in locally convex spaces and the following is a special case of the fixed
point version of their Theorem 1:

LEMMA 1. [4] Let X be a non-empty convex subset of a locally convex Hausdorff
topological vector space and D be a non-empty compact subset of X . Let T : X — 2P
be a multimap satisfying the following:

(1) foreach z€ X, coT(z) C D,
(2) foreach y€ X, T~ (y) is openin X.

Received 15 August, 1991
This paper was partially supported by NSERC of Canada under grant A-8096, and for the first author
by a grant from the Korea Science and Engineering Foundation in 1992.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 $A2.00+-0.00.

139

https://doi.org/10.1017/5S0004972700011746 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011746

140 W.K. Kim and K-K. Tan (2]

Then there exists a point z € X such that Z € coT(Z).

Recall that for a topological vector space E| the strong topology on its dual space
E* is the topology on E* generated by the family {U(B;¢) : B is a non-empty bounded
subset of E and € > 0} as a base for the neighbourhood system at 0, where U(B;¢) =
{fe E*: s:g|(f,:l:)| <e}.

We begin with the following

LEMMA 2. Let E be a topological vector space and E* be the dual space of E
equipped with the strong topology. Let X be a non-empty bounded subset of E and
T : X — 2" be an upper semicontinuous multimap such that each T(z) is (strongly)
compact. Then for each y € E, the real-valued function g, : X — R defined by

gy(z) = wé:}i(':) Re (w,z —y), foreachz € X,

is lower semicontinuous.

PROOF: Let z9 € X be given. For any € > 0, we shall show that there exists an
open neighbourhood N(z¢) of zo such that

9y(z) > gy(x0) — € for each z € N(=o).

Indeed, let V :={p€ E*: sup |p(t)| <e/3}, where X ~y={z—y : 2 € X}. Then
teX—y

V is a strongly open neighbourhood of 0 in E* since X —y is a bounded set in E.
Since T is upper semicontinuous at zo and T(zo)+V is a strongly open set containing
T(z0), there exists an open neighbourhood Ny of z¢ in X such that T(z) C T(zo)+V
for each z € Ny.

Next, for each u € T(zo), we let

€
Vi = {p € E*: sup |p(t) —u(t)] < 5},
teEX-X

where X — X ={z -2z : z,z € X}; then V, is also a strongly open neighbourhood
of u in E* since X — X is a bounded set in E. Since T(zo) is strongly compact and
T(20) C UueT(zo)Vu, there exists a finite subset {u;,...,un} of T(2o) with T(zo) C

=1
open neighbourhood N; of z¢ in X such that |u;(z) — ui(z¢)| < €/3 for each z € N;.
Now let N(zg) := NoN;; then N(zo) is an open neighbourhood of z¢ in X.

We shall show that this open neighbourhood N(zo) of zo is the desired one. For
each z € N(z0) and each w € T(z), since ¢ € Ny, there exists u € T(zo) such

Va; . Foreach 1 = 1,...,n, since u; is a continuous linear functional, there exists an
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that w —u € V. Also, since u € T(zo) C UL, V,,, there exists i € {1,...,n} such
that v € Vu‘.0 . Therefore we have

€
|Re{w,2 —y) — Re(u,z —9)] < [(w—-vu,2-9)| <3,
so that
Re(w,z —y) > Re(u,z—y)—g

= Re(u,zo —y) + Re(u,z —zo) — g
= Re(u,z9 —y) + Re(u — uiy,z — Zo)

€
+ Re(uiy,z — zo) — 3

> Re(u,zq —y)—%—%—g
> 1’EiTn(fz:o) Re{v,zo —y) — €
= gy(zo)—e.
Since w € T(z) is arbitrary, we have g,(z) = wérll'i(lz) Re{w,z —y) > gy(z0) — ¢,
which completes the proof. 1]

Lemma 2 is a multivalued generalisation of Lemma 1 in [2] (see also [10, Lemma 1]
where it was observed that the result holds for X being bounded instead of compact).

Now we shall prove the following new variational inequality in non-compact sets.

THEOREM 1. Let X be a bounded convex subset of a locally convex Hausdorff
topological vector space E and D be a non-empty compact subset of X. Let T :
X — 28 be an upper semicontinuous multimap from the relative topology of X to

the strong topology of E* such that each T(z) is (strongly) compact. Suppose further
that for each ¢ € X\ D,

inf _2) < .
(*) wég‘(y)Re(w,y zy <0 forallye X

Then there exists a point Z € X such that

inf Re(w,z—z) <0 forallze X.
wET(;)

Furthermore, if T(Z) is also convex, then there exists a point @ € T(Z) such that

Re(w,z —z) < 0 forallze X.
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PROOF: Suppose that for each z € X there exists a point € X such that

111111; )Re(w z — z) > 0. Then by the assumption (*), Z € D. Now we define a
weT (=

multimap P: X — 2P by

P(z):={yeD: érqx‘{ )Re(w,:c—y) > 0} forallze X.

Then for each z € X, P(z) is non-empty. For each z € X, we shall show that co P(z) C

D. Indeed,let n € N, 31,...,yn € P(z) and t4,...,t, € [0,1] with > t; =1; then for

. i=1
eachi=1,...,n,

f R —y) > 0
wég‘(z) e(w e y)

it follows that

inf Re( - t; t; inf Re( - ¥ 0.
B Belon - S > Skt mes ) >

n n
Since ) t;y; € X, by the assumption (*) again, Y. t;y; € D. Hence coP(z) C D.

i=1 =1
Next for each y € D, we shall show that P~'(y) is openin X. Let (2q),¢p bea
net in X \ P7(y), which converges to some zo € X. Then we have

inf Re(w,zo-—y) < 0 forallaeT.
wET(za)

By Lemma 2, the real-valued function

f R -
z_)wérﬂl'(z) e(w,z —y)

is lower semicontinuous, it follows that

f Relw,z¢ —
wel;}(zo) e(w,z9 —y) <

Therefore X\ P~ (y) is closed, and hence P~!(y) is openin X . Thus all the hypotheses
of Lemma 1 are satisfied, so that by Lemma 1 there exists a point Z € X such that

m
Z € co P(Z). But then there exist y1,...,ym € P(Z) and Ay,...,Am 2 0 with Y} ;=

=1

m
1 such that 2 = 3 A;y;. Therefore we have

=1
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0= inf_ Re(w,Z—Z)
wer()

= inf Re(w,-Y Aiy:)

= inf MiRe{w,T — y;)
Sk

Zzz\; inf Re(w,Z — ) > 0,

= wer(?)

which is a contradiction. Hence there must exist a point Z € X such that

(1) inf Re(w,Z-z) < 0 forallze X.

wGT(;)

To prove the second assertion, suppose that T(Z) is convex. Then we define f :
X xT(z) —» R by

f(z,w) :== Re(w,z —z) for each (z,w) € X x T(Z).

Note that for each fixed z € X, 2 — Re{w,Z — z) is continuous affine, and for

each w € T(Z), ¢ — Re{w,Z — z) is affine. Thus, by Kneser’s minimax theorem (8],

we have
min_sup f(z,w) = sup min_f(z,w).
weT(z) z€X (2,%) z€X weT(z) (
Thus min_ sup Re{w,z —z) < 0 by (1).
weT(z) z€X

Since T(Z) is compact, there exists @ € T(Z) such that

sup Re(w,Z —z) = min_ sup Re{(w,Z — z).
z€X wET(;) z€X
Therefore Re(w,Z —z) < 0 for all z € X. This completes the proof. 1]
When X = D is compact convex, we obtain the following generalisation of

Hartman-Stampacchia’s variational inequality [6] due to Browder [3, Theorem 6):

COROLLARY 1. Let X beanon-empty compact convex subset of a locally convex
Hausdorff topological vector space E and let T : X — 2E" be an upper semicontinuous
multimap from the relative topology of X to the strong topology of E* such that each
T(z) is a (strongly) compact convex subset of E*.
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Then there exists a point T € X and w € T(Z) such that

Re(w,z —z) < 0 forallz € X.

The following is a single-valued version of Theorem 1:

COROLLARY 2. Let X be a bounded convex subset of a locally convex Hausdorff
topological vector space E and D be a non-empty compact subset of X. Let T : X —
E* be a continuous mapping from the relative topology of X to the strong topology of
E* satisfying the following condition:

for eachz € X\ D, Re(T(y),y—2) < 0 forallye X.
Then there exists a point £ € X such that
Re(T(z),7 —2z) < 0 forallz € X.

Let E be a topological vector space and M be a topological space. Recall that
a multimap F : M — 2F is upper hemicontinuous (for example, see [1, p.122]) if for

each p € E* and for each A € R, theset {¢ € M : sup Re(p,u) < A} is open
u€EF(z)

in M. For relationships among upper semicontinuity, upper demicontinuity and upper
hemicontinuity, we refer to [11, Propositions 1 and 2 and Examples 1 and 2].

As an application of Corollary 2, we prove the following fixed point theorem:

THEOREM 2. Let X be a non-empty paracompact bounded convex subset of a
locally convex Hausdorff topological vector space E,D be a non-empty compact subset
of X. Let F: X — 2F be an upper hemicontinuous multimap satisfying the following:

(1) for each z € X, F(z) is non-empty closed convex,
(2) foreach z € X, F(z)Ncl(z+ UrsoX(X — z)) # ¢,
(3) foreachze€ X\ D, ye€ X andp € E*, if inf{Re(p,y—2):2€ F(y)} >
0, then Re{p,y —z) < 0.
Then there exists T € X such that z € F(Z).

PROOF: Since F is upper hemicontinuous, for each p € E*, the set
U(p) ={z € X : sup Re(p,z) < Re(p,z)}
zEF(z)

= Uxer[{z € X: sup Re(p,z) < A}
z€F(z)

N{z € X : Re(p,z) > A}
is open in X . Suppose z ¢ F(z) for each £ € X. Then for each z € X, there exists

p € E* such that sup Re(p,z) < Re(p,z) so that z € U(p). Thus {U(p) : p € E*}
z€F(z)
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is an open cover of the paracompact space X. Let {V(p): p € E*} be a locally finite
open precise refinement of {U(p) : p € E£*} and {B, : p € E*} be the continuous
partition of unity subordinated to this refinement {V(p) : p € E*}. Define a mapping

T:X > E* by

T(z) = Z Bo(z)p forall z € X.
pEE*

Let z € X be given. If p € E* and fp(z) > 0, then z € V(p) C U(p) so that
sup Re(p,z) < Re(p,z); it follows that zei%{Z)Re(p,z — 2z} > 0. Therefore for each

z€F(z)
z € X,
inf Re(T(z),z —z) = inf Re(p,z —
zel?'(z) E( (2) e z) zelg(a:) Z. ’Bp(x) «lp, 2)
pEE
* > inf -
(%) > > Bp(z) jnf Re(p,z —z)
pPEE*
> 0.

Now we shall show that T satisfies all hypotheses of Corollary 2. To show that T is
continuous from the relative topology of X to the strong topology of E*, let (2a)4er
be a net in X which converges to some zo € X . Since {V(p) : p € E*} is locally finite,
there is an open neighbourhood Uy of zp in X such that {p € E* : V(p) N U, # ¢} is
finite, so we let {p € E*: V(p) N Uy # ¢} = {p1,...,Pn}. Let B be any non-empty
bounded subset of E; then by Theorem 1.18 [9], M = 1121% sup{|pi(z)| : z € B} < .

Since each S, is continuous, there exists a; € I' such that for each a > ay,
€ .
|ﬂ,i(za)—ﬂ,i(zo)| <3 forallz: =1,...,n.

Also since (zq) converges to zo and U is an open neighbourhood of zo, there
exists az € I’ such that for each a > a;, z4 € Up. Let oy > max{a;,a;}. Then for
each a > ay, we have

sup [(T(za) — T(20), 2)|
z€B

= sup Z (Bp(za) — Bp(20))p(2)

z€B pEE*

= ; (Bpi(za) = Bp;(20))pil2)
< 2 1Bntea) = Bnlan)| sup o)

<i%M:e,

i=1
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and hence (T(2a)) converges to T(zo) in the strong topology of E*.
Next suppose there exists £; € X \ D such that for some y € X,

(*x) Re(T(y),y —21) = Y Bp(y) Re(p,y — z1) > 0.
PEE*
If Bp(y) > 0, then Elg{ )Re(p,y —z) > 0 so that by (3), Re(p,y — z1) < 0, which
z€F(y

contradicts (*x).

Therefore by Corollary 2, there exists Z € X such that
(* * %) Re(T(z),7—y) £ 0 forallye X.

By the assumption (2), F(Z) Ncl(Z + UsyoA(X — %)) # ¢. Let ¥ € F(Z),(Aa)qer be
a net in (0,00) and (%a),er be a net in X such that (Z + Aa(ua —Z)) = ¥. Then we

have
Re(T(2),z —3) = ligl Re(T(Z),Z — (T + Aa(ua — 7)))

= lim A, Re(T(%),T — va)
<0 by (* % *).

Hence in(fA) Re(T(%),£—2) < 0, which contradicts (*). This completes the proof. [I
z€EF(=z

Theorem 2 generalises Theorem 2 of Halpern [5, p.88] in the following ways: (i) X
need not be compact and (ii) F is upper hemicontinuous instead of upper semicontin-
uous.

The following is a reformulation of Proposition 3.1.21 of Aubin-Ekeland [1]:

LEMMA 3. Let X and Y be topological spaces and ® : X xY — R be a
real-valued lower semicontinuous function on X xY and T : Y — 2% be upper semi-
continuous at y; € Y and T(yy) is non-empty compact. Then a real-valued function

g:Y — R defined by
= .nf Q z fOI a.u € Y
g(y) zElT(‘.'I) ( ’y), y ’

is lower semicontinuous at yq .

LEMMA 4. Let E be a normed space, X be a non-empty subset of £ and
T : X — 2% be an upper semicontinuous multimap such that each T(z) is (norm-)
compact. Then for each y € E, the real-valued function g, : X — R defined by

gy(z):= inf Re(w,z—y), foreachze X,

https://doi.org/10.1017/5S0004972700011746 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011746

[9] A variational inequality 147

is lower semicontinuous.

PROOF: Define ¢: X x E* - R by
®(z,w) = Re(w,z —y) for each (z,w)y€ X x E*.

Let (z,) be a sequence in X which converges to ¢ € X and (w,) be a sequence in E*
which converges to w € E*. Then we have

|2(zn, wa) — ¥(z, w)|
= IRe<wﬂ’3ﬂ- - y) - Re("”z - y)l
(wn —w,z — y)| + [{wn, zn — =)

<
<llwn —w| flz = yll + llwall |22 — =]l - 0,

since {|Jwn||:n > 1} is bounded.
Thus ® is continuous. By Lemma 3, g, is lower semicontinuous. This completes

the proof. g

We remark that in the proof of Theorem 1, the condition “ X is bounded” was never
needed until Lemma 2 was quoted. In view of Lemma 4, the same proof of Theorem 1
gives the following

THEOREM 3. Let X be a convex subset of a normed linear space E and D be
a non-empty compact subset of X. Let T : X — 2F" be an upper semicontinuous
multimap from the relative topology of X to the norm topology of E* such that each
T(z) is (norm-) compact in E*. Suppose further that for each ¢ € X \ D,

* inf Re{w,y — £ 0 forallyeX.
(+) Lt Re(w,y —2) y

Then there exists a point T € X such that

inf Relw,z—z) < 0 forallze X.

wET(;)

Furthermore, if T(Z) is also convex, then there exists a point @ € T(Z) such that
Re{lw,Z—z) < 0 forallze X.
For the same reason, in case E is a normed space, the condition that X be bounded

in Corollary 2 can be deleted. As a result, we have the following norm-version of
Theorem 2; recalling that every metric space is paracompact:
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THEOREM 4. Let X be a non-empty convex subset of a normed linear space
E and D be a non-empty compact subset of X. Let F : X — 2F be an upper
hemicontinuous multimap satisfying the following:

(1) for each z € X, F(z) is non-empty closed convex,
(2) foreach z € X, F(z)Necl(z + UrsoMX —2)) # 9,
(83) foreachze€ X\D, y€ X andpe€ E*, if inf{Re(p,y—2):z € F(y)} >
0, then Re(p,y —z) < 0.
Then there exists £ € X such that z € F(Z).
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