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Abstract

Lithospheric thinning occurred in the North China Craton (NCC) that resulted in extensive
Mesozoic magmatism, which has provided the opportunity to explore the mechanism of the
destruction of the NCC. In this study, new zircon U–Pb ages, geochemical and Lu–Hf isotopic
data are presented for Early Cretaceous adakitic rocks in the Liaodong Peninsula, with the aim
of establishing their origin as well as the thinningmechanism of theNCC. The zirconU–Pb data
show that crystallization occurred during 127–120 Ma (i.e. Early Cretaceous). These rocks
are characterized by high Sr (294–711 ppm) content and Sr/Y ratio (38.5–108), low Yb
(0.54–1.24 ppm) and Y (4.9–16.4 ppm) contents, and with no obvious Eu anomalies, implying
that they are adakitic rocks. They are enriched in large-ion lithophile elements (e.g. Ba, K, Pb
and Sr) and depleted in high-field-strength elements (e.g. Nb, Ta, P and Ti). These adakitic
rocks have negative zircon ϵHf(t) contents (−28.9 to −15.0) with two-stage Hf model ages
(TDM2) of 3004–2131 Ma. Based on the geochemical features, such as low TiO2 and MgO
contents, and high La/Yb and K2O/Na2O ratios, these adakites originated from the partial melt-
ing of thickened eclogitic lower crust. They were in an extensional setting associated with the
slab rollback of the Palaeo-Pacific Ocean. In combinationwith previous studies, as a result of the
rapid retracting of the Palaeo-Pacific Ocean during 130–120 Ma, the asthenosphere upwelled
and modified the thickened lithospheric mantle, which lost its stability, resulting in the
lithospheric delamination and thinning of the NCC.

1. Introduction

The North China Craton (NCC) is one of the oldest known cratons in China, and has a unique
evolutionary history. Based on the research of mantle xenoliths from the Palaeozoic kimberlites
and Cenozoic basalts, the NCC underwent reactivation and dramatic lithospheric thinning
(> 100 km) (Griffin et al. 1998; Fan et al. 2000; Menzies et al. 2007; Zhu et al. 2011; Wu et al.
2019). Although some understanding of lithospheric thinning in the NCC has been obtained by
petrology, geochemistry and geophysics, the initial timing and geodynamics mechanism are
still controversial (Wu et al. 2005a, 2008; Zhai et al. 2007). The initial timing of thinning
and destruction of the NCC ranges from Late Triassic (Duan et al. 2014) to Late Jurassic
(Jiang et al. 2010) and Early Cretaceous (Wu et al. 2008). Regarding the geodynamics mecha-
nism, there exist delamination (Deng et al. 1994, 2007; Gao et al. 2002, 2004; Xu et al. 2006a, b;
Windley et al. 2010) and thermo-chemical erosion (Menzies et al. 1993; Xu et al. 2004; Zheng
et al. 2006) models.

Adakites were first proposed by Defant & Drummond (1990) on the basis of their geochemi-
cal features (e.g. high Sr/Y and La/Yb ratios; low Y and Yb contents). Scholars proposed
that adakites may have originated from either: partial melting of hot subducted oceanic crust
(Defant & Drummond, 1990); partial melting of the thickened lower crust (Muir et al. 1995); or
assimilation and fractional crystallization (AFC) processes associated with basaltic magma
(Castillo et al. 1999), the reaction of delaminated lower crust with mantle peridotite (Gao
et al. 2004) or the mixing of basaltic and felsic magmas (Guo et al. 2007). The various origins
of adakites play a critical role in understanding the growth and evolution of the crust (Guo et al.
2006). Large-scale Mesozoic magmatism is one type of geological evidence of the lithospheric
thinning and destruction of the NCC (Wu et al. 2005a; Xu et al. 2009; Yang et al. 2009). It is
noteworthy that a large number of adakitic rocks (c. 175–110Ma) have been identified from the
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Mesozoic magmatic activity, distributed along the edge of the NCC
(Fig. 1a; Zhang & Wang, 2001; Xiong et al. 2011). Because the age
and distribution of adakites are consistent with the thinning range
of the NCC, the age, source and origin of adakites can provide an
important window into the processes and mechanisms of litho-
spheric thinning and destruction of the NCC.

The Liaodong Peninsula is one of the most important parts of
the NCC, which also underwent complex magmatic activity and
dramatic lithospheric thinning (Fig. 1b; Zhu et al. 2011). Studies
shown that a large number of Mesozoic magmatic rocks, such
as A-type granite, mafic rocks, calc-alkaline I-type rocks and ada-
kites, are distributed in the Liaodong Peninsula (Wu et al. 2008; Liu
et al. 2011, 2013; Wang et al. 2015). These Mesozoic rocks indicate
that it is an important place to study the thinning of the NCC.
Previous studies on these rocks have obtained some periodic
results (Yang et al. 2004, 2012; Wu et al. 2008; Duan et al. 2014).
However, the geodynamics setting of Early Cretaceous magmas
still remains controversial (Sun et al. 2007; Xiao et al. 2010; Zhu
et al. 2011; Zhang, 2013). Recently, we discovered a set of Early
Cretaceous magmatic rocks with adakitic features in Liaodong
Peninsula (Fig. 2). In this paper, we use major- and trace-element
compositions, zircon U–Pb ages and Hf isotopes to restrict their
magma sources and origin. Our aim is to reveal the tectonic
dynamic setting of the Early Cretaceous magmatic rocks in the
Liaodong Peninsula, and provide new evidence for the mechanism
of lithospheric thinning and destruction of the NCC.

2. Geological setting and sample descriptions

The NCC is triangular in shape, with the Central Asian Orogenic
belt, and the Qinling–Dabie and Sulu high–ultrahigh-pressure
metamorphic belts, located to its north, south and east, respectively
(Fig. 1a; Zhao et al. 2005; Liu et al. 2020). The NCCwas formed as a
result of the collision between eastern and western blocks along the
central orogenic belt during the Palaeoproterozoic Era (c. 1.85 Ga;
Zhao et al. 2005; Zhai & Santosh, 2011), after which the NCC
remained relatively stable and formed sedimentary basins and
thick sedimentary rocks. The NCC then began to activate during
theMesozoic Era, which resulted in the thinning and destruction of
the lithosphere, and the formation of a large number of ore depos-
its, magmatic rocks and extensional structures (Wu et al. 2005a;
Zhu et al. 2012; Zhu & Xu, 2019).

Located in the eastern part of the NCC (Fig. 1a), the Liaodong
Peninsula can be divided into three tectonic units: the Archean
Liaobei block in the north, the Archean Liaonan block in the south
and the Palaeoproterozoic Jiao-Liao-Ji orogenic belt (JLJOB) in
the middle (Liu et al. 1992; Wu et al. 2005b). The basement rocks
mainly consist of Early Archean tonalite, trondhjemite and
granodiorite (TTG) suites in the Liaobei block; Late Archean
diorite, tonalite and granodiorite in the Liaonan block; and
Palaeoproterozoic Liaohe Group in the JLJOB (Lu, 2004;
Wu et al. 2005b). These basement rocks were then covered by
Mesoproterozoic–Palaeozoic sedimentary strata (Yang et al.
2007b). The reactivation of the NCC resulted in the widespread
distribution (c. 20 000 km2) of Mesozoic intrusive rocks in the
Liaodong Peninsula (Fig. 1b; Yang et al. 2007b). These Mesozoic
magmatic rocks, consisting of syenite, monzogranite, granodiorite
and diorite, were mainly deposited during three episodes: (1) Late
Triassic (mainly 230–210 Ma); (2) Jurassic (mainly 180–155 Ma);
and (3) Early Cretaceous (mainly 131–106 Ma) (Li, 2019). In addi-
tion, minor Mesozoic mafic dykes also occur in in the Liaodong
Peninsula (Fig. 1b).

The Pulandian area covers an area of about 17 km2 and is dis-
tributed in the western part of the Liaodong Peninsula (Fig. 1b). The
Precambrian basement is mainly composed of Neoarchean gneissic
complex (e.g. biotite plagioclase gneiss) and Mesoproterozoic
quartz diorite (Fig. 2). The intrusive rocks are mainly composed
of intermediate-acidic rocks, which include monzodiorite, grano-
diorite, porphyritic monzogranite and monzogranite. In this study,
these intermediate-acidic rocks were collected in the Pulandian area
for research (Fig. 2).

The monzodiorite (sample no. Yd2005) is grey-white in col-
our and contains plagioclase (50–55%), biotite (15–20%), K-
feldspar (5–10%), quartz (5–10%) and minor hornblende
(c. 5%) (Fig. 3a–c). Typical polysynthetic twinning can be seen
in plagioclases (Fig. 3c). The granodiorite (sample nos Yd2006
and Yd2010) is medium-grained and comprises plagioclase
(45–50%), K-feldspar (20–25%), quartz (15–20%) and minor
hornblende and biotite (c. 5%) (Fig. 3d–i). Small amounts of
fine-grained biotite and hornblende are found in the margins
of large-grained plagioclase and quartz. Sample Yd2010 con-
tains minor perthite (Fig. 3i). The porphyritic monzogranite
(sample no. Yd2009) has porphyritic texture, consisting of
phenocryst (c. 15%) and matrix (c. 85%) (Fig. 3j–l). The pheno-
cryst mainly consists of quartz, K-feldspar, plagioclase and
biotite (Fig. 3l). The matrix is composed of fine-grained plagio-
clase, quartz and minor biotite.

3. Analytical methods

3.a. Zircon U–Pb dating

Zircons were separated from samples by magnetic and heavy-
liquid separation methods at Langfang Hongxin Geological
Exploration Technology Service Co. Ltd, Hebei Province, China.
Zircons were observed and imaged to reveal their internal structure
under cathode-luminescence (CL). Zircon laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb
dating was conducted at the Laboratory of Mineral Resources
Evaluation in Northeast Asia, Ministry of Nature Resources of
China, Changchun (LMRENA), using a 193 nm ArF laser ablation
system and Agilent 7900 ICP-MS. The denudation frequency and
spot diameter of laser were 7 Hz and 32 μm, respectively. Standard
zircon 91500 was adopted as the external standard for age calibra-
tion. These 91500 zircons yield a 206Pb/238U age range 1060.9–
1069.1 Ma, with weighted mean 1065.0 Ma, which is consistent
with the recommended values of 1064Ma for 91500 zircons within
analytical errors. NIST610 was used as an external standard and
29Si as an internal standard to normalize zircon trace-element
contents. The isotope ratio was calculated using the LA-ICP-MS
DATECAL program (Liu et al. 2008). Pb correction methods
according to Andersen (2002) were followed. The calculated age
and Concordia diagrams were calculated using the Isoplot3
program (Ludwig, 2003).

3.b. Major- and trace-element analysis

Whole-rock major- and trace-element geochemical analyses
were undertaken at LMRENA. Altered surfaces were removed
from all samples and were ground to 200 mesh. The X-ray fluores-
cence (XRF) and ICP-MS were used for major- and trace-element
testing, respectively. The trace-element analytical samples were
prepared by dissolving in mixed acid (HF þ HNO3) in Teflon
bombs. The national standards GBW07103 and GBW07105 were
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adopted for element content correction. The analytical precision of
major- and trace-element testing was 1% and 5%, respectively.

3.c. Zircon Hf isotopic analyses

Zircon in situ Lu–Hf isotope analyses were conducted using a
Neptune-plus multicollector (MC) ICP-MS and NewWave UP213
laser ablation system at Yanduzhongshi Geological Analysis
Laboratory, Beijing. The denudation frequency and spot diam-
eter of the laser were 8 Hz and 50 μm, respectively. Standard zir-
cons (e.g. GJ-1, Mud Tank, Penglai and 91500) were treated as
precision control (Yuan et al. 2008; Li et al. 2010). The testing
steps and calibration methods used are described by Wu et al.
(2006) and Guo et al. (2012).

4. Analytical results

4.a. Zircon U–Pb ages

The zircon U–Pb results are provided in online Supplementary
Table S1 (available at http://journals.cambridge.org/geo). Zircon
grains are grey, subhedral to euhedral, 50–150 μm long and with
aspect ratios of 1:1 to 2:1. Zircons from samples Yd2006, Yd2009
and Yd2010 all display typical oscillatory zoning in cathodolumi-
nescence (CL) images, whereas no obvious oscillatory zoning was
observed in zircons from sample Yd2005 (Fig. 4). Zircons from sam-
ple Yd2005 show variable Th (7–778 ppm) andU (51–303 ppm) con-
tents, and Th/U ratios of 0.11–2.57. A total of 23 concordant analyses
yielded a 206Pb/238U weighted mean age of 123.3 ± 1.6 Ma (Fig. 5a).
Eighteen zircons from sample Yd2006 have Th content of

Fig. 1. (Colour online) (a) Distribution of Mesozoic adakites (agesmainly 175–110 Ma) in the eastern NCC (after Zhang &Wang, 2001; Xiong et al. 2011); and (b) geological map and
distribution of Mesozoic magmatic rocks in the Liaodong Peninsula (modified after Wu et al. 2005b; Yang et al. 2007a).

Fig. 2. (Colour online) Geological sketch map of the Pulandian
region with sample locations.
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67–346 ppm, U content of 48–266 ppm and Th/U ratios of 0.71–1.44,
and yielded a 206Pb/238U weighted mean age of 125.5 ± 1.5 Ma
(Fig. 5b). Sixteen zircons from sample Yd2009 display Th content
of 68–690 ppm, U content of 115–410 ppm and Th/U ratios of
0.34–2.07, giving a mean age of 120.0 ± 1.9 Ma (Fig. 5c).
Twenty concordant zircon analyses from sample Yd2010
yielded Th content of 166–760 ppm, U contents of 194–
463 ppm and Th/U ratios of 0.72–1.34, with a mean age of
127.1 ± 1.2 Ma (Fig. 5d). Their ages range from 127–120 Ma,
suggesting that they were formed during the Early Cretaceous
Epoch. All zircons have high Th/U ratios (> 0.1), suggesting
a magmatic origin (Hoskin & Schaltegger, 2003).

4.b. Major- and trace-element geochemistry

The major- and trace-element composition results are provided
in online Supplementary Table S2. All samples have low loss on
ignition (LOI; 0.29–1.11 wt%). Sample Yd2005 has low SiO2

contents (55.93–56.16 wt%), high MgO contents (3.63–4.13 wt%)
and high Al2O3 contents (16.78–17.58 wt%), giving Mg no. values
of 48.24–50.77. Its K2O and Na2O contents are 2.48–2.58 wt% and
3.55–3.77 wt%, respectively, with low K2O/Na2O ratios (0.69–0.70).
The samples demonstrate high-K and subalkaline features (Fig. 6a, b).

In contrast, samples Yd2006, Yd2009 and Yd2010 show high SiO2

(63.77–70.80 wt%), high Al2O3 (14.13–17.38 wt%) and low MgO
(0.36–1.78 wt%) contents, with Mg no. values of 21.18–46.83.
Their K2O and Na2O contents are 2.05–5.37 wt% and 4.08–
4.51 wt%, respectively, with variable K2O/Na2O ratios (0.45–
1.31). The K2O contents of these Pulandian plutons show positive
correlation with the SiO2 contents (Fig. 6b), whereas Fe2O3

T, TiO2,
P2O5, MgO, CaO and Al2O3 contents display negative correlations
(Fig. 7a–f). The granodiorite (samples Yd2006 and Yd2010) shows
high-K and subalkaline characteristics, whereas the porphyritic
monzogranite (sample Yd2009) demonstrates shoshonitic and
alkaline properties (Fig. 6a, b).

Samples have total rare earth element (REE) contents of
74–190 ppm and show enrichment in low REE (LREE) with high
(La/Yb)N ratios (13.5–57.5). They have low Yb contents (0.54–
1.24 ppm), low Y contents (4.9–16.4 ppm), high Sr contents
(294–711 ppm; with the exception of one sample with 188 ppm
content) and Sr/Y ratios of 38.5–108. In the chondrite-normalized
REE pattern (Fig. 8), they display no clear Eu anomalies (Eu/
Eu* = 0.79–1.21). The primitive-mantle-normalized spidergram
(Fig. 8) reveals that these samples are enriched in large-ion litho-
phile elements (LILEs; e.g. Ba, K, Pb and Sr) and depleted in high-
field-strength elements (HFSEs; e.g. Nb, Ta, P and Ti).

Fig. 3. (Colour online) Hand specimens and
crossed-polarized light micrographs of rocks
from Liaodong Peninsula from (a–c) monzodior-
ite (sample Yd2005); (d–f) granodiorite (sample
Yd2006); (g–i) granodiorite (sample Yd2010);
and (j–l) porphyritic monzogranite (sample
Yd2009). Hbl – hornblende; Bt – biotite;
Per – perthite; Pl – plagioclase; Qz – quartz.
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4.c. Zircon Hf isotopic compositions

The results of the zircon Hf isotopic analysis are provided in
online Supplementary Table S3. Sample Yd2005 yielded relatively
uniform 176Hf/177Hf ratios of 0.282275 to 0.282176, with ϵHf(t) val-
ues of −18.5 to −15.0 and two-stage model ages (TDM2) of 2351–
2131Ma. Sample Yd2006 zircon ϵHf(t) values ranged from−27.2 to
−25.4, with 176Hf/177Hf ratios of 0.281977–0.281927 and TDM2

ages of 2899–2789 Ma. Sample Yd2009 yielded zircon ϵHf(t) values
ranging from −28.9 to −21.1, with 176Hf/177Hf ratios of 0.282107–
0.281882 and TDM2 ages of 3004–2511 Ma. The ϵHf(t) values of
sample Yd2010 ranged from−24.6 to−22.1, and its corresponding
176Hf/177Hf ratios and TDM2 ages ranged over 0.282071–0.282000
and 2937–2580 Ma.

5. Discussion

5.a. Rock type and petrogenesis

Although the samples yielded very low LOI (0.29–1.11 wt%), the
effect of element migration must be excluded before the geochemi-
cal characteristics of the rocks can be interpreted. Studies have
shown that the major elements, HFSEs and REEs can remain con-
stant during weak alteration, whereas LILEs can migrate more
easily (Alirezaei & Cameron 2002); LILEs are therefore good
indicators to gauge the effect of weak alteration on the samples.
Some ratios (e.g. K/Sr and La/Th) can be used to monitor the
mobility of the LILEs (Rudnick et al. 1985). All sample have low
to medium K/Sr ratios (26–233) and low La/Th ratios (3.0–7.1),
suggesting that the weak alteration did not modify their element
compositions (Xin et al. 2019). The geochemical data of the

selected samples, such as major- and trace-element content, there-
fore reflects their inherited magmatic source characteristics.

All samples in this study are characterized by high Sr contents
(294–711 ppm), high Al2O3 contents (14.13–17.58 wt%), high Sr/Y
ratios (38.5–108), low Yb contents (0.54–1.24 ppm), low Y con-
tents (4.9–16.4 ppm) and no clear Eu anomalies (Eu/
Eu* = 0.79–1.21), displaying typical adakitic geochemical charac-
teristics (Defant & Drummond, 1990). In addition, most samples
fall within the classification of adakite (Fig. 9a, b). These rocks have
K2O/Na2O ratios (0.48–1.31) higher than for those of typical
adakitic rocks (c. 0.4; Moyen, 2009), which are similar to K-rich
adakites from Dabie orogen (Fig. 10a; Wang et al. 2007). The
trace-element pattern of the rocks is also similar to that for the
K-rich adakite rocks (Fig. 8); the samples can therefore be identi-
fied as K-rich adakitic rocks.

Adakites are formed during various tectonomagmatic proc-
esses, such as partial melting of subducted oceanic slab (Defant
&Drummond, 1990;Wang et al. 2007); AFC associated with basal-
tic magmas (Wareham et al. 1997; Castillo et al. 1999); magma
mixing of basaltic magmas and crustal-derived felsic magmas
(Guo et al. 2007; Xu et al. 2012); partial melting of thickened lower
continental crust (Atherton & Petford, 1993; Petford & Atherton,
1996; Wang et al. 2005); and partial melting of delaminated lower
continental crust (Gao et al. 2004; Hou et al. 2004).

Adakitic rocks were originally defined as the partial melting of
subducted young, hot slabs (Defant & Drummond, 1990). As the
slab melt rises, it is metasomatized by mantle-derived material,
resulting in rocks characterized by low K2O/Na2O ratios (c. 0.5)
and high MgO (c. 4–9 wt%), Mg no. (> 50), Ni and Cr contents
(Stern & Kilian, 1996). The Pulandian adakitic rocks have high

Fig. 4. (Colour online) Representative CL images of zircons from the samples. Solid red circles and blue circles indicate the locations of in situ U–Pb and Hf analyses spot,
respectively.
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Fig. 5. (Colour online) Zircon U–Pb concordia and weighted mean diagrams of the Pulandian samples.

Fig. 6. (Colour online) (a) SiO2 and K2O þ Na2O correlation (TAS) diagram (after Wilson, 1989); and (b) SiO2 and K2O correlation diagram (after Peccerillo & Taylor, 1976). Data
from Wu et al. (2005a, b); Wang et al. (2007); Yang et al. (2007a, b).
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K2O/Na2O ratios (mean 0.85) and lowMgO content (0.36–4.13 wt
%), Mg no. (mean 37.7), Ni content (mean 20 ppm) and Cr content
(mean 44 ppm), which are inconsistent with the features of melt of
subducted oceanic slab. The samples have low Ce/Pb ratios (mean

7.6) and obvious negative Nb and Ta anomalies (Fig. 7), indicating
that they may have originated in continental crustal source rather
than partial melting or AFC of oceanic basalts (Ce/Pb > 20)
(Rudnick & Fountain, 1995; Plank, 2005). Moreover, no clear

Fig. 7. (Colour online) Harker diagrams display the major-element variations of the Pulandian plutons.
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Eu anomalies in all the samples imply that fractional crystallization
of plagioclase did not play a crucial role in the process of their for-
mation (Wang et al. 2007). The lack of obvious indications of frac-
tional crystallization (Fig. 10b) and of large-scale mafic rocks

around Pulandian area (Fig. 2) also support the fact that these
rocks were not formed fromAFC of basalt. The significant negative
ϵHf(t) values (−33.3 to −15.0) indicate that they derived from par-
tial melting of the ancient crust rather than magmatic mixing

Fig. 8. (Colour online) Chondrite-normalized REE and primitive-mantle-normalized trace-element patterns for the samples. Normalized data for normalization and plotting after
Sun & McDonough (1989). K-rich adakites data from Wang et al. (2007).
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(Fig. 11a). The geochemical characteristics of the samples are sim-
ilar and there are no mafic microgranular enclaves in the rocks
(Figs 3, 6, 8); magmamixing therefore does not explain their origin.
The melt formed by partial melting of the delaminated lower crust
may have been upwelling, resulting in interaction with the mantle
and the production of geochemical features similar to those of the
melting of the subducted oceanic slab (Xu et al. 2012); the rocks
therefore did not originate from the partial melting of the delami-
nated lower crust. Experimental petrology shows that adakitic
magmas can be formed by partial melting of the thickened lower
continental crust (Petford & Atherton, 1996; Xiong et al. 2005).
The melts from the above model are characterized by low MgO
(< 2 wt%) and Mg no. (< 50), and high SiO2 (> 60 wt%) and
K2O (> 2 wt%) contents, which are matched by the features of
all samples (see online Supplementary Table S2). As shown in
TiO2 versus SiO2 and MgO versus SiO2 diagrams (Fig. 12), the

majority of the samples from Pulandian plot within the field of
thickened lower-crust-derived adakitic rocks.

Previous studies shown that while partial melting if the garnet is
remained as residue, the partial melt result HREE depletion
(Othman et al. 1989; Wang et al. 2007). Plagioclase has a large par-
tition coefficient for Sr and Eu elements, and its crystallization can
result in Sr and Eu negative anomalies (Nash & Crecraft, 1985). On
the basis of the geochemical features (online Supplementary
Table S2; Fig. 8), the residues are rich in garnet and poor in pla-
gioclase. According to partial melting experimental research, gar-
net-absent and plagioclase-rich samples indicate formation
pressures lower than 10 kbar, both garnet and plagioclase are
present at formation pressures of 12.5–15 kbar, and garnet-rich
and plagioclase-absent samples indicate formation pressures
higher than 15 kbar (Skjerlie & Johnston, 1993; Sen & Dunn,
1994; Patiño Douce & Beard, 1995; Litvinovsky et al. 2000). The

Fig. 9. (Colour online) (a) Sr/Y versus Y diagram (after Defant et al. 2002); and (b) (La/Yb)N versus YbN diagram (after Martin, 1999). Data from Zhang & Wan (2001) and Xiong et al.
(2011).

Fig. 10. (Colour online) (a) K2O/Na2O versus K2O and (b) La/Yb versus La (after Wang et al. 2007).
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above-mentioned residues can therefore only form in a high-
pressure environment, in accordance with the pressure of thick-
ened lower continental crust. The source and petrogenesis of the
Pulandian plutons can be further illustrated with diagrams dis-
cerning the source nature of adakites (Foley et al. 2002). In the
K2O versus K2O/Na2O diagram (Fig. 10a), samples fall within
the metabasaltic and eclogite melt fields, similar to the adakitic
granites in the Dabie Orogen. In the (La/Yb)N versus YbN diagram
(Fig. 9b), all plots are mainly close to themelt of eclogite. We there-
fore suggest that the Pulandian adakitic rocks were formed by par-
tial melting of thickened eclogitic lower crust.

5.b. Tectonic setting and geodynamic mechanism

Magmatic and volcanic activities were strong in the Liaoning
Peninsula during the Early Cretaceous Epoch, which resulted in
the formation of numerous intrusive rocks (Fig. 1b). The lithology
of magmatic rocks in this period is mainly monzogranite, grano-
diorite and alkaline granite (Yang et al. 2004; Liu et al. 2019).
According to the results of previous research, some Early
Cretaceous A-type granites and alkaline rocks have been
reported in the Liaoning Peninsula – for example, Qianshan
granite (127 Ma), Taipingshan alkaline feldspar granite (129 Ma),
Guanmenshan Granite porphyry (126 Ma) and quartz syenite
(127 Ma) – which indicate that the Liaodong Peninsula existed in
an extensional tectonic setting (Yang et al. 2007a, b; Liu et al.
2016, 2019). Metamorphic core complexes (MCC) are also widely
developed in the Liaoning Peninsula; for example, the Yinmawan
(129–120 Ma) and Gudaoling (127–118 Ma) plutons were
emplaced along the detachment fault of the Liaonan–Wanfu
MCC (130–113Ma), which was in an extensional tectonic environ-
ment (Guan et al. 2008; Ji, 2010). Zhu & Xu (2019) reported that
the slab rollback of the Palaeo-Pacific Ocean began at c. 145 Ma,
whichmay have resulted in the extension of theNCC.We therefore
believe that the Early Cretaceous (130–120 Ma) extension was
closely related to the slab rollback of the Palaeo-Pacific Ocean.
The age of the Pulandian plutons is 127–120 Ma, which is nearly
the same as the above pluton ages. The Pulandian plutons show
LILE-enriched and HFSE-depleted characteristics, which indicate
that these rocks were formed in a subduction environment. In the
tectonic diagrams (Fig. 13), all samples fall within the area of

arc-related environment. Combined with age and features, we
believe that they were formed in an extensional setting involved
in slab rollback of the Palaeo-Pacific Ocean.

Previous studies on mantle xenoliths indicate that the thickness
of the NCC was 200 km during the Palaeozoic Era and 80–100 km
during the Cenozoic Era, suggesting that significant destruction
and lithospheric thinning occurred (Fan et al. 2000; Wu et al.
2019). The constructed seismic data of the NCC also support dra-
matic thinning (Zhu et al. 2011). In recent years, there has been
more progress in determining the dynamic setting of lithospheric
thinning of NCC (Wu et al. 2005a; Zheng et al. 2007, 2018; Zhu
et al. 2012; Niu et al. 2015). However, the geodynamic mechanism
remains controversial and researchers are focused on two separate
models: (1) rapid lithospheric delamination (e.g. Gao et al. 2004;
Wu et al. 2005b, 2008); and (2) thermo-mechanical-chemical ero-
sion (e.g. Griffin et al. 1998; Zheng et al. 2007). Frequent magmatic
activity was one of the important forms of destruction of NCC; the
Liaodong Peninsula is the strongest and most typical area of
destruction (Liu et al. 2011). A fuller understanding of the mag-
matic rocks of the Liaodong Peninsula will therefore yield knowl-
edge of the lithospheric thinning and destruction of NCC.

During the Jurassic Period, the intrusive rocks in Liaodong
Peninsula were dominated by quartz diorite, granodiorite and
monzogranite, etc., most of which belong to high-K calc-alkaline
granite (Fig. 6b; Yang et al. 2004, 2007a, b; Wu et al. 2005b; Sun
et al. 2005). There were also many Jurassic adakities (Fig. 9),
derived from the partial melting of the thickened lower crust
(Gao et al. 2004; Wu et al. 2005b; Zhu et al. 2012). In addition,
the negative Lu–Hf isotopes also supported the theory that
Jurassic granites are mainly derived from the partial melting of
ancient thickened lower crust (Fig. 11a). The existence of thickened
lower crust is the premise of lithospheric delamination. The rock
types of Early Cretaceous intrusions in Liaodong Peninsula are
complex, mainly composed of I-type granite, A-type granite, alka-
line and mafic rock (Fig. 6; Sun & Yang, 2009; Lan et al. 2011).
According to previous studies on geochemistry and Lu–Hf iso-
topes (−30 toþ5; Fig. 11a), rocks from this period may have origi-
nated from different magma sources such as depleted mantle,
enriched lithospheric mantle or ancient lower crust (Wu et al.
2019), possibly the result of intensive crust–mantle interaction
caused by asthenosphere upwelling after lithospheric delamination

Fig. 11. (Colour online) (a) ϵHf(t) versus age (Ma) and (b) age histogram of Mesozoic magmatic rocks of NCC. Data from Yang et al. (2004, 2007a, b).
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of the NCC. The wide distribution of magmatic rocks (Fig. 11b)
and extensional tectonics over a short period (c. 130–120 Ma) in
the Liaodong Peninsula (Liu et al. 2005) is consistent with the rapid
lithospheric delamination characteristics. We therefore suggest
that the lithospheric delamination model is a better geodynamic
mechanism for the thinning and destruction of the NCC than
thermo-mechanical-chemical erosion.

Several possible trigger factors for lithospheric delamination
have recently been proposed, including: (1) thickened lower crust
(Gao et al. 2004, 2009); (2) hydrous fluids or melts related to
Palaeo-Pacific subduction (Gao et al. 2009; Zhu et al. 2011; Zhu
& Xu, 2019); and (3) upwelling asthenosphere (Deng et al. 2007;
Liu et al. 2020). First, thickened lower crust is a crucial pre-
condition to lithosphere delamination. The thickened lower crust
undergoes a phase transformation of the eclogite, which makes it
denser than the lithospheric mantle (Kay & Kay, 1993). The
Jurassic subduction of the Palaeo-Pacific Ocean caused the crust

of the NCC to thicken (Fig. 14a; Wu et al. 2005b; Zhu & Xu,
2019). The Jurassic and Early Cretaceous adakites in the
Liaodong Peninsula provide evidence for the thickened crust of
the NCC (Yang et al. 2004; Wu et al. 2005b; Zhang et al. 2010; this
study). The thickened crust (eclogitic layer) could not directly sink
because of the refractory and buoyant nature of the NCC litho-
spheric mantle (Deng et al. 2007). Secondly, the lithospheric man-
tle was metasomatized by hydrous fluids or melt produced by the
subduction of the Palaeo-Pacific subduction (Niu et al. 2015). At
c. 145 Ma the Palaeo-Pacific Ocean started to rollback, resulting in
asthenosphere upwelling (Fig. 14b; Zheng et al. 2018; Zhu & Xu,
2019). At c. 130–120 Ma, the Palaeo-Pacific Ocean reached its
maximum rate of subduction slab rollback, transitioned into a
high-angle subduction and produced a stagnation slab in the man-
tle zone (Fig. 14c; Zhu & Xu, 2019). Because of the slower slab
rollback and weak asthenosphere upwelling at 145 Ma, we believe
that the refractory and thick lithospheric mantle of the NCC

Fig. 12. (Colour online) (a) TiO2 versus SiO2 and (b) MgO versus SiO2 diagrams for samples. The field of subducted oceanic crust-derived adakites are after Wang et al. (2007). The
field of thickened lower crust-derived adakites are after Atherton & Petford (1993) and Muir et al. (1995), and the field of delaminated lower crust-derived adakities are after Wang
et al. (2004a, b, 2007).

Fig. 13. (Colour online) (a) Y versus Nb and (b) (YþNb) versus Rb (Pearce et al. 1984) for Pulandian sample rocks. VAG – volcanic-arc granites; syn-COLG – syn-collisional granites;
ORG – orogenic ridge granites; WPG – within-plate granites.
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experienced a small-scale partial melting (Zheng et al. 2016, 2018).
At c. 130–120Ma, the stagnation slab began to dehydrate, changing
the physical properties of the overlying lithospheric mantle (e.g.
decreasing its viscosity) and causing its stability to be disrupted
(Zhu et al. 2011). Under the combined action of these processes,
the lithosphere of the NCC underwent delamination. This resulted
in a rapid upwelling of large amounts of asthenosphere, providing
more heat and accelerating partial melting of the lithospheric man-
tle. During this period, a large number of rocks of different sources
and properties were generated (e.g. I-/A-type granite, adakites and
rock; Yang et al. 2004; Wu et al. 2005b; this study). Meanwhile, the
widespread extensional tectonics and metamorphic core com-
plexes appear during this stage.

6. Conclusions

(1) The Pulandian monzodiorite, granodiorite and porphyritic
monzogranite are adakitic rocks that were emplaced at 127–
120 Ma (i.e. Early Cretaceous).

(2) The Pulandian adakitic rocks were formed by partial melting
of thickened eclogitic lower crust, and in an extensional setting
related to slab rollback of the Palaeo-Pacific Ocean.

(3) As a result of the rapid slab rollback of the Palaeo-Pacific
Ocean during c. 130–120 Ma, the asthenosphere upwelled
and modified the thickened lithospheric mantle, which lost
its stability, eventually resulting in the lithospheric delamina-
tion and thinning of the NCC.

Fig. 14. (Colour online) Lithospheric evolution process of the
NCC during the Mesozoic Era. (a) Jurassic: the Palaeo-Pacific
Ocean subducted, causing the NCC crust to thicken (Wu et al.
2005b). (b) c. 145 Ma: the subducting Palaeo-Pacific slab began
to rollback with the asthenosphere upwelling (Zhu & Xu, 2019).
(C) Early Cretaceous (c. 130–120 Ma): the Palaeo-Pacific Ocean
reached its maximum rate of subduction slab rollback, transi-
tioned into a high-angle subduction and produced a stagnation
slab in the mantle zone. The stagnation slab began to dehydrate,
changing the physical properties of the overlying lithospheric
mantle, which caused its stability to be disrupted and its sub-
sequent delamination. During the period, widespread extensional
tectonics occurred in the shallow crust of the NCC. The Liaonan–
Wanfu MCC and rocks of different types and properties were gen-
erated (e.g. I-/A-type granite, adakites rock; Yang et al. 2004; Wu
et al. 2005b; this study). MCC – metamorphic core complexes.
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