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Abstract

We construct the logarithmic and tropical Picard groups of a family of logarithmic
curves and realize the latter as the quotient of the former by the algebraic Jacobian.
We show that the logarithmic Jacobian is a proper family of logarithmic abelian vari-
eties over the moduli space of Deligne–Mumford stable curves, but does not possess
an underlying algebraic stack. However, the logarithmic Picard group does have loga-
rithmic modifications that are representable by logarithmic schemes, all of which are
obtained by pullback from subdivisions of the tropical Picard group.
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1. Introduction

Our concern in this paper is the extension of the universal Picard group to the boundary of the
Deligne–Mumford moduli space of stable curves. Over the interior, the Picard group of a smooth,
proper, connected curve is well known to be an extension of the integers by a smooth, proper,
connected, commutative group scheme, the Jacobian. These properties do not persist over the
boundary, and natural variants sacrifice one or another of them to obtain others.

The Deligne–Mumford compactification of the moduli space of curves admits curves with
nodal singularities. As long as the dual graph of the curve is a tree, the Picard group remains an
extension of a discrete, free abelian group – the group of multidegrees – by an abelian variety,
but it becomes nonseparated in families because the multidegrees do. One can focus here on the
component of multidegree 0, which is an abelian variety and is well behaved in families.

Should a curve degenerate so that its dual graph contains nontrivial loops, the multidegree-
0 component of the Picard group remains separated, but fails to be universally closed. The
construction of compactifications of this group is the subject of a vast literature [Ish78, D’S79,
OS79, AK80, AK79, Kaj93, Cap94, Pan96, Jar00, Est01, Cap08a, Cap08b, Mel11, Chi15], of
which the above references are only a sample. We must direct the reader to the references for a
history of the subject.

While we do not attempt to summarize all of the different approaches to compactifying the
Picard group, we emphasize that all operate in the category of schemes, and none produces
a proper group scheme. Indeed, it is not possible to produce a proper group scheme, for the
multidegree-0 component of the Picard group of a maximally degenerate curve is a torus, and
there is no way of completing a torus to a proper group scheme.

On the other hand, K. Kato observed that the multiplicative group does have compactifi-
cations – with group structure – in the category of logarithmic schemes [Kat, § 2.1]. This gives
reason to hope that the Picard group might also find a natural compactification in the category
of logarithmic schemes, as Kato himself anticipated. Kato proposed a definition for, and then
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calculated, the logarithmic Picard group of the Tate curve [Kat, § 2.2.4]. Illusie advanced the
natural generalization of Kato’s calculation as a definition for the Picard group of an arbitrary
logarithmic scheme [Ill94, § 3.3]. In the analytic category, Kajiwara, Kato, and Nakayama con-
structed the logarithmic Picard group using Hodge-theoretic methods [KKN08a]. Significantly,
they discovered the need to restrict attention to a subfunctor of the one defined by Illusie in
order to get the logarithmic Picard group, and logarithmic abelian varieties in general, to vary
well geometrically over logarithmic base schemes. In the present work, we work entirely in the
algebraic category – but the condition of Kajiwara, Kato, and Nakayama, which appears here
under the heading of bounded monodromy, first introduced in § 3.5, will play an essential role
throughout.

The provenance of logarithmic geometry. This section is intended to motivate the presence of log-
arithmic geometry in the compactification of the Picard group. Consider a family of logarithmic
curves X over a one-parameter base S with generic point η and a line bundle Lη on the general
fiber of X. Let i : s→ S denote the inclusion of the closed point and also write i : Xs → X for
the inclusion of the closed fiber; write j : η → S and j : Xη → X for the inclusion of the generic
point and the generic fiber.

Let S denote the ringed space (s, i−1j∗Oη) and let X denote the ringed space
(Xs, i

−1j∗OXη). Then L = i−1j∗Lη is a line bundle on X .
We can describe L by giving local trivializations and transition functions in Gm. However,

these cannot necessarily be restricted to Xs because a unit of i−1j∗O∗
Xη

may have zeros or poles
along components of the special fiber.

If the dual graph of Xs is a tree then it is possible to modify the local trivializations to ensure
that the transition functions have no zeros or poles, but in general such a modification may not
exist.

The degeneration of transition functions suggests we might compactify the Picard group
by allowing ‘line bundles’ whose transition functions are sometimes allowed to vanish or have
poles. If transition functions are thus permitted not to take values in a group then the objects
assembled from them will no longer have a group structure. However, this leads naturally to the
consideration of rank-1, torsion-free sheaves.

Logarithmic geometry takes a different approach to the same idea. Instead of keeping track
of only the zeros and poles of the transition functions, we instead keep track of their orders of
vanishing and leading coefficients. Together, order of vanishing and leading coefficient have the
structure of a group and therefore the objects glued with transition functions in this group can
be organized into a group as well.

The way this is actually done is to take the image of a transition function f ∈ i−1j∗O∗
Xη

, not
in OXs ∪ {∞}, but instead in

Mgp
Xs

= i−1j∗O∗
Xη
/ ker(i−1O∗

X → O∗
Xs

)

That is, we obtain a natural limit Mgp
Xs

-torsor P for Lη, whose isomorphism class lies in
H1(Xs,M

gp
Xs

).
Taking transition functions in MXs has an added benefit, even when the dual graph of

the special fiber is a tree. Indeed, if Lη extends to L with limit Ls, one can always produce
another limit L(D)s by twisting Ls by a component D of the special fiber. But the effect of
twisting by D on L is to modify the local trivializations of L by units of OXη . This changes
the local trivializations of P by elements of Mgp

Xs
, but that only affects a cocycle representative
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by a coboundary. In other words, the class of P in H1(Xs,M
gp
Xs

) is independent of twisting by
components of Xs.

Logarithmic line bundles. It is sensible to take Mgp
X -torsors as a candidate for a compactification

of O∗
X in general, even when the base S of the family is an arbitrary logarithmic scheme. In this

paper, we use this observation to define logarithmic line bundles on a family of logarithmic curves
X → S as torsors under the logarithmic multiplicative group, as Kato and Illusie proposed,
that satisfy the additional bounded monodromy condition. This definition produces a stack
LogPic(X/S) – the logarithmic Picard stack – with respect to the strict étale topology on S,
and an associated sheaf Log Pic(X/S) – the logarithmic Picard group – via rigidification. In § 4.18
we explain why the bounded monodromy condition is necessary if infinitesimal deformation of
logarithmic line bundles is to have the expected relationship to formal families of logarithmic line
bundles. Thus, the bounded monodromy condition can be considered to be the first subtlety of
the theory. The second subtlety is that even with this condition, the logarithmic Picard stack and
the logarithmic Picard group are not representable by an algebraic stack or algebraic space with
a logarithmic structure, respectively. The reason is essentially that the logarithmic multiplicative
group is itself not representable (see § 2.2.7). Nevertheless, LogPic(X/S) and Log Pic(X/S) do
have all the formal properties of an algebraic stack and an algebraic space, albeit only in the
logarithmic category. Specifically, Log Pic(X/S) has a logarithmically étale cover by a logarithmic
scheme, and we prove that it is a smooth algebraic group object in the category of logarithmic
schemes, with proper components.

Theorem A. LetX be a proper, vertical logarithmic curve over S. The logarithmic Picard group
Log Pic(X/S) has a logarithmically smooth cover by a logarithmic scheme, is logarithmically
smooth with proper components, is a commutative group object, has finite diagonal, and contains
Pic[0](X/S) as a subgroup.

Proof. See Corollary 4.11.4 for the existence of a logarithmically smooth cover, Theorem 4.13.1
for the logarithmic smoothness, Corollary 4.12.5 for the properness, and Theorem 4.12.1 for the
finiteness of the diagonal. The group structure and inclusion of Pic[0](X/S) are immediate from
the construction in Definition 4.1. �
Corollary B. The logarithmic Jacobian is a logarithmic abelian variety, in the sense of
Kajiwara, Kato, and Nakayama [KKN08c, KKN08b].

Proof. See Theorem 4.15.7. �
Our results for the logarithmic Picard stack, which remembers automorphisms, are similar,

but a bit more technical.

Theorem C. Let X be a proper, vertical logarithmic curve over S. The logarithmic Picard
stack LogPic(X/S) has a logarithmically smooth cover by a logarithmic scheme and its diag-
onal is representable by logarithmic spaces (sheaves with logarithmically smooth covers by
logarithmic schemes). The logarithmic Picard stack is logarithmically smooth and proper, is
a commutative group stack, and receives a canonical homomorphism from the algebraic stack
Pic[0](X/S).

Proof. See Theorem 4.11.2 for the existence of a logarithmically smooth cover and
Corollary 4.11.5 for the claim about the diagonal. The logarithmic smoothness is proved in
Theorem 4.13.1 and the properness is Corollary 4.12.5. The group structure and the map from
Pic[0](X/S) come directly from Definition 4.1. �
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The difference between Theorems A and C and Olsson’s result [Ols04, Theorem 4.4] is that
Olsson works with a fixed logarithmic structure on the base while we allow the logarithmic
structure to vary. This is necessary for the logarithmic Picard group to be proper. Our method
of proof also differs from Olsson’s: we do not rely on the Artin–Schlessinger representability
criteria (for which there is not yet an analogue in logarithmic geometry) and instead construct
logarithmically smooth covers directly.

Connection with tropical geometry. Our analysis of the logarithmic Picard group, and our con-
struction of the covers invoked in Theorems A and C, are direct: we do not rely on general
representability criteria, nor the theory of logarithmic 1-motifs. Instead, our main tool is the
intimate connection between algebraic, logarithmic, and tropical geometry. This connection with
tropical geometry is in our view a significant advantage, and perhaps the central point of this
paper. From a strictly algebraic perspective LogPic and Log Pic may be mysterious objects,
lying outside the province of algebraic geometry. However, the logarithmic perspective affords
them a modular description and a tropicalization – which has a modular description of its own –
that precisely control and explain our transgression beyond the boundaries of algebraic geometry.

We are not the first to observe a connection between the logarithmic Picard group and
tropical geometry: indeed, Foster, Ranganathan, Talpo, and Ulirsch observed that the geometry
of the logarithmic Picard group is intimately tied up with the geometry of the tropical Picard
group [FRTU16], and the connection can also be seen in Kajiwara’s work [Kaj93], albeit without
explicit mention of tropical geometry. Our main contribution here is perhaps to extend the
connection to a family of logarithmic curves over an arbitrary base.

A tropical curve is simply a metric graph. Baker and Norine introduced the tropical Jacobian
as a quotient of tropical divisors by linear equivalence [BN07]. At first, the tropical Jacobian of
a fixed graph (not yet metrized) was only a finite set, but subdivision of the graph suggests the
presence of a finer geometric structure. This was explained by Gathmann and Kerber [GK08],
who extended Baker and Norine’s results to metric graphs, and Amini and Caporaso added a
vertex weighting [AC13]. Mikhalkin and Zharkov defined tropical line bundles as torsors under
a suitably defined sheaf of linear functions on a tropical curve [MZ08, Definition 4.5]. They gave
a separate definition of the tropical Jacobian as a quotient of a vector space by a lattice [MZ08,
§ 6.1], and proved an analogue of the Abel–Jacobi theorem, showing that the tropical Jacobian
parameterizes tropical line bundles of degree 0. We will recover this result in Corollary 3.4.8.

In order to relate the tropical Picard group and tropical Jacobian to their logarithmic ana-
logues, we require a formalism by which tropical data may vary over a logarithmic base scheme.
This formalism is supplied by Cavalieri, Chan, Ulirsch, and the second author [CCUW20, § 5],
who allow an arbitrary partially ordered abelian group to stand in for the real numbers in the
definition of a tropical curve as a metric graph. Logarithmic schemes come equipped with sheaves
of partially ordered abelian groups and one can therefore speak of tropical curves over logarithmic
base schemes. We summarize these ideas in §§ 2.3.1–2.3.3. In a nutshell, given a logarithmic curve
X → S, we obtain a family of tropical curves X over S, whose fiber over a geometric point s ∈ S
is the dual graph of Xs, metrized by the characteristic monoid Mgp

S,s of the logarithmic structure
at s. We call the family X the tropicalization of X/S. The family X , although an object over
an arbitrary logarithmic scheme S, is essentially a combinatorial object: the logarithmic scheme
S has a stratification on which the characteristic monoid MS is constant, and the fibers of X
are constant on each stratum. The tropicalization X can thus be thought of as a combinatorial
shadow of X/S, which remembers the combinatorics of the irreducible components of each fiber,
and how the nodes of each fiber deform as one moves along strata of S.
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However, the connection of X/S with X only comes to life after we begin doing some
geometry on X . Indeed, two of the most crucial constructions of the paper occur in § 3, where
we define a topology, and sheaves PL and L of piecewise linear and linear functions respectively
on X , over an arbitrary base S. This allows us, so to speak, to do some honest tropical geometry
on X .

Our sheaf PL is different from the sheaves of piecewise linear functions that are usually
encountered in tropical geometry in that our piecewise linear functions are allowed to take
values in a group M

gp of arbitrary finite rank instead of the integers or real numbers. The
groups Mgp that appear vary over points of S, but are essentially the groups of sections of Mgp

S

over appropriately small neighborhoods around each point of S. This is the formalism that allows
us to capture the fact that X varies over a logarithmic base scheme S instead of being the total
space of a one-parameter degeneration. The sheaf of linear functions is built from PL by imposing
the analogue of the balancing condition that is ubiquitous in tropical geometry.

We use the sheaf L to define the tropical Picard group Tro Pic(X /S) and Picard stack
TroPic(X /S) over logarithmic bases. We define them as the sheaf or stack of tropical line
bundles, which are the bounded monodromy torsors under L. The sheaf Tro Pic(X /S) and stack
TroPic(X /S) are combinatorial objects, which in practice are simple to compute. For example,
one still has a formula for the tropical Jacobian analogous to the formula of [MZ08], which, over
a point s ∈ S, takes the form

Tro Jac(Xs/s) = Hom(H1(Xs,M
gp
S,s))

†/H1(Xs). (1.1)

Here the † symbol indicates the bounded monodromy condition, which has a simple description in
terms of the above formula: every loop γ in the homology of the tropical curve Xs has a length
�(γ) valued in the monoid MS,s, and a homomorphism in Hom(H1(Xs,M

gp
S,s)) has bounded

monodromy if it sends every loop to an element of Mgp
S,s that is bounded by some multiple of

the length of the loop. This has the effect that if one generizes from a point s to a point t,
smoothing some of the nodes of the curve Xs, and therefore contracting some edges in Xs, the
homomorphism descends to be well defined on the homology of Xt. We refer the reader to § 3 for
a thorough explanation of this phenomenon and the rest of the terms appearing in the definition
of Tro Jac(X /S). We note also that when we are working with a one-parameter degeneration
of a curve, the group M

gp
S,s reduces to R, the bounded monodromy condition is automatic, and

our formula recovers the [MZ08] formula.
The connection with the theory of tropical divisors is also simple: the sheaves of linear and

piecewise linear functions fit into an exact sequence

0→ L→ PL→ V→ 0 (1.2)

with V the sheaf of tropical divisors. Thus, each tropical divisor D determines a tropical line
bundle L(D), which is the L-torsor describing the obstruction of lifting D to a piecewise linear
function whose bend locus is D. It is shown in § 3.5 that, if the base S is a valuation ring of
arbitrary rank, Tro Jac(X /S) is precisely the group of tropical divisors on all semistable models
(that is, subdivisions) of X , up to piecewise linear functions. This gives another interpretation of
the bounded monodromy condition in the valuative case, as those torsors that can be represented
by a divisor on a semistable model; but for general S, the group Tro Jac(X /S) may be larger,
with additional torsors that correspond to divisors on semistable models of X over logarithmic
modifications of S as well.

The presentation (1.1), and the exact sequence (1.2), describe two different means of produc-
ing tropical line bundles: from local systems and from tropical divisors. The relationship between
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these is encoded in diagram (3.4.1). The referee pointed out to us that this gives a compelling
third method of producing tropical line bundles, from a labeling of the edges of the tropical curve
by integers (see § 4.5).

The connection of the tropical picture with logarithmic geometry is obtained through the
process of tropicalization. We do not attempt to explain this in the introduction, but we mention
that the germ of the idea is elementary, utilizing the following formula, which is valid for every
geometric point s ∈ S:

H i(Xs,MX,s) = H i(Xs,PLXs).

Thus, in a sense, X and PL together capture all information of X/S that is reflected in MX .
The connection between Mgp

X and the sheaf of linear functions, L, and the connection between
logarithmic line bundles and tropical line bundles, are more subtle. In § 4.14 we observe that the
sheaf V is the tropicalization of the Néron–Severi group: while the Néron–Severi group is only a
presheaf on X, it descends to a sheaf on the tropicalization X . We obtain a tropicalization map
LogPic(X/S)→ TroPic(X /S) from a morphism of complexes of presheaves Mgp

X → [Mgp
X →

NS] that is derived from the fundamental exact sequence of logarithmic geometry:

0→ O∗
X →Mgp

X →M
gp
X → 0 (1.3)

Theorem D. Let X be a proper, vertical logarithmic curve over S and let X be its
tropicalization. There is an exact sequence

0→ Pic[0](X/S)→ Log Pic(X/S)→ Tro Pic(X /S)→ 0

There is also an exact sequence of group stacks

0→ Pic[0](X/S)→ LogPic(X/S)→ TroPic(X /S)→ 0

Here the symbol [0] denotes the multidegree-0 part of Pic. This is an instance where the
connection between algebraic, logarithmic, and tropical geometry becomes exceptionally trans-
parent. The tropicalization morphism Log Pic(X/S)→ Tro Pic(X /S) allows us to understand
Log Pic(X/S) in terms of a simple combinatorial object and a classical algebro-geometric object,
the semiabelian scheme Pic[0](X/S). The tropicalization morphism also allows us to identify the
combinatorial data associated with Tro Pic(X /S) necessary to construct proper, schematic com-
pactifications of the Picard group, following Kajiwara, Kato, and Nakayama [Kaj93, KKN15],
in § 4.17.

Theorem E. Let X be a proper, vertical logarithmic curve over S with tropicalization
X . Polyhedral subdivisions of Tro Jac(X /S) correspond to toroidal compactifications of
Pic[0](X/S).

The exact sequences of Theorem D are also needed in our demonstrations of Theorems A
and C, particularly in the demonstration of the boundedness of LogPic and its diagonal. The
tropical boundedness statements, proved in §§ 3.10 and 3.11, are surely the most technical parts
of the paper, and were the most difficult parts for us. We rely on what might be called an
‘arithmetic ε–δ’ formalism, in which ε and δ take values in a monoid; one cannot simply ‘choose
δ > 0’ but must choose it from the monoid of available positive elements of the monoid.

Invariance properties and construction of the cover. Polyhedral subdivisions of Tro Jac(X /S)
yield toroidal compactifications of Pic[0](X/S), which can in turn be interpreted as logarithmic
modifications of Log Pic(X/S). Logarithmic modifications, together with logarithmic root stacks,
are purely combinatorial operations yielding proper monomorphisms of logarithmic schemes.

1483

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


S. Molcho and J. Wise

Together with étale maps, the two operations generate the (full) logarithmic étale topology of
a logarithmic scheme. Logarithmic modifications, and similarly roots, form an inverse system,
where f2 : X2 → X can be considered finer than f1 : X1 → X if f2 factors as g ◦ f1 for a log
modification g : X2 → X1. Thus, Theorem E can be seen as a heuristic ‘formula’:

Log Pic0(X/S) = lim−→{toroidal compactifications of Pic[0](X/S)}.

Of course, this colimit does not exist as a scheme, but logarithmically it expresses Log Pic0(X/S)
as the colimit of all its logarithmic modifications – the minimal toroidal compactification of
Pic[0](X/S), so to speak.

One of the remarkable properties of Log Pic(X/S) is that it is often invariant under both
logarithmic modifications and root constructions: suppose that S is logarithmically flat and that
f : T → S is a logarithmic modification or a root S, and Y is a logarithmic modification or root
of the pullback of X on T , for which Y → T is a logarithmic curve. Then f∗ Log Pic(X/S) =
Log Pic(Y/T ). In particular, Log Pic(X/S) forms a sheaf for the (small) full logarithmic étale
topology on S: see Corollary 4.4.14.2. This invariance, together with the fundamental exact
sequence, allows us to relate Log Pic(X/S) with all Picard groups Pic(Y/T ) of all semistable
models Y of X over logarithmic modifications and roots T of S, by combining the natural map
Pic(Y/T )→ Log Pic(Y/T ) with the isomorphism to Log Pic(X/S). In fact, it is this collection of
spaces Pic(Y/T ) that provides the cover in Theorem A. As the kernel of the map Pic(Y/T )→
Log Pic(Y/T ) is precisely the group of piecewise linear functions on the tropicalization of Y/T ,
we can write another heuristic ‘formula’,

Log Pic(X/S) = lim−→Pic(Y )/PL(Y ),

with PL(Y ) denoting the piecewise linear functions on the tropicalization of Y . The map
PL(Y )→ Pic(Y ) comes from the fundamental exact sequence (1.3).

With the benefit of hindsight, this formula could have been used as a definition of
Log Pic(X/S) (at least over a logarithmically flat base): as line bundles on semistable mod-
els of X/S, up to the equivalence relation generated by pulling back to a further semistable
model and the action of piecewise linear functions. In our point of view, this presentation of
Log Pic(X/S) is an extrinsic presentation, whereas the definition we have chosen, in terms of
torsors, is intrinsic.

This intrinsic/extrinsic interplay is now seen in multiple places in logarithmic geometry. For
example, it is observed in logarithmic Gromov–Witten theory, where an ‘intrinsic’ definition
of logarithmic stable maps is given by [Che14, AC14, GS13], whereas an extrinsic definition
is given in the work of [Li01, Li02, Kim10, Ran20]. In the stable map setting, the different
definitions produce different spaces; yet, their Gromov–Witten invariants coincide. This is an
incarnation of the principle that logarithmic geometry captures the geometry of the interior of
a space, and not of the specific logarithmic compactification chosen. Remarkably, for Log Pic,
both intrinsic and extrinsic approaches yield the same space in many cases (rather than the
same invariants of the space). This property has proved to be very useful in the study of Log Pic;
it is, for example, key in the construction of a principal polarization, or in the study of Néron
models via Log Pic. In recent years, various central problems in logarithmic geometry have been
studied, using either an intrinsic or extrinsic approach – for example, Chow theory for logarithmic
schemes (by Barrott extrinsically [Bar20], or Herr intrinsically [Her19]) or Donaldson–Thomas
theory ([MR20], extrinsically). We expect that understanding the connection between the dual
approaches in any given problem will prove to be very fruitful.
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Future work. The Jacobian (and even the Picard stack) is equipped with a canonical principal
polarization. We are mute about the logarithmic analogue in this paper, but we will construct
it in a subsequent one.

Our results are limited to relative dimension 1 because we do not yet have the means to
study families of tropical varieties of higher dimension over logarithmic bases. We also do not
yet understand the higher-dimensional analogue of the bounded monodromy condition.

Neither have we addressed any algebraicity properties of the tropical Picard group in a
systematic way. It follows from our results that the tropical Picard group has a logarithmically
étale cover by a Kato fan, but it is less clear how one should characterize its diagonal (we prove
only that it is quasicompact here), or whether one should demand further properties of a purely
tropical cover.

In § 4.17, we indicate how the tropical Picard group can be used to construct proper schematic
models of the logarithmic Picard group over a local base. Recent work of Abreu and Pacini
describes polyhedral subdivisions of Tro Pic(X /S) when X is the universal curve over the mod-
uli space of 1-pointed tropical curves (and, for certain degrees, over the moduli space of unpointed
tropical curves) [AP20]. They show that the corresponding compactification of the Picard group
coincides with Esteves’s compactification [Est01]. We are pursuing a global construction of more
general toroidal compactifications over the moduli space of stable curves in collaboration with
Melo, Ulirsch, and Viviani.

The tropicalization method used in § 4.14 appears to generalize well to higher-dimensional
logarithmic varieties. We hope to make further use of this construction in the future.

Conventions. Let X be a curve over S. We use the term ‘Picard group’ to refer to the sheaf
on S of isomorphism classes of line bundles on X, up to isomorphism, and denote it Pic(X/S).
The stack of Gm-torsors on X is denoted in boldface: Pic(X/S). We use a superscript to denote
a restriction on degree, and we refer to Pic0(X/S) as the Jacobian of X. We apply similar
terminology when X is a logarithmic curve or tropical curve over a logarithmic base S.

Throughout, we consider a logarithmic curveX over S. We regularly use π : X → S to denote
the projection.

2. Monoids, logarithmic structures, and tropical geometry

2.1 Monoids
In this paper, all monoids will be commutative, unital, integral, and saturated, although some
results in this section are valid without those assumptions. The monoid operation will be written
additively, unless indicated otherwise. Homomorphisms of monoids are assumed to preserve the
unit.

2.1.1 Partially ordered groups.

Definition 2.1.1.1. A homomorphism of monoids f : N →M is called sharp if each invert-
ible element of M has a unique preimage under f . A monoid M is called sharp if the unique
homomorphism 0→M is sharp.

Remark 2.1.1.2. Our definition is different from the one given in [Ogu18, 4.1.1]; it is equivalent
to the logarithmic homomorphisms of [Ogu18].

We write M∗ for the subgroup of invertible elements of M and M for the quotient M/M∗,
which we call the sharpening of M . Even when they do not arise as sharpenings of other monoids,
we often notate sharp monoids with a bar above them.
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Remark 2.1.1.3. A homomorphism f : N →M of sharp monoids is sharp if and only if f−1{0} =
{0}. Note that fgp need not necessarily be injective.

In this situation, sharp homomorphisms are analogous to local homomorphisms of local rings,
and some authors prefer to call sharp homomorphisms between sharp monoids local. We will favor
‘sharp’ in order not to create a conflict with connections to topology to be explored elsewhere.
Some indications about those connections are given in § 3.11.

Every monoid M is contained in a smallest associated group Mgp, and M determines a
partial semiorder on Mgp in which M is the subset of elements that are ≥ 0. If M is sharp then
the semiorder is a partial order. As M can be recovered from the induced partial order on Mgp,
we are free to think of monoids as partially (semi)ordered groups, and we frequently shall.

2.1.2 Valuative monoids.

Definition 2.1.2.1. A valuative monoid is an integral1 monoid M such that, for all x ∈Mgp,
either x ∈M or −x ∈M .

If M is an integral monoid, and x, y ∈Mgp, we say that x ≤ y if y − x ∈M . We say that x
and y are comparable if x ≤ y or y ≤ x.
Lemma 2.1.2.2. All valuative monoids are saturated.

Proof. Suppose that M is valuative, x ∈Mgp, and nx ∈M . If x 	∈M then −x ∈M . But as
nx ∈M this means −x is a unit of M , which means that x ∈M . �
Corollary 2.1.2.3. All sharp valuative monoids are torsion-free.

Proof. If nx = 0 for some x ∈Mgp, then x ∈M since 0 ∈M and M is saturated. But M is sharp
so x must be 0. �
Example 2.1.2.4. The nonnegative elements of Z and of R are valuative monoids. More generally,
elements that are ≥ 0 in the lexicographic order on Rn form a valuative monoid, as do the ≥ 0
elements in any subgroup. More generally still, if Ω is a totally ordered set then formal sums
of well-ordered subsets of Ω, with real coefficients, form a totally ordered abelian group. The
elements ≥ 0 in this group are a valuative monoid, and a theorem of Hahn asserts that all
valuative monoids arise as the elements ≥ 0 in a subgroup of such a group [Hah07, § 2].

Remark 2.1.2.5. Finitely generated monoids arise as the monoids of functions on rational polyhe-
dral cones that take integral values on the integral lattice. Monoids that are not finitely generated
can nevertheless be approximated by an ascending union of finitely generated monoids. The
ascending union corresponds dually to a descending intersection of rational polyhedral cones.
This gives a way to visualize valuative monoids inside a real vector space as infinitesimal thick-
enings of rays in the dual vector space (see Figure 2). This perspective will be important when
we study prorepresentability in § 3.9.

The reader who is so inclined may verify that an extension of a finitely generated monoid
to a valuative monoid corresponds to a ray in its dual cone, together with a flag of infinitesimal
extensions of that ray.

Lemma 2.1.2.6. Suppose that f : M → N is a sharp homomorphism of monoids and M is
valuative. Then f is injective.

1 Despite our convention that all monoids are saturated, we allow valuative monoids not to be saturated a priori,
since they are so a posteriori.

1486

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


The logarithmic Picard group and its tropicalization

Proof. Suppose that x ∈Mgp and f(x) = 0. Either x ∈M or −x ∈M . We assume the former
without loss of generality. But 0 ∈ N has a unique preimage in M by sharpness, so x = 0 and
fgp is injective. �
Remark 2.1.2.7. This property is similar to one enjoyed by fields in commutative algebra. Valu-
ative monoids will play a role in tropical geometry analogous to that played by fields in algebraic
geometry.

Lemma 2.1.2.8. Suppose that f : N →M is a sharp homomorphism of valuative monoids. Then
f is an isomorphism if and only if it induces an isomorphism on associated groups.

Proof. By Lemma 2.1.2.6, we know f is injective, so we replace N by its image and assume f
is the inclusion of a submonoid with the same associated group. If α ∈M then either α or −α
is in N . In the former case we are done, and in the latter, α is an invertible element of M , so
α ∈ N since the inclusion is sharp. �
Definition 2.1.2.9. A homomorphism of monoids 	 : N →M is called relatively valuative or
an infinitesimal extension if, whenever α ∈ Ngp and 	(α) ∈M , either α ∈ N or −α ∈ N .

Lemma 2.1.2.10. If 	 : N →M is relatively valuative and M is valuative then N is valuative.

Proof. Suppose that α ∈ Ngp. Either 	(α) ∈M or −	(α) ∈M . In either case, either α or −α is
in N , by definition. �
Lemma 2.1.2.11. Any partial order on an abelian group can be extended to a total order.

Proof. By Zorn’s lemma, every partial order on an abelian group has a maximal extension.
Assume, therefore, that Mgp is a maximal partially ordered abelian group and let M ⊂Mgp be
the submonoid of elements ≥ 0. Let x be an element of Mgp that is not in M . Then M [x]sat

is the monoid of elements ≥ 0 in a semiorder on M
gp strictly extending the one corresponding

to M . This semiorder cannot be a partial order because M was maximal, so M [x]sat cannot
be sharp. Therefore, there are some y, z ∈M and some positive integers n and m such that
(y + nx) + (z +mx) = 0. That is, y + z = −(n+m)x. As M is saturated (by its maximality),
this implies that −x ∈M , which shows that every x ∈Mgp is either ≥ 0 or ≤ 0. �
Example 2.1.2.12. Suppose that R is a valuation ring. The valuation group of R is a totally
ordered abelian group, V gp, and the valuations of nonzero elements of R are the submonoid of
positive elements, V ⊂ V gp. The ideals, and in particular the prime ideals, of R are totally
ordered by inclusion. Therefore, the spectrum of R is totally ordered by the specialization
relation.

Now suppose M is a finitely generated monoid. Let k be a field and let X = Spec k[M ]
be the associated affine toric variety. An extension of M to a valuative monoid V corresponds
to an extension of k[M ] to a valuation ring, R. The dual map SpecR→ X gives a chain of
specializations between generic points of torus-invariant strata in X.

Conversely, one may imagine a complete flag of torus-invariant subspaces X = X0 ⊃ X1 ⊃
· · · . This corresponds to a sequence of localization homomorphisms M = M0 →M1 → · · · such
that the kernel of Mgp

� →M
gp
�+1 is isomorphic to Z. In fact, the isomorphism to Z is canonical,

because M � →M �+1 is a localization homomorphism, so the kernel contains an element of M �;
we choose the isomorphism to Z so this element corresponds to a positive element of Z.

Let p� : M →M � be the projection. One obtains a valuative monoid extending M by includ-
ing α ∈Mgp in V if α = 0 or p�(α) is a nonzero element of M � for some �. Indeed, suppose
that α ∈Mgp is nonzero and select the largest � such that p�+1(α) = 0. Then p�(α) is a nonzero
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Figure 1. The darker shaded area is the monoid R2
≥0 and the lighter shaded area is an extension

to a valuative monoid.

Figure 2. The dual of Figure 1, with respect to the standard Euclidean pairing. Notice that
the ray is thickened slightly on one side.

element of ker(Mgp
� →M

gp
�+1) = Z. If p�(α) > 0 in Z then α ∈ V , and if p�(α) < 0 in Z then

−α ∈ V .
Not all valuative extensions of Mgp arise this way, although one does get all of the ones where

|R| = dimX + 1. For a complete list, one must add limits of affine charts of toric modifications.
These correspond to rays of irrational slope in the toric fan, and infinitesimal extensions thereof,
in the manner illustrated in Figures 1 and 2 (note that the boundary of the gray region would
not contain any lattice points in this case).

2.1.3 Bounded elements of monoids.

Definition 2.1.3.1. Suppose that α and δ are elements of a partially ordered abelian group,
with δ ≥ 0. We will say that α is bounded by δ if there are integers m and n such that mδ ≤
α ≤ nδ. We write α ≺ δ to indicate that α is bounded by δ.

We say that α is dominated by δ, and write α
 δ, if nα ≤ δ for all integers n.

1488

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


The logarithmic Picard group and its tropicalization

Lemma 2.1.3.2. Let M be a (saturated) monoid, let δ ∈M , and let α ∈Mgp. Then α ≺ δ in
M if and only if α ≺ δ in QM .

Proof. If mδ ≤ α ≤ nδ in QM then there is a positive integer k such that k(α−mδ) and
k(nδ − α) are both in M . But M is saturated, so this implies mδ ≤ α ≤ nδ, as required. �
Lemma 2.1.3.3. Let M be a monoid. Suppose δ ∈M . The elements of Mgp that are bounded
by δ are precisely M [−δ]∗.
Proof. If kδ ≤ α ≤ �δ then 0 ≤ α ≤ 0 in the sharpening M [−δ] of M [−δ] and therefore α ∈
M [−δ]∗. Conversely, if α ∈Mgp is a unit ofM [−δ] then there is some β ∈M such that α+ β ∈ Zδ
– in other words, α ≤ �δ for some integer �. Applying the same reasoning to−α supplies an integer
k such that −α ≤ kδ ∈M . Therefore, −kδ ≤ α ≤ �δ, as required. �
Definition 2.1.3.4. An archimedean group is a totally ordered abelian group Mgp such that if
x, y ∈Mgp with x > 0 then y is bounded by x.

Remark 2.1.3.5. A totally ordered abelian group Mgp is archimedean if and only M it has no
≺-closed submonoids other than 0 and Mgp.

The following theorem is due to Hölder [Höl01], but is also a special case of the theorem of
Hahn [Hah07].

Theorem 2.1.3.6 (Hölder). Every archimedean group can be embedded by an order-preserving
homomorphism into the real numbers. The homomorphism is unique up to scaling.

Proof. This is trivial for the zero group, so assume M is a nonzero archimedean group. Choose
a nonzero element x of M . It will be equivalent to show that there is a unique order-preserving
homomorphism M → R sending x to 1.

For any y ∈M , let S be the set of rational numbers p/q such that px ≤ qy in M . Let T be
the set of rationals p/q such that px ≥ qy. Then S and T are a Dedekind cut of Q, hence define
a unique real number f(y). This proves the uniqueness part.

All that remains is to show that f is a homomorphism. This amounts to the assertion that
if px ≤ qy and p′x ≤ q′y′ then (pq′ + p′q)x ≤ qq′(y + y′), which is an immediate verification. �
Lemma 2.1.3.7. If x and y are positive elements of a totally ordered abelian group then x ≺ y
or y 
 x.

Proof. Suppose that y does not bound x. As x ≥ 0, this means there is no integer such that
x ≤ ny. But the group is totally ordered, so we must therefore have x ≥ ny for all n. That is
x� y. �
Proposition 2.1.3.8. Let M be a valuative monoid. The collection of subsets N of M closed
under ≺ are submonoids and are totally ordered by inclusion. The graded pieces of this filtration
are archimedean.

Proof. Lemma 2.1.3.3 implies that these subsets are submonoids. Suppose that N and P are
≺-closed subgroups and there is some x ∈ N that is not contained in P . If y ∈ P then either
y ≺ x or x ≺ y by Lemma 2.1.3.7, but P is ≺-closed so it must be the former. Thus, P ≺ x so
P ⊂ N since N is ≺-closed.

Now suppose that N ⊂ P and there are no intermediate ≺-closed submonoids. The image
of P in P gp/Ngp therefore has no ≺-closed submonoids other than 0 and itself, so it is
archimedean. �
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2.2 Logarithmic structures
We review some of the basics of logarithmic geometry. The canonical reference is Kato’s original
paper [Kat89].

2.2.1 Systems of invertible sheaves. We recall a perspective on logarithmic structures favored
by Borne and Vistoli [BV12, Definition 3.1].

Definition 2.2.1.1. LetX be a scheme. A logarithmic structure onX is an (integral, saturated)
étale sheaf of monoids MX on X and a sharp homomorphism ε : MX → OX , the target given its
multiplicative monoid structure. The quotient MX/ε

−1O∗
X is known as the characteristic monoid

of MX and is denoted MX .
A morphism of logarithmic structures MX → NX is a homomorphism of monoids commuting

with the homomorphisms ε.

Let X be a logarithmic scheme. For each local section α of Mgp
X , we denote the fiber of MX

over MX by O∗
X(−α). This is a O∗

X -torsor because Mgp
X is an O∗

X -torsor over Mgp
X . We write

OX(−α) for the associated invertible sheaf, obtained by contracting O∗
X(−α) with OX using the

action of O∗
X .

We can think of the assignment α �→ OX(−α) as a map M
gp
X → BGm. We have canon-

ical isomorphisms OX(α+ β) � OX(α)⊗OX(β) making the morphism M
gp
X → BGm into a

homomorphism of group stacks.
Moreover, if α ∈MX then the restriction of ε gives a O∗

X -equivariant map O∗
X(−α)→ OX ,

hence a morphism of invertible sheaves OX(−α)→ OX . If β ≥ α then α− β ≤ 0 and we obtain
OX(α− β)→ OX ; twisting by OX(β), we get OX(α)→ OX(β).

If we regard Mgp
X as a sheaf of categories over X, with a unique morphism α→ β whenever

α ≤ β, then the logarithmic structure induces a monoidal functor Mgp
X → LX where LX is the

stack of invertible sheaves on X. It is clearly possible to recover the original logarithmic structure
on X from this monoidal functor, so we often think of logarithmic structures in these terms.

2.2.2 Coherent logarithmic structures. Let X be a scheme with a logarithmic structure MX .
If N is an (integral, saturated) monoid and e : N → Γ(X,MX) is a homomorphism, there is
an initial logarithmic structure M ′

X and morphism M ′
X →MX such that e factors through

Γ(X,M ′
X)→ Γ(X,MX). If M ′

X →MX is an isomorphism then N and e are called a chart
of MX .

Definition 2.2.2.1. A logarithmic scheme is a scheme equipped with a logarithmic structure
that has étale-local charts by integral, saturated monoids. It is said to be locally of finite type if
the underlying scheme is locally of finite type and the charts can be chosen to come from finitely
generated monoids.

A logarithmic scheme that is locally of finite type comes equipped with a stratification,
defined as follows. Assume that MX has a global chart by a finitely generated monoid N . For
each of the finitely many generators α ofN , the image of the homomorphismOX(−α)→ OX is an
ideal, which determines a closed subset of X. All combinations of intersections and complements
of these closed subsets stratify X.

To patch this construction into a global one, we must argue that the stratification defined
above does not depend on the choice of chart. To see this, it is sufficient to work locally, and
therefore to assume X is the spectrum of a henselian local ring with closed point x. Then the
strata correspond to the ideals of the characteristic monoid MX,x, and are therefore independent
of the choice of chart.

On each stratum, the characteristic monoid of X is locally constant.

1490

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


The logarithmic Picard group and its tropicalization

Definition 2.2.2.2. A logarithmic scheme X of finite type is called atomic if Γ(X,MX)→
MX,x is a bijection for all geometric points of the closed stratum and the closed stratum is
connected.

Example 2.2.2.3. An affine toric variety with its canonical logarithmic structure is an atomic
neighborhood for its unique closed torus orbit.

Lemma 2.2.2.4. The closed stratum of an atomic logarithmic scheme X is connected and MX

is constant on it.

Proof. Assume that X is an atomic logarithmic scheme. It is immediate that MX is constant on
the closed stratum, for we have a global isomorphism to a constant sheaf there, by definition. �
Proposition 2.2.2.5. Suppose that X is a logarithmic scheme of finite type. Then X has an
étale cover by atomic logarithmic schemes.

Proof. For each point geometric x of X, choose an étale neighborhood U of x such that
Γ(U,MX)→MX,x admits a section. This is possible because MX,x is finitely generated (because
of the existence of charts by finitely generated monoids), hence finitely presented by Rédei’s
theorem [Gri17, Proposition 9.2]. As Γ(U,MX) is finitely generated, Γ(U,Mgp

X ) is a finitely
generated abelian group, and therefore the kernel of (2.1)

Γ(U,Mgp
X )→M

gp
X,x (2.1)

is a finitely generated abelian group. By shrinking U , we can therefore ensure it is an isomorphism.
Finally, we delete any closed strata of U other than the one containing x. �

2.2.3 Finite type and finite presentation. Because we admit logarithmic structures whose
underlying monoids are not locally finitely generated, we must adapt the definitions of finite
type and finite presentation.

Definition 2.2.3.1. A morphism of logarithmic schemes f : X → Y is said to be locally of finite
type if, locally in X and Y , it is possible to construct X relative to Y by adjoining finitely many
elements to OY and MY , imposing some relations, and then passing to the associated saturated
logarithmic structure. It is said to be locally of finite presentation if the relations can also be
taken to be finite in number.

We say that X is of finite type over Y if, in addition to being locally of finite type over
Y , it is quasicompact over Y . For finite presentation, we require local finite presentation,
quasicompactness, and quasiseparatedness.

Lemma 2.2.3.2.

(1) A logarithmic scheme of finite type over a noetherian scheme (with trivial logarithmic
structure) is of finite presentation.

(2) A logarithmic scheme of finite type over a logarithmic scheme of finite type is itself of finite
type.

Remark 2.2.3.3. Because we insist on saturated monoids, some unexpected phenomena can occur
when working over bases that are not finitely generated. For example, let Y be a punctual log-
arithmic scheme whose characteristic monoid is the submonoid of R2

≥0 consisting of all (a, b)
such that a+ b ∈ Z. Let X be the logarithmic scheme obtained from Y by adjoining (1,−1) to
the characteristic monoid. This can be effected by adjoining an element γ to MY and imposing
the relation βγ = α, where α and β are elements of MY whose images in MY are (1, 0) and
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(0, 1), respectively. This requires adjoining ε(γ) to OY . In the category of not necessarily
saturated logarithmic schemes, this would suffice to constructX with underlying scheme A1 × Y .

The monoid MY [(1,−1)] is not saturated, and the saturation MX involves the adjunction
of infinitely many additional elements. Each of these elements requires an image in OX , and
therefore neither the characteristic monoid nor the underlying scheme of X – when working with
saturated logarithmic schemes – is finitely generated over Y . However, as a saturated logarithmic
scheme, X is finitely generated over Y and therefore deserves to be characterized as of finite
type.

For further evidence thatX should be considered of finite type over Y , suppose that Y admits
a morphism to Y ′ that is an isomorphism on underlying schemes and such that MY ′ = N2 ⊂ R2.
Then X is the base change of X ′, which is representable by a logarithmic structure A1 × Y (the
construction from the first paragraph produces a saturated logarithmic structure when executed
over Y ′). The morphism X ′ → Y ′ must certainly be considered of finite type. If finite type is to
be a property stable under base change to logarithmic schemes whose logarithmic structures are
not necessarily locally finitely generated then we must admit that X → Y be of finite type as
well.

The following characterization of morphisms locally of finite presentation (Lemma 2.2.3.4)
gives further justification for our choice of definition (cf. the characterization of morphisms locally
of finite presentation in [EGA, IV.8.14.2]). It says, effectively, that to specify a morphism from
an arbitrary logarithmic scheme S into a logarithmic scheme X of finite presentation requires
only finitely many of the data used to construct S.

Lemma 2.2.3.4. A morphism of logarithmic schemes f : X → Y is locally of finite presentation
if and only if, for every cofiltered system of affine logarithmic schemes Si over Y , the map

lim−→HomY (Si, X)→ HomS(lim←−Si, X) (2.2.3.4.1)

is a bijection.

Proof. First we prove that local finite presentation guarantees that (2.2.3.4.1) is a bijection.
We demonstrate only the surjectivity, with the injectivity being similar. Let S = lim←−Si and let
f : S → X be a Y -morphism. Choose covers of X and Y by Uk and Vk such that Uk can be
presented with finitely many data and finitely many relations relative to Vk. Since S is affine, it
is quasicompact, so finitely many of the Uk suffice to cover the image of S. Let {Wk} be a cover
S by open affines such that Wk ⊂ f−1Uk (repeat some of the Uk if f−1Uk is not affine).

The open sets Wk are pulled back from open sets Wik ⊂ Si for i sufficiently large, and
Si =

⋃
Wik for i potentially larger. Since Uk can be presented with finitely many data and

finitely many relations, the Vk-map Wk → Uk descends to Wik → Uk for i sufficiently large. The
maps Wik and Wi� may not agree on their common domain of definition, but we can cover it
with finitely many affines (since Si is quasiseparated) and therefore arrange for agreement when
i is sufficiently large. This descends f to Si.

Now we consider the converse. That is, we assume (2.2.3.4.1) is a bijection for all cofiltered
affine systems {Si} and deduce that X can be defined by finitely many data and finitely many
relations relative to Y . This assertion is local in X and Y , so we may assume that X and Y are
affine and have global charts. We argue first that OX and MX are generated, up to saturation,
relative to OY and MY by finitely many elements. Indeed, we can write the pair (OX ,MX) as
a union of finitely generated sublogarithmic structures (OSi ,MSi). These correspond to maps
Si → Y and their limit is X → Y . By (2.2.3.4.1), Si → Y lifts to X for all sufficiently large i
and therefore (OX ,MX) = (OSi ,MSi) for all sufficiently large i. This proves that X is locally of
finite type over Y .

1492

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


The logarithmic Picard group and its tropicalization

Now we check that X can be defined, relative to Y , with only finitely many relations.
Let (OS0 ,MS0) be freely generated over (OY ,MY ) by a choice of finitely many generators for
(OX ,MX). Every finite subset of the relations among those generators determines a quotient
(OSi ,MSi) and a map Si → Y . For all sufficiently large i, we get a lift to X by (2.2.3.4.1), which
means that Si = X for all sufficiently large i. This completes the proof. �

2.2.4 Universal surjectivity.

Definition 2.2.4.1. Let S be a logarithmic scheme. By a valuative geometric point of S we will
mean a point of S valued in a logarithmic scheme whose underlying scheme is the spectrum of
an algebraically closed field and whose characteristic monoid is valuative.

Proposition 2.2.4.2 (Gillam). A morphism of logarithmic schemes f : X → Y is universally
surjective if and only if every valuative geometric point of Y can be lifted to a valuative geometric
point of X, possibly after enlargement of the residue field and logarithmic structure. If f is of
finite type, no enlargement of the residue field is necessary.

Proof. Suppose first that f is universally surjective. Let T → Y be a valuative geometric point.
Replacing Y by T and X by X ×Y T , we may assume Y is the spectrum of an algebraically closed
field k with a valuative logarithmic structure. Since f : X → Y is surjective, X is nonempty.
Therefore, X has a K-point for some extension K of k. Replacing k by K, we may assume X
has a k-point, and then replacing X by that point, we may assume X and Y have the same
underlying scheme, Spec k. Finally, we use Lemma 2.1.2.11 to embed MX in a valuative monoid
and conclude.

Now suppose that f : X → Y is surjective on valuative geometric points. Then this is also
true universally, so it is sufficient to prove that f is surjective and therefore to assume Y is
the spectrum of an algebraically closed field. But any monoid can be embedded in a valuative
monoid by Lemma 2.1.2.11, so after embedding MY in a valuative monoid N we can construct a
morphism Y ′ → Y , with MY ′ = N valuative, that is an isomorphism on the underlying schemes.
Then X ′ = X ×Y Y ′ surjects onto Y ′ by assumption. As Y ′ → Y is surjective, this implies that
X → Y is surjective, as required. �

2.2.5 Valuative criteria.

Lemma 2.2.5.1. Let S be the spectrum of a valuation ring with generic point η and assume
that Mη is a logarithmic structure on η. Then there is a maximal logarithmic structure M on S
extending Mη such that Mgp = Mgp

η . The map 	 : M →Mη is relatively valuative.

Proof. Let ε : Mη → Oη be the structure morphism of Mη. Define M = ε−1OS .
Note that ε restricts to a bijection on ε−1O∗

η, so it also restricts to a bijection on ε−1O∗
S .

Therefore, ε : M → OS is a logarithmic structure. In fact, it is the direct image logarithmic
structure defined more generally by Kato [Kat89, (1.4)].

The maximality of M is the universal property of the direct image logarithmic structure,
which we verify explicitly. If M ′ also extends Mη then we have a commutative diagram

M ′ ��

��

M ′
η

��
OS �� Oη

from which we obtain M ′ →M by the universal property of the fiber product.
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We argue M →Mη is relatively valuative. Suppose α ∈Mgp and 	(α) ∈Mη. As OS is a
valuation ring, either ε(	(α)) ∈ OS or ε(	(α)) ∈ O∗

η and ε(	(α))−1 ∈ OS . In the first case α ∈
ε−1OS so α ∈M and in the latter case, 	(−α) ∈M and −α ∈ ε−1OS so −α ∈M . �
Theorem 2.2.5.2. The morphism of schemes underlying a morphism of logarithmic schemes
X → Y satisfies the valuative criterion for properness if and only if it has the unique right lifting
property with respect to inclusions S ⊂ S where S is the spectrum of a valuation ring, S is its
generic point, S has a valuative logarithmic structure MS , and the logarithmic structure of S is
the maximal extension of MS .

Proof. Let S = SpecK and S = SpecR, and let j : S → S be the inclusion. Let MK be a loga-
rithmic structure on S and let MR be the maximal logarithmic structure extending MK to R.
Let M ′

K be a valuative logarithmic structure on K extending MK and contained in Mgp
K (whose

existence is guaranteed by Lemma 2.1.2.11), and let M ′
R be its maximal extension to R, which

is valuative. We consider a lifting problem with MS pulled back from X:

S′ ��

��

S ��

��

X

��

S
′ ��

f

����������
S

h ��

g

���
�

�
�

Y

(2.2.5.2.1)

Note that the valuative criterion for properness for the underlying schemes of X over Y is
equivalent to the existence of a unique arrow lifting the square on the right, and that the
assertion of the theorem is therefore that lifts of the square on the right are in bijection with
lifts of the outer rectangle. Let us assume f has been specified and show that there is a unique
choice of g.

We draw the maps of monoids and rings implied by (2.2.5.2.1):

By definition of the maximal extension of a logarithmic structure, the rectangles A and A ∪ B are
cartesian. Therefore, B is cartesian and we get a unique dashed arrow by the universal property
of fiber product. �

2.2.6 Logarithmic modifications and root stacks.

Definition 2.2.6.1. Let X be a logarithmic scheme. A logarithmic modification is a morphism
Y → X that is, locally in X, the base change of a toric modification (proper, birational, toric
morphism) of toric varieties.

More generally, we say that a morphism of presheaves G→ F or fibered categories on the
category of logarithmic schemes is a logarithmic modification if, for every logarithmic scheme X
and morphism X → F , the base change X ×F G→ X is a logarithmic modification.

Let X be a logarithmic scheme and let γ and δ be two sections of Mgp
X . We say that γ and

δ are locally comparable on X if, for each geometric point x of X, we have γ ≤ δ or δ ≤ γ at x
(in other words, δ − γ ∈MX,x or γ − δ ∈MX,x).

Given X, γ, and δ as above, but not necessarily locally comparable, the property of local
comparability defines a subfunctor of the one represented by X. That is, we can make the
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following definition:

Y (W ) = {f : W → X | f∗γ and f∗δ are locally comparable}.
Then Y is representable by a logarithmic modification of X. Indeed, locally in X, we can find a
morphism X → A2, with the target given its standard logarithmic structure, such that γ and δ
are pulled back from the canonical generators of the characteristic monoid of A2. Then Y is the
pullback of the blowup of A2 at the origin.

Definition 2.2.6.2. Let X be a logarithmic scheme and let Mgp
X ⊂ Ngp ⊂ QMgp

X be a locally
finitely generated extension of Mgp

X (a Kummer extension). Define Y to be the following
subfunctor of the one represented by X:

Y (U) = {f : W → X | f∗Mgp
X →M

gp
W factors through f∗Ngp}.

An algebraic stack with a logarithmic structure that represents Y is called the root stack of X
along Ngp.

We can give a concrete description of the root stack representing Y as follows. Working
locally, we may assume that X has a global chart X → SpecZ[P ] for a sharp, integral, saturated
monoid P , with MX(X)gp = P gp. The Kummer extension Ngp is then determined by a finitely
generated extension of lattices P gp → Qgp with Qgp/P gp finite. The homomorphism P gp → Qgp

gives rise to a homomorphism of tori SpecZ[Qgp]→ SpecZ[P gp] with finite kernel K. If we think
of P as the intersection of a cone C in P gp ⊗R with the lattice P gp, then P gp → Qgp determines
a monoid Q := C ∩Qgp, and the root stack representing Y is explicitly given by the quotient
stack

[X ×SpecZ[P ] SpecZ[Q]/K]

with its logarithmic structure descended from X ×SpecZ[P ] SpecZ[Q].

Remark 2.2.6.3. We note that in the category of logarithmic schemes, the structure maps of both
logarithmic modifications and root stacks of X are monomorphisms, despite the fact that the
map from the underlying scheme or stack of the modification or root stack to the underlying
scheme of X is far from a monomorphism.

2.2.7 The logarithmic multiplicative group.

Definition 2.2.7.1. Define functors LogSchop → Sets by the following formulas:

Glog(S) = Γ(S,Mgp
S )

Glog(S) = Γ(S,Mgp
S )

We call the first of these the logarithmic multiplicative group.

Proposition 2.2.7.2. Neither Glog nor Glog is representable by an algebraic stack with a
logarithmic structure.

Proof. We will treat Glog. The argument is essentially the same with Glog.
Suppose that there is an algebraic stack X with a logarithmic structure representing Glog.

Let S0 be the spectrum of a field k, equipped with a logarithmic structure k∗ × (Ne1 + Ne2).
The element e2 gives a map f : S0 → X, hence f∗MX →MS0 .

Now, for each t ∈ Z, let St have the same underlying scheme as S0, with the logarithmic
structure k∗ × (Ne1 + N(e2 + te1)). Then Mgp

St
= Mgp

S0
for all t, so the map S0 → X factors

through S0 ⊂ St for all t ≥ 0. Therefore, the map f∗MX →MS0 factors through MSt for
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all t ≥ 0. Thus, MX →MS0 factors through
⋂
tMSt = Ne1. But the element e2 ∈ Γ(S0,M

gp
S0

) is
clearly not induced from an element of Ze1. �
Lemma 2.2.7.3. Let P be the subfunctor of Glog whose S points consist of those α ∈ Glog(S)
that are locally (in S) comparable to 0.

(1) P is isomorphic to P1 with its toric logarithmic structure.
(2) P is a logarithmic modification of Glog.

Proof. Note that the logarithmic structure MA2 has two tautological sections, α and β, coming
from the two projections to A1. The difference of these sections determines a map A2 → Glog

m .
The open subset A2 − {0} may be presented as the union of the loci where α ≥ 0 and where
β ≥ 0, which coincide with the loci where α− β ≤ 0 and α− β ≥ 0, respectively. We note that
adjusting α and β simultaneously by the same unit leaves α− β unchanged, so that we have
constructed a map P1 → P.

To see that this is an isomorphism, consider the open subfunctors of P where α ≥ 0 and
where α ≤ 0. These are each isomorphic to A1, and their preimages under P1 → P are the two
standard charts of P1.

Finally, we verify that P→ Glog is a logarithmic modification. We need to show that if Z
is a logarithmic scheme and Z → Glog

m is any morphism then Z ×Glog
P→ Z is a logarithmic

modification. This is a local assertion in Z, and any section in Mgp
Z is locally pulled back from

a logarithmic map to an affine toric variety, so we can assume Z is an affine toric variety with
cone σ.

Let α be the image of α in M
gp
Z . We can regard sections of Mgp

Z as linear functions with
integer slope on the ambient vector space of σ. Then Z ×

Glog
m

P is representable by the subdivision
of σ along the hyperplane where α vanishes. �
Corollary 2.2.7.4. Both Glog and Glog have logarithmically smooth covers by logarithmic
schemes.

Proof. We have just seen that Glog has a logarithmically étale cover by P1, and therefore Glog =
Glog/Gm has a logarithmically étale cover by [P1/Gm]. �
Proposition 2.2.7.5. The inclusion of the origin in Glog is representable by affine logarithmic
schemes of finite type.

Proof. Suppose that S is a logarithmic scheme and S → Glog is a morphism corresponding to
a section α ∈ Γ(S,Mgp

S ). Let N be the submonoid of Mgp
S generated by MS and OS(α). The

assertion is local (in the Zariski topology, say) of S, so we may choose a local trivialization α̃
of α. Then the pullback of the origin in Glog to S is represented by SpecOS [t, t−1]/I where t
and t−1 are indeterminates representing the images of α̃ and α̃−1 and I is the ideal of relations
necessary to permit a monoid homomorphism N → OS [t, t−1] that restricts to ε : MS → OS on
MS and sends α̃ to t. This gives the universal (not necessarily saturated) logarithmic scheme
over S on which α restricts to 0, and saturation completes the proof. �
Example 2.2.7.6. Consider the map A2 → Glog given by twice the difference 2e2 − 2e1 of the
two generators e1, e2 ∈ (MA2(A2))gp. A map T → A2 ×Glog

0 corresponds to two sections x, y ∈
MT (T ) such that y2/x2 is a unit. Thus, the fiber product is representable by the closed subscheme
Z ⊂ A2 ×Gm defined by the ideal x2 − ty2, with logarithmic structure induced from A2 but
with the relation that x2 = ty2 required to hold in the logarithmic structure as well. Passing to
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the saturation gives the logarithmic scheme representing A2 ×Glog
0 in the category of saturated

logarithmic schemes.

2.3 Tropical geometry
2.3.1 Tropical moduli problems. We summarize [CCUW20]. For the purposes of this paper,

a tropical moduli problem is a covariant functor on, or category covariantly fibered in groupoids
over, the category of integral, saturated, sharp, commutative monoids. Such a moduli problem
extends automatically, in a canonical fashion, to one defined on all integral, saturated, sharp,
commutative monoidal spaces, and even all such monoidal topoi. In particular, it extends to loga-
rithmic schemes, by regarding logarithmic schemes as monoidal topoi by way of the characteristic
monoid.

There are two ways to produce this extension of the moduli problem. The first, and perhaps
simpler, of the two is to extend a moduli problem F on commutative monoids to one defined on
monoidal spaces (or topoi) by setting F (S) = F (Γ(S,MS)) and then sheafifying (or stackifying)
the result.

An equivalent construction, when working over logarithmic schemes with coherent logarith-
mic structures, is to define F (S) to be the set of systems of data ξs ∈ F (MS,s), one for each
geometric point s of S, such that ξt �→ ξs under the morphism F (MS,t)→ F (MS,s) associated to
a geometric specialization s� t. This has the effect of building stackification into the definition,
but either construction is adequate for our needs.

In practice, when formulating a tropical moduli problem, the difficult part seems to tend
to lie in describing the functoriality with respect to monoid homomorphisms. More specifically,
any homomorphism of commutative monoids can be factored into a localization homomorphism
followed by a sharp homomorphism. Functoriality with respect to sharp homomorphisms is
straightforward, but localizations tend to involve changes of topology that are more difficult to
control. For the tropical Picard group and tropical Jacobian, the notion that makes this work is
called bounded monodromy, and is first discussed in § 3.5.

The principal concern of [CCUW20] was the question of algebraicity of tropical moduli
problems, meaning possession of a well-behaved cover by rational polyhedral cones. None of
the moduli problems we consider here is algebraic in this sense, although they often do have
logarithmically smooth covers by logarithmic schemes. This suggests the subject of algebraicity
should be revisited with a more inclusive perspective. To do so will require a less chaotic topology
than the one introduced in [CCUW20], such as the one that appears implicitly in § 3.1, and a
bit more explicitly in § 3.11 of this paper.

2.3.2 Tropical topology. We introduce a tropical topology that does not appear in [CCUW20].
This material will be needed in § 3.11 and nowhere else, so we develop only the few facts we will
need there. A thorough treatment will be taken up elsewhere.

Definition 2.3.2.1. Let M be a sharp (integral, saturated) monoid. A sharp valuation of M is
an isomorphism class of surjective homomorphisms from M

gp to totally ordered abelian groups
that preserve the strict order of Mgp. Here, an isomorphism between v : Mgp → V

gp and w :
M

gp →W
gp is an isomorphism f : V gp →W

gp such that fv = w.

Remark 2.3.2.2. Equivalently, a sharp valuation of M is an isomorphism class of sharp
homomorphisms M → V where V is a (sharp) valuative monoid and Mgp → V

gp is surjective.
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Proposition 2.3.2.3. Let M be a sharp (integral, saturated) monoid and let Cone◦(M) be its
set of sharp valuations. Give Cone◦(M) the coarsest topology in which a subset defined by a
finite set of strict inequalities among elements of M

gp
is open. Then Cone◦(M) is quasicompact.

Proof. Consider a descending sequence of closed subsets Cone◦(M) = Z0 ⊃ Z1 ⊃ Z2 ⊃ · · · , with
Zi defined relative to Zi−1 by an inequality αi ≥ 0, with αi ∈Mgp. Then Zi is represented by the
submonoid M [α1, . . . , αi] ⊂Mgp in the sense that a valuation of M (sharp or not) with valuation
monoid V lies in Zi if and only if the homomorphism M → V factors through M [α1, . . . , αi]. By
Lemma 2.1.2.11, the condition that

⋂
Zi = ∅ means that M [α1, α2, . . .] contains the inverse −β

of some element β ∈M . But then −β is a finite combination of the αi and elements of M and
lies therefore in M [α1, . . . , αi] for some i. We conclude that Zi = ∅. �
Remark 2.3.2.4. The basic open subsets of Cone◦(M) are the subsets representable as
Cone◦(N) where N ⊂Mgp is a finitely generated extension.

Remark 2.3.2.5. Suppose that δ ∈ QM . Then there is some positive integer n such that nδ ∈M
and the inequality nδ > 0 determines an open subset of Cone◦(M). Since valuative monoids
are always saturated, this open subset does not depend on the choice of n. We can therefore
construct open subsets of Cone◦(M) from inequalities in QM .

2.3.3 Tropical curves. The main example in [CCUW20] is the moduli space of tropical curves.
We recall the main definition here, with small modifications, one of which is significant. First, we
have no use for marked points here (which appear as unbounded legs in the graphs of tropical
curves), so we omit them below. Second, we allow unrooted edges that are not attached at any
vertex. This second modification is essential for the definition of the topology in § 3.1.

Definition 2.3.3.1. Let M be a commutative monoid. A tropical curve metrized by M is a
tuple X = (G, r, i, �) where

(1) G is a set,
(2) r : G→ G is a partially defined idempotent function,
(3) i : G→ G is an involution, and
(4) � : G→M is a function

such that

(5) �(i(x)) = �(x) for all x, and
(6) r(x) = x if and only if i(x) = x if and only if �(x) = 0.

We often abuse notation and write x ∈X to mean that x ∈ G.
If x ∈X then �(x) is called its length. The elements of X of length 0 are called vertices.

The remaining elements are called flags or oriented edges. An unordered pair of flags exchanged
by i is called an edge. We call X compact if r is defined on all of G.

We imagine the set G as the disjoint union of a set of vertices and a set of flags (a vertex
with an incident edge). The function r sends a flag to the vertex at which it is attached and
restricts to the identity on the vertices, which are characterized by this property. We think of an
element of G on which r is not defined as an oriented edge that is not rooted at any vertex.

Remark 2.3.3.2. It is customary to include a weighting by nonnegative integers on the vertices
in the definition of a tropical curve, standing for the genus of a component of a stable curve.
Such a weighting could be added to Definition 2.3.3.1 with no significant change to the rest of
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the paper. As the weighting has no effect on the definition of the tropical Picard group, we have
omitted it to keep the notation as light as possible.

The work of Amini and Caporaso on the Riemann–Roch theorem for tropical curves with
vertex weights [AC13] suggests that a vertex with positive weight g can be imagined as a vertex
of weight 0 with g phantom loops attached, all of length 0. They prove Riemann–Roch by
endowing these loops with positive length ε and then allowing ε to shrink to zero. The most
naive application of the same approach would yield a different tropical Picard group than the
one we consider, and would not have the same relationship to the logarithmic Picard group.

If f : M → N is a homomorphism of commutative monoids, and X is a tropical curve
metrized by M , and r is defined on every flag x of X such that f(�(x)) = 0, then f induces an
edge contraction of X , as follows. Let Y be the quotient of X in which a flag x is identified
with r(x) if f(�(x)) = 0. Note that if f(�(x)) = 0, this identification also identifies r(x) ∼ r(i(x))
since i2(r(x)) = x. Then � descends to a well-defined function on Y , valued in N , and makes Y
into a tropical curve.

Following the procedure outlined in § 2.3.1, we can now think of tropical curves as a tropical
moduli problem: for any sharp monoid P , we define Mtrop(P ) to be the groupoid of tropical
curves metrized by P . Note, however, that Definition 2.3.3.1 is slightly different from the one
considered in [CCUW20].

Definition 2.3.3.3. Let S be a logarithmic scheme. A tropical curve over S is the choice of a
tropical curve Xs for each geometric point s of S and an edge contraction Xs →Xt for each
geometric specialization t� s such that the edges of Xs contracted in Xt are precisely the ones
whose lengths lie in the kernel of Mgp

s →M
gp
t .

Definition 2.3.3.4. Let X be tropical curve metrized by a monoid M with vertex set V . We
define PL(X ) to be the set of functions λ = (α, μ) : GX →M

gp × Z satisfying the following
conditions.

(1) If x is a vertex then μ(x) = 0.
(2) We have α(r(x)) = α(x) for all x on which r is defined.
(3) We have α(i(x)) = α(x) + μ(x)�(x).

Note that the third condition implies that μ(x) = −μ(i(x)) since

α(x) = α(i2(x)) = α(i(x)) + μ(i(x))�(x)

and �(x) is nonzero. We define L(X ) to be the subset of PL(X ) where the following additional
balancing condition is satisfied.

(4) For each vertex x of X , we have
∑

r(y)=x μ(y) = 0.

Elements of PL(X ) are called piecewise linear functions on X and elements of L(X ) are called
linear functions.

Remark 2.3.3.5. The terms balanced and harmonic are often employed synonymously with
‘linear’.

If X is a tropical curve metrized by M and M → N is a monoid homomorphism inducing
a tropical curve Y metrized by N then there are natural homomorphisms PL(X )→ PL(Y )
and L(X )→ L(Y ). Thus, tropical curves equipped with piecewise linear functions are a tropical
moduli problem. See Proposition 3.7.3 for further details.
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2.3.4 Subdivision of tropical curves.

Definition 2.3.4.1. Let Y be a tropical curve metrized by a commutative monoid M . Let y
be a 2-valent vertex of Y . We construct a new tropical curve X by removing y from Y along
with the two flags e and f incident to y and defining

iX (iY (e)) = iY (f), iX (iY (f)) = iY (e),

�X (iY (e)) = �X (iY (f)) = �Y (e) + �Y (f).

We call Y a basic subdivision of X at the edge {iY (e), iY (f)}. If X is obtained from Y by a
sequence of basic subdivisions, we call Y a subdivision of X .

If Y is a subdivision of X then GY contains a copy of GX . An isomorphism of subdivisions
is an isomorphism of tropical curves that respects this copy of the underlying set.

Lemma 2.3.4.2. If X ′ is a subdivision of a tropical curve X metrized by M , and M → N is
a localization homomorphism, then the edge contraction Y ′ of X ′ is naturally a subdivision of
the edge contraction Y of X .

Proof. It is sufficient to assume that X ′ is a basic subdivision of X at an edge e into edges
e′ and e′′. The main point is that if �(e) maps to 0 in N then �(e′) and �(e′′) do as well, since
0 ≤ �(e′) ≤ �(e) and 0 ≤ �(e′′) ≤ �(e), which implies that e′ and e′′ are both contracted if e is. �

2.4 Logarithmic curves
2.4.1 Logarithmic structure.

Definition 2.4.1.1. Let S be a logarithmic scheme. A logarithmic curve over S is an integral,
saturated, logarithmically smooth morphism π : X → S of relative dimension 1.

Theorem 2.4.1.2 (F. Kato). Let X be a logarithmic curve over S. Then the underlying scheme
of X is a flat family of nodal curves over S and, for a geometric point x of X lying above the
geometric point s of S, one of the following possibilities applies.

(1) x is a smooth point of its fiber in the underlying schematic curve of X, and MS,s →MX,x

is an isomorphism.
(2) x is a marked point, and there is an isomorphism MS,s + Nα→MX,x where OX(−α) is

the ideal of the marking.
(3) x is a node of its fiber and there is an isomorphism MS,s + Nα+ Nβ/(α+ β = δ)→MX,x,

with δ ∈MS,s. The invertible sheafOS(−δ) is the pullback of the ideal sheaf of the boundary
divisor corresponding to the node x from the moduli space of curves, and OX(−α) and
OX(−β) are the pullbacks of ideal sheaves of the two branches of the universal curve at x.

If X is vertical over S then the second possibility does not occur.

We writeMlog
g,n for the moduli space of logarithmic curves of genus g with n (ordered) marked

points.
The following theorem characterizes the logarithmic structures of logarithmic curves over

valuative bases. For a proof, see [MW17, Proposition 3.6.4].

Theorem 2.4.1.3. Let S be the spectrum of a valuation ring with generic point η and let X be
a family of nodal curves over S. Assume that Xη and η have been given logarithmic structures
MXη and Mη making Xη into a logarithmic curve over η, with Mη valuative. Let MX and MS be
the maximal extensions, respectively, of MXη and Mη to X and to S. Then X is a logarithmic
curve over S.
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2.4.2 Tropicalizing logarithmic curves. Theorem 2.4.1.2 allows us to construct a family of
tropical curves over S from a family X of logarithmic curves over S. For each geometric point
s of S, let Xs be the dual graph of Xs, metrized by MS,s with �(e) = δ when e is the edge
associated to the node x in the notation of Theorem 2.4.1.2(3).

If s� t is a geometric specialization, then Xs is obtained from Xt by contracting the edges
of Xt that correspond to nodes of Xt smoothed in Xs. Therefore, the association Xs �→Xs

commutes with the geometric generization maps and defines a morphism Mlog
g,n →Mtrop from

the moduli space of logarithmic curves to the moduli space of tropical curves. See [CCUW20,
§ 5] for further details.

The essence of the following lemma comes from Gross and Siebert [GS13, § 1.4]. It allows us
to relate the characteristic monoid of a logarithmic curve to piecewise linear functions on the
tropicalization.

Lemma 2.4.2.1. Let M be a commutative monoid. Then

M + Nα+ Nβ/(α+ β = δ) ∼−→ {(a, b) ∈M ×M | a− b ∈ Zδ}
where α �→ (0, δ), β �→ (δ, 0), and γ �→ (γ, γ) for all γ ∈M .

Proof. The map is well defined by the universal property of the pushout. The following formula
gives the inverse:

(a, b) �→

⎧⎪⎨
⎪⎩
a+

b− a
δ

α, b ≥ a,

b+
a− b
δ

β, a ≥ b.
�

Corollary 2.4.2.2. Let S be a the spectrum of an algebraically closed field and let X be a
logarithmic curve over S with tropicalization X . Then Γ(X,Mgp

X ) and Γ(X ,PL) are naturally
identified.

Proof. Lemma 2.4.2.1 identifies the stalk of Mgp
X at a node of X with the linear functions of

integer slope on the corresponding edge of X . Generizing to one branch or the other of the node
corresponds to evaluating the function at one endpoint or the other of the edge. Therefore, a
global section of Mgp

X amounts to a function on X taking values in Mgp
S that is linear along the

edges with integer slopes. �
We give a more local version of this corollary, using the tropical topology from § 3.1.
Let S be a logarithmic scheme whose underlying scheme is the spectrum of an algebraically

closed field, let X be a logarithmic curve over S, and let X be its tropicalization. Suppose that
p : U →X is a tropical local isomorphism. Each v vertex of X corresponds to a component
Xv of the normalization of X and each edge v of X corresponds to a node Xv of X. Let
U = lim−→u∈U Xp(u). Effectively, U is the union of components of the normalization of X indexed
by the vertices of U , joined along nodes indexed by the edges of U , together with some disjoint
nodes corresponding to unattached edges of U .

There is a canonical projection U → X that is étale except at the points corre-
sponding to zero- and one-sided edges. We give U the logarithmic structure pulled back
from X.

Remark 2.4.2.3. This construction extends to families with locally constant dual graph, but
no further. Should U be a covering space of X then U will be étale over X and therefore this
construction extends infinitesimally, but not necessarily any further than that. If U is in addition
finite over X then the construction can be extended to an arbitrary base.
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The construction described above gives a functor t−1 from the category of local isomorphisms
U →X to the category of finite strict X-schemes. We refer to this as an anticontinuous mor-
phism from X to X , but we make no attempt to develop a general theory of anticontinuous
maps here.

Lemma 2.4.2.4. We have t∗M
gp
X = PX . That is, for any open subset U of X , we have

Γ(U ,P) = Γ(t−1U ,M
gp
X ).

2.4.3 Subdivision of logarithmic curves. LetX be a logarithmic curve over S and let X be its
tropicalization. Suppose that Y →X is a subdivision. We construct an associated logarithmic
modification Y → X such that the tropicalization of Y is X .

We may make this construction étale-locally on S, provided we do so in a manner compat-
ible with further localization. Every subdivision of tropical curves is locally an iterate of basic
subdivisions, so we may assume that Y is a basic subdivision of X . We now describe Y → X
locally in X.

Suppose that e is the edge of X subdivided in Y , and that Z is the corresponding node
of X. Note that Z is a closed subset of X, not necessarily a point unless S is a point. Over the
complement of Z, we take the map Y → X to be an isomorphism. It remains to describe Y on
an étale neighborhood of Z.

We may work étale-locally in X, again provided that our construction is compatible with
further étale localization. We can therefore work in an étale neighborhood U of a geometric point
x ∈ Z and an étale neighborhood T of its image in S, and we can assume that

(1) MX,x = MS,s + Nα+ Nβ/(α+ β = δ) for some δ ∈MS,s,
(2) α and β come from global sections of MX over U , and
(3) δ comes from a global section of MS over T .

Now, recall that we may think of α and β as barycentric coordinates on the edge e of X
that was subdivided in Y . Suppose that this edge was subdivided at the point where α = γ (and
therefore β = δ − γ) for some γ ∈ Γ(T,MS). We ask V to represent the subfunctor of the functor
represented by U where α and γ are locally comparable. Then V is a logarithmic modification
of U .

To see that the construction is compatible with further localization, the main point is that
the only ambiguity in the above construction is the choice of labeling of the generators of MX,x

as α and β. This choice is in bijection with the choice of orientation of the edge e. Reversing
the labeling also reverses the orientation, and we impose the comparability of β with δ − γ. But
α = δ − β, so α is comparable to γ if and only if β is comparable to δ − γ and the resulting
logarithmic modification is the same. These local modifications therefore patch together to give
a logarithmic modification Y → X.

Remark 2.4.3.1. It is possible to understand Y → X as the pullback of Y →X along the
tropicalization map t : X →X . This point of view will be developed elsewhere.

3. The tropical Picard group and the tropical Jacobian

3.1 The topology of a tropical curve
Definition 3.1.1. Let X be a tropical curve and let x be a vertex of X . The star of x is the
set of all y ∈X such that r(y) = x.
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Figure 3. Graphical representations of tropical curves. Filled circles are vertices while open
circles are endpoints of edges with absent vertices.

Figure 4. The curve on the left is locally isomorphic to the curve on the right.

Definition 3.1.2. Let Y and X be tropical curves metrized by the same monoidM . A function
f : Y →X is called a local isomorphism if it commutes with all of the functions r, �, and i and
it restricts to a bijection on the star of each vertex.

A local isomorphism is called an open embedding if it is also injective. The image of an open
embedding of tropical curves is called an open subcurve.

In Figure 3 there are six distinct local isomorphisms from the curve on the right to the curve
on the left, assuming that all edges have the same length.

Lemma 3.1.3. An open subcurve of X is a subset of X that is stable under i and r−1.

Proof. This is immediate. �
Remark 3.1.4. A tropical curve with real edge lengths has an evident realization as a metric
space. The open subcurves of X are the subcurves whose realizations are open subsets of the
realization of X . Since the tropical topology depends only on the underlying graph of X , and
not on its metric, this remark characterizes the tropical topology of all tropical curves.

Example 3.1.5. Let X be a tropical curve with one vertex, x, and one edge {e, i(e)}, of length
δ, connecting that vertex to itself. Let Y by a tropical curve with one vertex, y, and two
edges {f, i(f)} and {g, i(g)}, both of length δ, with r(e) = r(f) = y and with r(i(e)) and r(i(f))
both undefined. See Figure 4 for a picture. There is a local isomorphism Y →X sending y
to x, sending f to e, and sending g to i(e). This local isomorphism does not restrict to open
embeddings on any open cover of Y .

Lemma 3.1.6. Any logarithmic curve X has a minimal cover by a local isomorphism Y →X .
That is, for any cover Z →X , there is a (not necessarily unique) factorization Y → Z of the
projection from Y to X .

Proof. Let X be a tropical curve and let Y0 be the disjoint union of the stars of the vertices.
Construct Y by adjoining a new flag i(x) for each nonvertex flag x of Y0. �
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Definition 3.1.7. A collection of local isomorphisms pi : Ui →X of a tropical curve X is
called a cover if X =

⋃
pi(Ui). We call this the tropical topology of X .

Let Y be a subdivision of X . We construct an associated morphism of sites ρ : Y →X .
Let τ : U →X be a local isomorphism. For each edge e of U , the restriction of τ to e is a
bijection. Form ρ−1U by subdividing e in precisely the same way τ(e) is subdivided in Y . Then
we have an evident local isomorphism ρ−1U → Y .

Proposition 3.1.8. The construction outlined above determines a morphism of sites ρ from
that of Y to that of X .

Proof. One must verify that the construction respects covers and fiber products of local
isomorphisms. Both are immediate. �

Suppose that X is a tropical curve over a logarithmic scheme S. This construction makes it
possible to organize the sites of the fibers of X over S into a fibered site [SGA4(2), 7.2.1] over
ét(S)op, the opposite of the étale site of S.

3.2 The sheaves of linear and piecewise linear functions
If U →X is a local isomorphism then we have maps PL(X )→ PL(U ) and L(X )→ L(U ) by
restriction. This makes PL and L into presheaves on the category of tropical curves with local
isomorphisms to X .

Proposition 3.2.1. The presheaves L and PL are sheaves in the tropical topology.

Proof. Since piecewise linear functions are functions defined on the underlying set of a tropical
curve, and tropical covers are set-theoretic covers, it is immediate that PL forms a sheaf. The
subpresheaf L is defined by the balancing condition at each vertex of the underlying graph, which
depends only on the star of that vertex. By definition, a tropical cover induces a bijection on the
star of each vertex, and therefore the balancing condition is visible locally in a tropical cover. �
Proposition 3.2.2. Let ρ : Y →X be a subdivision of tropical curves. Then LX → Rρ∗LY is
an isomorphism.

Proof. By induction, we can also assume that Y is a basic subdivision of X . The assertion is
local on X so we can assume that X is a bare edge with no vertices. In that case, Y is a
vertex with two edges. Thus, Y has no nontrivial covers, so Rpρ∗LY = 0 for all p > 0 and the
isomorphism LX � ρ∗LY is a straightforward calculation. �

Suppose that X is a tropical curve over S. On each stratum Z of S, the tropical curve
X is locally constant, so the cohomology H∗(XZ , L) can be represented by a complex of locally
constant abelian groups. If s� t is a geometric generization of S there is a map L(Xt)→ L(Xs),
but there is no guarantee of a generization map H1(Xt, L)→ H1(Xs, L) if s and t are in different
strata. To get the generization map, we will need to impose the bounded monodromy condition
in § 3.5.

Proposition 3.2.3. Let X be a logarithmic curve metrized by M , let M → N be a homo-
morphism such that M

gp → N
gp

is an isomorphism, and let Y be the induced tropical curve
metrized by N . Then BLX → BLY is an isomorphism of stacks on X .

Proof. Since Mgp = N
gp, the sheaves LX and LY are the same when we identify the underlying

graphs of X and Y . �
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3.3 The intersection pairing on a tropical curve
The following definition seems to be due originally to Grothendieck [SGA7(1), Equation (12.4.5)]:

Definition 3.3.1. Let X be a tropical curve metrized by a monoid M , and let �(e) ∈M denote
the length of an edge e of X . If e and f are oriented edges of X , we define

e.f =

⎧⎪⎨
⎪⎩
�(e), f = e,

−�(e), f = e′,
0 otherwise,

and extend by linearity to an intersection pairing on the free abelian group generated by the
oriented edges of X . By restriction this also gives a pairing on the first homology of X .

Lemma 3.3.2. Suppose that X is a tropical curve metrized by a monoid M and u : M → N
is a homomorphism inducing an edge contraction Y of X . Then the intersection pairing is
compatible with u, in the sense that the following diagram commutes:

H1(X )×H1(Y ) ⊂ ZE(X ) × ZE(X )

��

��

��

M
gp

��

H1(Y )×H1(Y ) ⊂ ZE(Y ) × ZE(Y ) �� N
gp

(3.3.2.1)

Proof. The proof is immediate. �

3.4 The tropical degree
Let V denote the quotient PL/L. Then V(U ) is the free abelian group generated by the vertices
of U .

Let X be a tropical curve metrized by M . There is an embedding of the constant sheaf
M

gp inside LX as the constant functions. We write H for the quotient of L by M
gp and E

for the quotient of PL by M
gp. This yields the following commutative diagram with exact

rows and columns:
0

��

0

��
0 �� M

gp �� L ��

��

H ��

��

0

0 �� M
gp �� PL ��

��

E ��

��

0

V

��

V

��
0 0

(3.4.1)

We note that E is the sheaf freely generated by the edges and that E→ V is the coboundary
map in homology. Therefore, H is the sheaf whose value on U is the first Borel–Moore homology
of the topological realization of U . Note that because X can have one-sided or even zero-sided
edges, the Borel–Moore homology is not locally trivial.
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Remark 3.4.2. Diagram (3.4.1) gives several ways of producing a tropical line bundle. First, a
class in H1(X ,M

gp) (that is, a local system with transition functions in M
gp) gives a tropical

line bundle by extending the structure group. Second, an integer linear combination of vertices of
X (a section of V) yields a tropical line bundle by the coboundary map H0(X ,V)→ H1(X , L).

These are related by a third construction. Beginning with a section of E (that is, with an
integer linear combination of edges of X ), we get a class in H1(X , L) by the diagonal of the
following commutative square:

H0(X ,E) ��

��

H1(X ,M
gp)

��

H0(X ,V) �� H1(X , L)

The referee pointed out to us that the class inH1(X ,M
gp) = Hom(H1(X ),Mgp) is precisely

the obstruction to lifting a section of E to a piecewise linear function. Thus, edge weightings
with trivial monodromy lift to piecewise linear functions and those with nontrivial monodromy
produce tropical line bundles.

These edge weightings will be used to decorate the example in Figure 7.

Lemma 3.4.3. Let X be a tropical curve. Then Hp(X ,E) = 0 for all p > 0 and Hp(X ,V) = 0
for all p > 0.

Proof. Note first that V is the pushforward along the closed embedding of the vertices of X of
the constant sheaf Z. Therefore, writing V (X ) for the set of vertices of X , we have Hp(X ,V) =
Hp(V (X ),Z) = 0 for all p > 0.

Next, note that E is the direct sum of sheaves Ei supported on each of the edges of X .
Then Ei is the pushforward along the closed embedding of either an interval or a circle. We can
therefore assume that X is either an interval or a circle.

If X is an interval then its topology is generated by open subsets and E is flasque, hence
has no higher cohomology. If X is a circle then its universal cover Y has no self-loops, so E is
flasque on Y . Therefore, Hp(X ,E) can be identified with the group cohomology Hp(Z,E(Y )).
The group cohomology of Z vanishes for p > 1 and for p = 1 it coincides with the coinvariants of
E(Y ). We identify E(Y ) with

∏∞
n=−∞ Z with Z acting by shift. The coinvariants are therefore

zero and the lemma is proved. �
Corollary 3.4.4. If X is a compact tropical curve thenH0(X ,H) = H1(X ) andH1(X ,H) =
H0(X ).

Proof. This is immediate, as E(X ) is the free abelian group generated by the edges of X and
V(X ) is the free abelian group generated by the vertices, and the map between them is the
boundary map. �
Lemma 3.4.5. If X is a compact tropical curve then H0(X ,M

gp)→ H0(X , L) is an
isomorphism.

Proof. We want to show that on a compact tropical curve, every globally defined linear function
is locally constant. Replacing M with a valuative submonoid of Mgp that contains M does not
change Mgp or L. We may therefore assume that M is valuative. Let Z be a maximal connected
subgraph where f takes its minimum value. Then if e is a flag of X exiting Z , the slope of f
along e must be positive. But by the balancing condition,

∑
e μ(e) = 0, when the sum is taken
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over all edges exiting Z . The only way a sum of positive numbers can be zero is if it is empty,
so we conclude that Z is a connected component of X and that f is locally constant. �

Using Corollary 3.4.4 and Lemma 3.4.5, we write down the long exact sequence in cohomology
associated to the short exact sequence in the first two rows of (3.4.1):

0→ H1(X )→ H1(X ,M
gp)→ H1(X , L)

deg−−→ H0(X )→ 0

E(X )→ H1(X ,M
gp)→ H1(X ,PL)→ 0

(3.4.6)

The homomorphism H1(X , L)→ H0(X ) is called the degree. We can also identify
H1(X ,M

gp) = Hom(H1(X ),Mgp).

Lemma 3.4.7. The homomorphisms

H1(X ) = H0(X ,H)→ H1(X ,M
gp) = Hom(H1(X ),Mgp) and

E(X ) = H0(X ,E)→ H1(X ,M
gp) = Hom(H1(X ),Mgp)

(3.4.7.1)

in the exact sequences (3.4.6) are the intersection pairing on X .

Proof. The first homomorphism is induced from the second by restriction to H1(X ) ⊂ E(X ),
so it suffices to consider the second. Suppose that α ∈ H0(X ,E). We can regard α as an integer-
valued function on the edges of X . The class of its coboundary in H1(X ,M

gp) is the Mgp-torsor
on X of piecewise linear functions having slopes α along the edges.

Such a torsor is classified by its failure to be representable by a well-defined, piecewise linear
function, in the form of its monodromy around the loops of X . In other words, we may make
the following identification:

H1(X ,M
gp) = Hom(H1(X ),Mgp). (3.4.7.2)

Given α ∈ H0(X ,E) and a γ ∈ H1(X ), represented as a sum of oriented edges of X , the
monodromy of α around γ is ∑

e∈γ
α(e)

which is exactly the same as α · γ. �
We summarize our results in the following corollary, which may be viewed as a tropical Abel

theorem.

Corollary 3.4.8. Let X be a compact tropical curve metrized by M . Then there are exact
sequences in which ∂ is the intersection pairing:

0→ H1(X ) ∂−→ Hom(H1(X ),Mgp)→ H1(X , L)
deg−−→ H0(X )→ 0

E(X ) ∂−→ Hom(H1(X ),Mgp)→ H1(X ,PL)→ 0
(3.4.8.1)

3.5 Monodromy
Let X be a tropical curve metrized by M . Let Q be a PL-torsor on X . By Corollary 3.4.8, there
is an α ∈ Hom(H1(X ),Mgp) inducing Q, uniquely determined by Q up to addition of ∂(e), for
edges e of X . We refer to α as a monodromy representative of Q.

Proposition 3.5.1. Let X be a compact, connected tropical curve metrized by a valuative
monoid M . The following conditions are equivalent to Q ∈ H1(X ,PL).
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(1) There exists a subdivision Y of X such that the restriction of Q to Y is trivial.
(2) For any monodromy representative α of Q and any γ ∈ H1(X ), the monodromy of α around

γ is bounded by the length of γ (in the sense of Definition 2.1.3.1).

Before we begin the proof, we note that to verify the monodromy condition, it is sufficient
to consider a single monodromy representative.

Lemma 3.5.2. Suppose that α and β are monodromy representatives of the same PL-torsor
on a tropical curve X , and let γ ∈ H1(X ). The monodromy of α around γ is bounded
by the length of γ if and only if the monodromy of β around γ is bounded by the length
of γ.

Proof. Since α and β differ by a linear combination of ∂(e), for e among the edges of X , it is
sufficient by Lemma 2.1.3.3 to show that ∂(e) has bounded monodromy around each γ ∈ H1(X ).
But the monodromy of ∂(e) around γ is e.γ. If e is not contained in γ then e.γ = 0, which is
obviously bounded by �(γ). If e is contained in γ then e.γ = ±�(e), and �(e) is bounded by �(γ)
because e is contained in γ. �
Lemma 3.5.3. Suppose that τ : Y →X is a subdivision of tropical curves. Let α be an element
of H1(X ,M

gp). The monodromy of α around the loops of X is bounded by their lengths if and
only if same holds of the monodromy of τ∗α around the loops of Y .

Proof. The length of the loops of Y is the same as the length of the loops in X and the
monodromy around them is the same as the monodromy around the loops in X . �
Proof of Proposition 3.5.1. Suppose first that Q can be trivialized on a subdivision τ : Y →X .
Let μ : H1(X )→M

gp be a monodromy representative of Q. Then μ lies in the image of ∂ :
E(Y )→ Hom(H1(Y ),Mgp) = Hom(H1(X ),Mgp), so by Lemma 3.5.2, its monodromy around
the loops of Y is certainly bounded by the lengths of the loops. But by Lemma 3.5.3, this implies
that μ has the same property.

Now assume that the monodromy of μ around the loops of X is bounded by their
lengths. We construct a subdivision τ : Y →X such that τ∗μ is in the image of ∂ : E(Y )→
Hom(H1(Y ),Mgp

S ).
The proof will be by induction on the rank of the image of the monodromy homomorphism

μ : H1(X )→M
gp
. (3.5.3.1)

Our strategy will be to subdivide X so that E(Y ) enlarges and adjust μ by the addition of
elements in its image so that the rank of the image of μ decreases. We therefore permit ourselves
to adjust μ as necessary by elements of the image of ∂.

By Proposition 2.1.3.8, there is a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂Mgp
S

of ordered subgroups such that each Vn/Vn−1 may be embedded in R, preserving the ordering.
Let n be the largest index such that the image of μ is contained in Vn. If n = 0 we are done.
Otherwise, choose an embedding of Vn/Vn−1 in R.

This induces a metric on X with lengths in R. We write X for the tropical curve obtained
by collapsing those edges in X whose lengths in R are zero. Note that there is a well-defined
monodromy function

μ : H1(X )→ R
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precisely because the monodromy around γ ∈ H1(X ) is bounded by the length of γ. Indeed, γ ∈
H1(X ) has length δ, and if the image of δ in R is zero then the boundedness of the monodromy
around γ implies that μ(γ) = 0 as well.

Choose a spanning tree of X and let E be the set of edges of X not in the spanning tree.
Each of these edges corresponds uniquely to an edge of X , so we will also think of E as a set of
edges of X .

For each e ∈ E, let γe be the corresponding basis element of H1(X ). Let δe be the length
of γe and let μe = μ(γe) be the monodromy around it, both valued in R. Since δe 	= 0, there
is some integer k such that kδe ≤ μe ≤ (k + 1)δe. We replace μ by μ− k∂(e) so that we may
assume that 0 ≤ μe < δe. Note that doing so does not change μf for any f 	= e. Let τ : Y →X
be a subdivision of X that divides the edge e into edges e′ and e′′ of lengths μe and δe − μe,
respectively. Then τ∗μ− ∂(e′) has no monodromy around γe, and the monodromy around all
f 	= e in E remains unchanged.

Repeating this procedure for all e in E, we arrive at a representative for the monodromy of
Q such that the image of μ in Vn/Vn−1 is zero. Now we repeat the process with n replaced by
n− 1 until we have replaced μ by 0. �
Corollary 3.5.4. Let X be a compact, connected tropical curve metrized by a monoid
M . Then Q ∈ H1(X ,PL) satisfies condition (2) of Proposition 3.5.1 if and only if it satisfies
condition (1) over every valuative extension of M .

Proof. Let α be a monodromy representative of Q. The corollary reduces to the assertion that
α ≺ δ in M if and only α ≺ δ in every valuative extension of M . For each pair n,m, let
Un,m ⊂ Cone◦(M) be the set of valuations in which nδ < α < mδ. By assumption, the Un,m
cover Cone◦(M). But Cone◦(M) is quasicompact, so a finite collection Uni,mi suffices to cover
it. Taking n = min{ni} and m = max{mi} we find that all Uni,mi are contained in Un,m, so
Un,m = Cone◦(M). Thus, we have nδ ≤ α ≤ mδ in every sharp valuative extension of M . But
M is saturated, so an inequality holds in M if and only if it holds in every valuative extension
of M . Therefore, nδ ≤ α ≤ mδ and α ≺ δ, as required. �
Definition 3.5.5. We say that a homomorphism H1(X )→M

gp on X has bounded mon-
odromy if it satisfies the equivalent conditions of Corollary 3.5.4. We indicate a subgroup of
bounded monodromy by decoration with a dagger (†).

3.6 The tropical Jacobian
Let X be a tropical curve metrized by a monoid M . We construct the tropical Jacobian of X in
a manner covariantly functorial in M . This effectively constructs the tropical Jacobian relative
to the moduli space of tropical curves.

Definition 3.6.1. We define the tropical Jacobian by

Tro Jac(X ) = Hom(H1(X ),Mgp)†/H1(X ), (3.6.1.1)

where the dagger (†) indicates the subgroup of elements with bounded monodromy.
(Definition 3.5.5)

Example 3.6.2. When M = R≥0, the tropical Jacobian is a real torus. Over a general monoid
(that is integral, saturated, and finitely generated), we imagine a family of real tori, parameterized
by homomorphisms M → R≥0, and Tro Jac(X ) represents the space of sections of this family
respecting appropriately defined integral structure.
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Now suppose that we have a monoid homomorphism M → N . This induces an edge
contraction Y of X . We wish to produce a morphism:

Tro Jac(X )→ Tro Jac(Y ). (3.6.3)

The edge contraction X → Y induces a homomorphism H1(X )→ H1(Y ). Note that if μ ∈
Tro Jac(X ) has bounded monodromy then, by definition, the composition

H1(X )→M
gp → N

gp (3.6.4)

takes the value zero on all loops of X contracted in Y . Therefore, the homomorphism factors
through H1(Y ), and does so uniquely because H1(X )→ H1(Y ) is surjective. The factorization
still has bounded monodromy, since if α is bounded by δ in Mgp then its image in Ngp is bounded
by the image of δ. We obtain the desired morphism (3.6.3).

It is clear from the construction that it respects compositions of monoid homomorphisms.
Following the procedure described in § 2.3.1, we may extend the definition of Tro Jac(X ) to
families. That is, given a family of tropical curves X over a logarithmic scheme S, we obtain an
étale sheaf on the category of logarithmic schemes over S by either of the following equivalent
procedures.

(1) If T is an atomic neighborhood of a geometric point t, then we define Tro Jac(X /S)(T ) =
Tro Jac(Xt) and sheafify the resulting presheaf.

(2) If T is a logarithmic scheme over S of finite type then an object of Tro Jac(X /S)(T ) consists
of objects of Tro Jac(Xt) for each geometric point t that are compatible along geometric
generizations. We extend from logarithmic schemes that are of finite type to all logarithmic
schemes by the approximation procedure of [EGA, IV.8].

If X is a proper, vertical logarithmic curve over S with tropicalization X then we pose
Tro Jac(X/S) = Tro Jac(X /S).

Example 3.6.3. If S is an atomic logarithmic scheme and X is a family of tropical curves over S
then Tro Jac(X /S) = Hom(H1(X ),Glog)†/H1(X ). In particular, Tro Jac(X /S) is typically not
representable by an algebraic stack with a logarithmic structure (or a cone stack, in the language
of [CCUW20]): if it were then the tropical torus Hom(H1(X ),Glog)†, which is a H1(X )-torsor
over Tro Jac(X /S), would be representable. The proof Proposition 2.2.7.2 shows that it is not.

Example 3.6.4. We illustrate the necessity of the bounded monodromy condition from a tropical
perspective; in § 4.18 we will see an algebraic version of the same idea. Our discussion will be
somewhat informal, as we simply wish to convey some intuition.

Let C be the nodal curve of genus 2 consisting of two rational curves joined at three nodes.
Let S be a smooth surface with a normal crossings divisor D = D1 ∪D2 consisting of two smooth
components meeting at a single point s, and let X → S be a family of curves smoothing C → s
to a smooth family of curves of genus 2 over S −D. We choose X to have smooth total space,
and assume that the first and third node smooth out together over D2, while the second smooths
out independently over D1. Such a family can be constructed, for example, by restricting to a
sufficiently small two-parameter subfamily of a versal family of C.

We give X → S its minimal logarithmic structure, that is, the log structure pulled back from
the moduli space of curves and its universal family C2 →M2. The logarithmic scheme S has four
strata, given by s,D1 − s,D2 − s, and S −D. Restricting to a sufficiently small neighborhood
of s if necessary (an atomic neighborhood in the terminology above), the logarithmic structure
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is globally generated, with
Γ(S,MS) = MS,s = N2.

The precise construction of the geometric family X → S is not important: we chose it because
it leads to a simple yet interesting tropicalization, which we could have taken as our original
input. The tropicalization X → S is a family of polyhedral complexes over S, constant on the
strata of S, and metrized by the various sheaves of monoids MS,t for t ∈ S. Its most interesting
fiber is the fiber over the deepest stratum s, where it consists of the dual graph of C, with two
vertices v1, v2 joined by three edges e1, e2, e3. Each edge has a length δi in the monoidMS,s = N2.
A picture is shown in Figure 7 for an arbitrary monoid M . Our assumption that the total space of
X is smooth and two of the nodes smooth together, while the other one smooths independently,
means that the lengths δ1 and δ3 of e1 and e3 are equal to each other and one of the generators
of N2, while the length δ2 of e2 is the other generator of N2. We can think of this tropical curve
equivalently2 as a family of traditional tropical curves, with edge lengths in R≥0, varying over
the dual cone σs := Hom(MS,s,R≥0) ∼= R2

≥0. The total space of this family thus has three real
dimensions. The length of the edge ei in the fiber over h = (a, b) ∈ σ is simply the evaluation
h(δi). With our choices these lengths are a for e1, e3 and b for e2.

As the stratum s generizes to D1, the edge e2 and its length δ2 contract, and we obtain the
tropical curve metrized by MS,t1

∼= N (with t1 ∈ D1 − s) consisting of a single vertex v with two
edges e1, e3 joining v to itself, both of length the generator of N. Again, we can think of this curve
as the total space of a family over σt1 = Hom(MS,t,R≥0) = R≥0. These data are redundant: σt1
appears as a face of σs, and compatibility with generization means that the restriction of Xs

to the face σt1 agrees with Xt1 . Similarly, generizing s to D2 contracts e1, e3, and we have the
tropical curve metrized over N consisting of a single vertex v with one edge e2, of length the
generator again. This can be thought of as the fiber of Xs over the other one-dimensional face
of σs. Generizing to S −D, the fiber of X → S reduces to a point, which we can think of as a
point over the 0 face of σs. A picture of the tropicalization is shown in Figure 5.

We write J = Tro Jac(X /S). In order to motivate the bounded monodromy condition,
let us accept, for each point (a, b) ∈ σs, corresponding dually to a homomorphism N2 → R,
that the fiber of J over (a, b) should be a real torus, constructed as follows:

J(a,b) = Hom(H1(X(a,b)),R≥0)/∂H1(X(a,b)).

More specifically, if a 	= 0 then we have the presentation

J(a,b) = Hom(Z2,R≥0)/Z(a+ b,−b) + Z(−b, a+ b), (3.6.1)

whereas if a = 0 and b 	= 0 we have

J(0,b) = Hom(Z,R≥0)/Zb (3.6.2)

(if a = b = 0 then we have J(0,0) = 0, of course).
Whatever the definition of the S-points of J , it should have natural specialization maps to

J(a,b) for all (a, b) ∈ σs. The bounded monodromy condition is imposed to guarantee this. In its
absence, the ‘tropical Jacobian’

Hom(H1(Xs),Γ(S,Mgp
S ))/∂H1(Xs)

contains a homomorphism φ with φ(e1 − e2) = 0 and φ(e2 − e3) = δ2. Specializing to a = 0 (that
is, setting δ1 = δ3 = 0), the loop e1 − e3 is collapsed, yet φ(e1 − e3) is not zero modulo the

2 To get equivalence, we also need to remember the integral structure Hom(MS,s,N) ⊂ σs.
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Figure 5. The tropical Jacobian Tro Jac(X/S) (top) and the tropicalization X (middle), over
the cross-section x+ y = a+ b of σs = R2

≥0 (bottom).

subgroup generated by δ1 = δ3. In other words, φ does not descend to be well defined on H1(Xt)
when t is a generization of s in D2.

To correct for this, we demand that when the homomorphism φ : H1(Xs)→M
gp
S is evaluated

on a loop γ the value lies in the subgroup of elements of Mgp
S that are mapped to 0 when

γ is smoothed. This is precisely the bounded monodromy condition. We observe that, in the
example above, the monodromy of φ around the loop γ = e1 − e3 is not bounded by the length,
δ1 + δ3 = 2δ1, of γ, hence it remains nonzero when γ is smoothed.

3.7 The tropical Picard group
Definition 3.7.1. Let X be a tropical curve metrized by a monoid M . We say that an
element of H1(X , L) has bounded monodromy if its image in H1(X ,PL) has bounded mon-
odromy (which means that it is the image of a class of bounded monodromy in H1(X ,M

gp) =
Hom(H1(X ),Mgp)). For each d ∈ H0(X ), we write Tro Picd(X ) for the preimage of d under

the degree homomorphism Tro Pic(X ) ⊂ H1(X , L)
deg−−→ H0(X ) from Corollary 3.4.8.

We define TroPic(X ) to be category of L-torsors whose classes in H1(X , L) have bounded
monodromy, and we define Tro Pic(X ) to be the set of isomorphism classes of Tro Pic(X ).
Objects of TroPic(X ) are called tropical line bundles on X .

1512

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


The logarithmic Picard group and its tropicalization

The main task of this subsection is to describe the functoriality of Tro Pic(X ) with respect
to the monoid M .

Lemma 3.7.2. A class in H1(X , L) has bounded monodromy if and only if it is the sum
of a class in the image of H0(X ,V) and a class of bounded monodromy in H1(X ,M

gp) =
Hom(H1(X ),Mgp) (under the maps induced from diagram (3.4.1)).

Proof. This follows from the commutativity of diagram (3.7.5.3) below, and its exactness in the
second row (which is the long exact sequence associated to the middle column of (3.4.1)):

H1(X ,M
gp)

��

H1(X ,M
gp)

��

H0(X ,V) �� H1(X , L) �� H1(X ,PL)

(3.7.1)

�
We will obtain the functoriality of Tro Pic(X ) from naturally defined functorial operations

on PL and V. We begin by summarizing these.

Proposition 3.7.3. Let X be a tropical curve metrized by M , let u : M → N be a homo-
morphism of monoids, and let σ : X → Y be the induced edge contraction. Let DX and DY be
the diagrams (3.4.1) on X and on Y , respectively.

(i) There is a unique homomorphism PL(X )→ PL(Y ), sending f ∈ PL(X ) to f ∈ PL(Y ) such
that f(σ(x)) = f(x) whenever x is not contracted in Y .

(ii) There is a unique homomorphism V(X )→ V(Y ) by sending the basis vector [x] to [σ(x)].
(iii) The homomorphisms above commute with the quotient map PL→ V.

Proof. (i) The uniqueness is evident, since every y ∈ Y is the image of some x ∈X that is
not contracted. To check the existence, assume that x is a flag of X that is contracted in Y
and f(x) = (α, μ). Then α(i(x))− α(x) ∈ Z�(x) and �(x) lies in the kernel of u (because x is
contracted), so u(α(i(x))) = u(α(x)). Therefore, u ◦ f is constant on the regions contracted by
σ and descends to Y .

(ii) Immediate.
(iii) We argue that the following diagram commutes:

PL(X ) ��

��

V(X )

��
PL(Y ) �� V(Y )

(3.7.3.1)

Let f = (α, μ) be a piecewise linear function on X . The coefficient of v in the image of f in V(X )
is

∑
r(e)=v μ(e). Therefore, the image of f in V(Y ), going around the top and right of (3.7.3.1), is∑

f(v)=w

∑
r(e)=v μ(e). In this sum, each edge of the contracted locus appears twice, with opposite

orientations, and each edge exiting the contracted locus appears once, oriented out. The sum
therefore reduces to

∑
r(e)=w μ(e), which is what we get from following f around the bottom and

left of the diagram. �
Corollary 3.7.4. Diagram (3.4.1) is natural with respect to weighted edge contractions.
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Proposition 3.7.5. Let M → N be a homomorphism of commutative monoids inducing an
edge contraction X → Y of tropical curves. Then the maps

H0(X ,V)→ H0(Y ,V)→ H1(Y , N)† and

H1(X ,M)† → H1(Y , N)† (3.7.5.1)

agree on their common domain of definition and combine to define a map:

H1(X , L)† → H1(Y , L)†. (3.7.5.2)

Proof. Diagram (3.4.1) induces the following commutative square:

H0(X ,PL) �� H0(X ,E) ��

��

H1(X ,M
gp)†

��

�� H1(X ,PL)†

H0(X ,PL) �� H0(X ,V) �� H1(X , L)† �� H1(X ,PL)†

(3.7.5.3)

Suppose that u ∈ H1(X , L) is the image of some v ∈ H1(X ,M
gp)† and w ∈ H0(X ,V). Then

the image of u in H1(X ,PL) must vanish. This is also the image of v, so that v is the image of
some x ∈ H0(X ,E). The difference between w and the image of x maps to 0 in H1(X , L), hence
is the image of some y ∈ H0(X ,PL). Replacing w by w − y, we discover that we must show the
two maps in question agree on H0(X ,E).

We can define a map sending an edge x to itself if it is not contracted in Y , and to 0 if it is
contracted:

H0(X ,E)→ H0(Y ,E). (3.7.5.4)

This commutes with the maps to H0(X ,V) and H1(X ,M
gp) = Hom(H1(X ),Mgp). �

3.8 The tropical Picard stack
The construction in Proposition 3.7.5 can be categorified to operate on L-torsors with bounded
monodromy, and not merely their isomorphism classes. Given an edge contraction σ : X → Y
associated to a homomorphism of monoids M → N and an L-torsor Q on X with bounded
monodromy, we wish to produce an L-torsor on Y in a canonical way.

Using the following lemma, we may promote σ to be a morphism of sites.

Lemma 3.8.1. Let σ : X → Y be an edge contraction induced from a homomorphism M → N .
Let V → Y be a local isomorphism. Then the set-theoretic fiber product U = V ×Y X is
naturally equipped with the structure of a tropical curve and the projection U →X is a local
isomorphism.

Proof. The involution i and the partially defined function r on U are induced from those on X ,
Y , and V and their compatibility. The metric � is induced from the projection to X . We must
verify that r(u) = u if and only if i(u) = u if and only if �(u) = 0 for all u ∈ U . Indeed, r(u) = u
if and only if i(u) = u because this property holds in V and in X . If �(u) = 0 in U then by
definition, �(u) = 0 in X and therefore in Y as well; since V → Y is a local isomorphism, this
implies �(u) = 0 in V , so r(u) = u in both X and in V ; by definition, this implies r(u) = u
in V .

To see that U →X is a local isomorphism, let u be a vertex of U and denote by x, y, and v
its images in X , Y , and V . Let Sx, Sy, Su, and Sv denote their stars. Then Sv bijects onto Sy,
by the assumption that V → Y is a local isomorphism. Therefore, σ−1Sv maps isomorphically
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onto σ−1Sy. But Su ⊂ σ−1Sv and Sx ⊂ σ−1Sy, so that Su maps isomorphically onto Sx, as
required. �

The lemma shows that if V → Y is a local isomorphism, then σ−1V →X is also a local iso-
morphism. It is immediate that σ−1 respects fiber products and covers, so we obtain a morphism
of sites σ : X → Y .

We construct the desired functor TroPic(X )→ TroPic(Y ) by working locally. We write
σ∗BL†

X for the substack of those Q ∈ σ∗BLX (V ) such that Q has bounded monodromy on
σ−1U for each local isomorphism U → Y . Note, however, that bounded monodromy is not a
local condition in general.

Proposition 3.8.2. There is a morphism

σ∗BL†
X → BLY (3.8.2.1)

inducing the morphisms in Proposition 3.7.5.

Proof. Provided we do so compatibly with restriction, it is sufficient to work locally in Y . We
can therefore assume that Y is either a single edge or has a single vertex with a number of edges
attached to it at only one side. In the former case, X is also a single edge and σ : X → Y is an
isomorphism, because σ is an edge contraction. We therefore assume that Y is a single vertex
with edges radiating from it. We note that in this case, Y has no nontrivial covers, so that we
only need to construct (3.8.2.1) on global sections:

TroPic(X )→ TroPic(Y ). (3.8.2.2)

Let us write L′ for the sheaf of N -valued linear functions on X and TroPic(X )′ for the
category of L′-torsors on X of bounded monodromy. Since every edge of X that is contracted
by σ has length 0 in N (by definition), L′ = σ∗LY . In particular, L′ is constant with value Ngp

on the preimage of the vertex of Y . The quotient L′/Ngp is a constant Z on the edges of X not
contracted by σ and therefore has vanishing H1. We may therefore make the identifications

H1(X , L′) = H1(X , N
gp) = Hom(H1(X ), Ngp). (3.8.2.3)

But every loop of X has length 0 when measured in N , so that a homomorphism H1(X )→ N
gp

of bounded monodromy must be 0. Therefore, H1(X , L′)† = 0 and TroPic(X )′ = BΓ(X , L′).
Observing now that L′(X ) = L(Y ), we conclude that TroPic(X )′ = TroPic(Y ). The sought-
after morphism (3.8.2.2) now arises as the composition

TroPic(X ) �� TroPic(X )′ TroPic(Y )
∼��

Γ(X ,BL)† �� Γ(X ,Bσ∗L)† Γ(Y ,BL)†��

(3.8.2.4)

�
We leave it to the reader to verify that the morphism of Proposition 3.8.2 is compatible

with composition of homomorphisms of monoids. We can now define the tropical Picard group
in families, using the process described in § 2.3.1. If X is a family of tropical curves over a
logarithmic scheme S, we obtain a stack TroPic(X /S) on the large étale site of S characterized
by either of the following two descriptions.

(1) If T is an atomic neighborhood of a geometric point t, then TroPic(X /S)(T ) =
TroPic(Xt), and in general TroPic(X ) is the stackification of the category fibered in
groupoids arising from this definition.
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(2) If T is a logarithmic scheme over S and T is of finite type then the objects of
TroPic(X /S)(T ) consist of a tropical line bundle Qt on Xt for each geometric point t
such that, for any geometric specialization t� t′, the line bundle Qt′ induces Qt by way of
the edge contraction Xt′ →Xt and Proposition 3.8.2. One extends to general logarithmic
schemes using finite type approximations.

3.9 Prorepresentability and subdivisions
Let X be a tropical curve metrized by a monoid M . We saw in § 3.6 that the tropical Jacobian
can be regarded as a functor of pairs (N, u) where u : M → N is a homomorphism of monoids.
This functor is not representable, as we saw in Example 3.6.3. However, it is not that far from
being representable: it is the quotient of a prorepresentable functor by a discrete group.

Proposition 3.9.1. The functor Hom(H1(X ),PL)† is prorepresentable on M/Mon by the
system of all submonoids P of M

gp +H1(X ) (direct sum) with the following properties:

(1) P is finitely generated over M ;
(2) for each γ ∈ H1(X ) we have γ ≺ �(γ) in P .

Proof. Note that the second property implies that P generatesMgp +H1(X ) as a group. Indeed,
if γ ≺ �(γ) then γ − n�(γ) ∈ P for some integer n; as �(γ) ∈M ⊂ P , this implies γ ∈ P .

Let I be the diagram of all P with the indicated properties. Let F = lim−→P∈I Hom(P ,−) be the
pro-object they represent. Certainly, if P ∈ I then a homomorphism P → N commuting with the
morphisms from M induces an object of Hom(H1(X ), N)† by passing to the associated group.
This gives us a morphism F → Hom(H1(X ),PL)† that we would like to show is an isomorphism.

Suppose that μ : H1(X )→ N
gp is a homomorphism with bounded monodromy. Combining

this with the structural homomorphism M → N , we get a homomorphism of monoids ν : M +
H1(X )→ N

gp. Choose a basis e1, . . . , eg of H1(X ). For each i, there are integers n and m such
that nν(�(ei)) ≤ ν(ei) ≤ mν(�(ei)) in N

gp. That is ei − n�(ei) and m�(ei)− ei both lie in the
preimage of N under ν. We take P to be the submonoid of M +H1(X ) generated by M and
the ei − n�(ei) and m�(ei)− ei. Then, by construction, P is finitely generated over M , generates
M +H1(X ) as a group, has bounded monodromy, and induces μ via ν.

This shows that F → Hom(H1(X ),PL)† is surjective. To see that it is also injective, consider
a second map Q→ N inducing μ as above, with Q ∈ I. Then Q ∩ P is also in I and the map
Q ∩ P → N induced from either Q→ N or P → N – they must be the same because the induced
maps on associated groups is the same – represents the same object of F (N). This proves the
injectivity and completes the proof. �

Let us now assume that M is finitely generated. There is no loss of generality in doing so,
since we only care about the set of lengths of the edges of X , which is in any case a finitely
generated submonoid.

It is then dual to a rational polyhedral cone σ, and the category of monoids that are finitely
generated relative to M is contravariantly equivalent to the category RPC/σ of rational poly-
hedral cones over σ. These observations permit us to reinterpret Proposition 3.9.1 dually, to the
effect that Hom(H1(X ),PL)† is representable by an ind-object of RPC/σ.

Rational polyhedral cones are finitely generated, saturated, convex regions in lattices, so
we can interpret ind-rational polyhedral cones as not necessarily finitely generated, saturated,
convex regions in torsion-free abelian groups. Actually, Proposition 3.9.1 gives a pro-object of
M/Mon whose associated group is constant, so that it is represented dually by a saturated,
convex region in the lattice Hom(Mgp

,Z)×H1(X ). The following corollary specifies which.
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Figure 6. The universal cover of the tropical Jacobian of a loop of circumference δ ∈ R≥0 (left)
and the pro-monoid that represents it (right).

Corollary 3.9.2. The functor Hom(H1(X ),PL)† is ind-representable by the collection τ of
pairs (u, v) ∈ Hom(Mgp

,Z)×Hom(H1(X ),Z) such that u(M) ≥ 0, and, whenever u(�(γ)) = 0
for some γ ∈ H1(X ), we also have v(γ) = 0.

Proof. Let I denote the pro-M -monoid consisting of all P ⊂Mgp ×H1(X ) such that P is finitely
generated overM and γ ≺ �(γ) in P for all γ ∈ H1(X ) (as in Proposition 3.9.1). Let J denote the
ind-rational polyhedral cone consisting of all (u, v) such that u(M) ≥ 0 and u(�(γ)) = 0 implies
v(γ) = 0. We wish to show that I and J are dual.

Since I is closed under finite intersections and J is closed under finite unions, it is sufficient
to demonstrate the duality on the level of rays in Hom(Mgp ×H1(X ),Z) and the corresponding
half-spaces in M

gp ×H1(X ). That is, we need to show that (u, v) ∈ Hom(Mgp ×H1(X ),Z)
having the properties u(M) ≥ 0 and u(�(γ)) = 0 implies v(γ) = 0 if and only if M ⊂ (u, v)∨ and
γ ≺ �(γ) in (u, v)∨. But this is immediate: u(M) ≥ 0 means precisely that M ⊂ (u, v)∨; likewise,
γ ≺ �(γ) in the half-space (u, v)∨ means either that u(�(γ)) = v(γ) = 0 or that u(�(γ)) > 0, which
is equivalent to the property that u(�(γ)) = 0 implies v(γ) = 0. �
Example 3.9.3. Consider a loop X of circumference δ, metrized by the monoid Nδ. Figure 6 gives
a visual representation of the ind-rational polyhedral cone representing Hom(H1(X ),Glog)† on
the left side, and of the pro-monoid representing it on the right. On the left, the cone is the
union of the origin and the strict right half plane; on the right, it is an infinitesimal thickening
of the positive horizontal axis.

The real points of the tropical Jacobian can be seen by dividing the picture on the left by
H1(X ) � Z, which acts by vertical translation: (x, y) �→ (x, y + x).

The advantage of working with cones instead of monoids is that we can see subdivisions
rather explicitly.

Corollary 3.9.4. Subdivisions of Hom(H1(X ),PL)† by representable functors are in bijection
with subdivisions of the cone τ defined in Corollary 3.9.2.

Proof. This is entirely a matter of unwinding definitions. Suppose first that T is a subdivision of
τ by rational polyhedral cones. Then for every rational polyhedral cone σ and morphism σ → τ ,
the fiber product T ×τ σ is a subdivision of σ. But τ represents Hom(H1(X ),PL)†, so that if hT
is the functor represented by T then hT → Hom(H1(X ),PL)† is representable by subdivisions.

Suppose conversely that hT → Hom(H1(X ),PL)† is representable by subdivisions, where T
is a cone complex. For any finitely generated subcone σ of τ , the fiber product hσ ×hτ hT is
representable by a subdivision of σ. It is immediate from this that T is a subdivision of τ . �
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Corollary 3.9.5. Subdivisions of Tro Jac(X ) by cone spaces [CCUW20] correspond to
H1(X )-equivariant subdivisions of the cone τ of Corollary 3.9.2.

Proof. This is immediate, since subdivisions of Tro Jac(X ) are the same as H1(X )-equivariant
subdivisions of Hom(H1(X ),PL)†. �

3.10 Boundedness of moduli
Our definition of boundedness is a natural adaptation to logarithmic schemes of the schematic
notion [Gro95, Définition 1.1].

Definition 3.10.1. A moduli problem F over logarithmic schemes over S is said to be bounded
if, locally in S, there is a logarithmic scheme T of finite type over S and a morphism T → F
that is surjective on valuative geometric points.

In this subsection and the next, we will work with a bit more generality than necessary for
the application to the tropical Jacobian. The boundedness results we obtain apply to tropical
abelian varieties as well.

Definition 3.10.2. Let ∂ : H → Hom(H,Mgp) be a pairing on a finitely generated free abelian
group H, valued in a partially ordered abelian group Mgp. We say that ∂ is positive semidefinite
if, ∂(e) · e ≥ 0 for all e ∈ H and ∂(e) · f ≺ ∂(e) · e for all e, f ∈ H. We will call it positive definite
if ∂(e) · e = 0 only for e = 0. Accordingly, we refer to the quadratic function �(f) = ∂(f) · f as a
positive semidefinite quadratic form or a positive definite quadratic form.

Remark 3.10.3. If ∂ is a positive semidefinite pairing on H, valued in Mgp, and ψ : M → N is a
monoid homomorphism, then ψ∂ is a positive semidefinite pairing valued inNgp. Moreover, if ∂ is
positive semidefinite, then ∂ descends to a positive definite pairing onH/{e ∈ H | �(e) = 0}. Com-
bining these observations, suppose that ∂ is positive definite and let Hψ = {γ ∈ H |ψ(�(γ)) = 0}.
Then ∂ descends to a positive definite pairing on H/Hψ, valued in Ngp.

Theorem 3.10.4. Let ∂ : H → Hom(H,Glog) be a positive definite bilinear pairing over a
logarithmic scheme S of finite type. Then Hom(H,Glog)†/∂H is bounded.

Proof. We write � for the quadratic form �(f) = ∂(f).f . The assertion of the theorem is local
to the constructible and étale topologies on S, so we may assume S has constant characteristic
monoid.

Lemma 3.10.4.1. Let � : H →M be a positive definite quadratic form, where H is a lattice of
finite rank and M is finitely generated. There is a finite set C ⊂ H such that μ ∈ Hom(H,Glog)
lies in Hom(H,Glog)† if and only if μ(f) ≺ �(f) for all f ∈ C. The set C may be chosen to include
a basis of Hu (notation as in Remark 3.10.3) for every monoid homomorphism u : M → N .

Proof. The subgroup Hu depends only on the minimal localization homomorphism through
which u factors. Since M is finitely generated, there are only finitely many distinct localization
homomorphisms ψ : M → N . For each of these localizations, let Hψ = {x ∈ H |ψ(�(x)) = 0}. Let
Cψ be a finite set of generators of Hψ, as an abelian group, and let C =

⋃
Cψ. Since every Hu

appears in this list, Cu contains a basis of every Hu.
We will demonstrate that if u : M → N is a monoid homomorphism, and μ : H → N

gp is a
group homomorphism such that μ(x) ≺ u(�(x)) for all x ∈ C, then μ(x) ≺ u(�(x)) for all x ∈ H.
The condition μ(x) ≺ u(�(x)) is equivalent to the condition that μ(x) maps to 0 when N is
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localized by u(�(x)). We have a commutative square

M
u ��

ψ
��

N

ϕ

��

M [−�(x)]
 �� N [−u(�(x))]


By definition of Hψ, we have ψ(�(Hψ)) = 0. By assumption, we have μ(y) ≺ �(y) for all y ∈ Cψ,
so ϕ(μ(Hψ)) = 0. We certainly have x ∈ Hψ, so we conclude ϕ(μ(x)) = 0, as required. �

Choose C as in Lemma 3.10.4.1 and enlarge it if necessary so that it generates H as an
abelian group. For each pair of integers m and n, let Zm,n be the set of all μ : H →M

gp such
that m�(f) ≤ μ(f) ≤ n�(f) for all f ∈ C.

Lemma 3.10.4.2. For all m and n, the functor Zm,n is bounded.

Proof. LetA = [A1/Gm], with its toric logarithmic structure. Note thatA is the locus of t ∈ Glog

such that t ≥ 0. For each f ∈ C, we obtain a pair of maps Zm,n → A:

αf (μ) = μ(f)−m�(f)

βf (μ) = n�(f)− μ(f)

Since C generates H as an abelian group, the tuple (αf , βf )f∈C : Zm,n → (A×A)|C| is a
monomorphism. The image is cut out by the relations αf (μ) + βf (μ) = (n−m)�(f) and finitely
many other equalities induced from the relations among the f ∈ C determined by the group
structure of H. There are finitely many such relations, and each one imposes an open condition
on (A×A)|C|, so Zm,n is representable by an open substack of (A×A)|C|, and, in particular, is
bounded. �
Remark 3.10.4.3. The proof of the lemma actually shows that Zm,n is representable by an Artin
cone.

With C as above, we choose b ∈ Z such that −b�(f) ≤ ∂(e) · f ≤ b�(f) for all e, f ∈ C (such
a b exists by the finiteness of C and the definition of a positive definite pairing). We then take
Z to be the set of μ ∈ Hom(H,Glog) such that

− r(bg + 1)�(f) ≤ μ(f) ≤ r(bg + 1)�(f) (3.10.4.4)

is satisfied for all f ∈ C, with r being the rank of the abelian group M
gp. In other words,

Z = Zm,n with m = n = r(bg + 1)�(f), so Z is bounded by Lemma 3.10.4.2.
To complete the proof of Theorem 3.10.4, we need to show that the valuative geometric points

of some Z surject onto those of Hom(H,Glog)†/∂H under the projection Z ⊂ Hom(H,Glog)† →
Hom(H,Glog)†/∂H. We shall therefore assume that MS is valuative. Note that passing to a
valuation of MS does not change Mgp

S , so Mgp
S is still finitely generated. Let

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nk = MS

be the filtration guaranteed by Proposition 2.1.3.8. It is finite because Lemma 2.1.2.8 implies
that each N i is determined by its associated subgroup of Mgp

S , and M
gp
S is a finitely generated

abelian group, hence noetherian. In fact, the length, k, of this filtration is bounded by the rank,
r, of Mgp

S . For each i, let Hi be the subgroup of γ ∈ H such that �(γ) ∈ N i.
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We now proceed by induction on the length of this filtration. We argue that if μ is an element
of Hom(H,Ngp

i ) with bounded monodromy then there exist some γ ∈ H and some ζ such that
−(g + 1)�(f) ≤ ζ(f) ≤ (g + 1)�(f) for all f ∈ C, and μ− ζ − ∂(γ) takes values in N i−1.

By composition with the homomorphism q : N i → N i/N i−1, we obtain a map

Hom(H,Ngp
i )† → Hom(H,Ngp

i /N
gp
i−1)

†. (3.10.4.5)

The important point here is that if μ ∈ Hom(H,Ngp
i ) has bounded monodromy then qμ also has

bounded monodromy, in the sense that qμ(α) ≺ q�(α) where �(α) ∈MS denotes the length of α.
Let us write μ for the image of μ in Ngp

i /N
gp
i−1, as well as � for the length function taking values

in N
gp
i /N

gp
i−1, and ∂ for the reduction of the pairing ∂ modulo Ngp

i−1. Finally, let H = Hi/Hi−1

and note that ∂ and � are well defined and positive definite on H.
By Proposition 2.1.3.8, the totally ordered abelian group N

gp
i /N

gp
i−1 is archimedean, hence

admits an order-preserving inclusion in R by Theorem 2.1.3.6. Since μ ∈ Hom(H,R), and
∂(H) ⊂ Hom(H,R) is a lattice (because ∂ is positive definite), and C contains a set of gen-
erators of H, it is possible to write μ = α+ ∂(γ) for some γ ∈ H and some α =

∑
ai∂(ei) with

0 ≤ ai ≤ 1 for all i, and with the ei ∈ C. Now, evaluating α on f ∈ C, we get

α(f) =
g∑
i=1

ai∂(ei) · f. (3.10.4.6)

But we have −b�(f) ≤ ∂(ei) · f ≤ b�(f) for all f ∈ C, so we obtain

−bg�(f) ≤ α(f) ≤ bg�(f). (3.10.4.7)

Note now that α = μ− ∂(γ), which is in Hom(H,R) by construction, is actually in the
image of Hom(H,Ngp

i /N
gp
i−1). Using the fact that H is free, we can lift and extend α to some

ζ ∈ Hom(H,Ngp) = Hom(H,Mgp
S ) such that ζ(H) ⊂ N i and ζ(Hi−1) = 0. This ensures that ζ

lies in the bounded monodromy subgroup Hom(H,Ngp
i )† ⊂ Hom(H,Ngp

i ).

Lemma 3.10.4.8. The lift ζ chosen above lies in Hom(H,Ngp
i )†.

Proof. If �(f) ∈ N i−1 we have ζ(f) = 0 so certainly ζ(f) is bounded by all of N , and in particular
by �(f). If �(f) 	∈ N i−1 then Proposition 2.1.3.8 implies that all of Ngp

i , and in particular ζ(f),
is bounded by �(f). �

Suppose that f ∈ C. Inequality (3.10.4.7) lifts to

−bg�(f)− u ≤ ζ(f) ≤ bg�(f) + v (3.10.4.9)

for some u, v ∈ N i−1. If ζ(f) 	= 0 then �(f) is a positive element of Ngp
i /N

gp
i−1. Both u and v lie

in N i−1, so u and v are both dominated by �(f) by Proposition 2.1.3.8. In particular, u ≤ �(f)
and v ≤ �(f). Substituting this into (3.10.4.9), we obtain

−(bg + 1)�(f) ≤ ζ(f) ≤ (bg + 1)�(f) (3.10.4.10)

as desired.
We have now shown that μ− ∂(γ)− ζ takes values in N

gp
i−1. Repeating this process once

for each of the k steps of the filtration (3.10.4.5), we obtain μ−∑
∂(γi)−

∑k
i=1 ζi = 0. Thus,

ζ =
∑
ζi represents μ in Tro Jac(X /S) and, as each ζi satisfies (3.10.4.10) and k ≤ r, their sum

satisfies (3.10.4.4), so ζ ∈ Z(S). �
Corollary 3.10.5. If X is a compact tropical curve over S then Tro Jac(X /S) is bounded
over S.
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Proof. Let X be the tropicalization ofX. The assertion is local to the constructible topology and
to the étale topology on S, so we can assume that the logarithmic structure on S has constant
characteristic monoid and that the dual graph of X is also constant. After these restrictions, we
have the exact sequence

0→ H1(X ) ∂−→ Hom(H1(X ),Glog)† → Tro Jac(X /S)→ 0 (3.10.5.1)

by definition of the tropical Jacobian. Since ∂ requires only a finite number of elements of MS to
describe, we may assume that Mgp

S is a finitely generated abelian group. Since the intersection
pairing of a tropical curve is positive definite, we may now apply Theorem 3.10.4 to conclude. �
Corollary 3.10.6. Let X be a compact tropical curve over S. Then Tro Picd(X /S) is
quasicompact over S for all d ∈ H0(X ).

Proof. As Tro Picd(X /S) is a torsor under Tro Pic0(X /S) by Corollary 3.4.8, it is sufficient
to assume d = 0. But Tro Pic0(X /S) = Tro Jac(X /S) by Corollary 3.10.6, so the conclusion
follows from Corollary 3.10.5. �

3.11 Boundedness of the diagonal
The main point of this subsection is to demonstrate that the lattice defined by a positive definite
matrix of real numbers is discrete and that this is also valid as the lattice varies in a tropical
family. We make use of the tropical topology defined in § 2.3.2.

These results are also demonstrated by a different method as part of the proof of [KKN08b,
Proposition 4.5]. The proof appears in [KKN08c, Lemma 5.2.7] and [KKN08b, § 9.4]. Unlike the
present proof, that proof does not rely on the tropical topology, but it ultimately comes down
to a compactness argument, as this one does.

Theorem 3.11.1. Let H be a finitely generated free abelian group, let M
gp

be a finitely gen-
erated, partially ordered abelian group, and let ∂ : H → Hom(H,Mgp) be a positive definite
pairing. For each φ : H →M

gp
that is bounded by ∂, there are at most finitely many γ ∈ H for

which there exists a sharp homomorphism M → N with ∂N (γ) = φN .

Proof. As usual, we write � : H →M
gp for the quadratic form associated with ∂. Since every

monoid has a sharp homomorphism to a valuative monoid, we can assume that N is valuative.
Since Cone◦(M) is quasicompact, it is sufficient to show that every V ∈ Cone◦(M) has an

open neighborhood U such that there are only finitely elements in H that represent φW for any
valuation M →W lying in U . We fix one V ∈ Cone◦(M). Beginning with U = Cone◦(M), we
will replace U by a smaller open neighborhood of V finitely many times until we arrive at a
neighborhood where we can be sure φ has only finitely many representatives.

Since the underlying abelian group of V is finitely generated, V has a finite filtration by
totally ordered subgroups Vp such that Vp/Vp−1 are all archimedean; we choose embeddings
Vp/Vp−1 ⊂ R. These, together with ∂, induce a filtration of H and positive definite pairings ∂p
on Hp/Hp−1, valued in Vp/Vp−1.

The proof will be by induction on the index p of the subgroup Vp in which ∂V and φV take
their values. Assume that φV and ∂V both take values in Vp ⊂ V . Since φV is bounded by ∂, it
descends to a map φp : H/Hp−1 → Vp/Vp−1 ⊂ R.

Lemma 3.11.2. There is an open neighborhood of V over which the representatives of φ in H
lie in at most finitely many distinct cosets of Hp−1.

Proof. Choose a subdivision of RHp/RHp−1 into a finite number of rational polyhedral cones
σ such that ∂p(β̄) · γ̄ > 0 whenever β̄ and γ̄ are elements of Hp/Hp−1 lying in the same cone σ.
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This means that if β and γ are lifts of β̄ and γ̄ to Hp then ∂V (β) · γ � Vp−1. In particular, ∂V (β) ·
γ > 0 for all β, γ ∈ Hp −Hp−1 and, for each γ ∈ Hp −Hp−1, there is a positive n (depending
on γ) such that n�V (γ) > φV (γ).

Choose a finite set of generators Bσ in Hp for each σ. There is an open neighborhood
Uσ ⊂ U of V such that ∂Uσ(β) · γ > 0 and n�Uσ(γ) > φUσ(γ) for all β, γ ∈ Bσ. Since there are
only finitely many cones σ and finitely many generators in each Bσ, the positive integer n can
be chosen independent of σ, β, and γ. Replacing U by the intersection of the (finitely many) Uσ,
we can assume that these inequalities hold on U .

Now suppose γ ∈ H is a putative representative of γ. The reduction of γ modulo Hp−1 lies
in some cone σ. We can therefore write γ ≡∑

β∈Bσ
aββ (mod Hp−1) with all aβ ≥ 0. Evaluating

on β ∈ Bσ, we have the following inequality over U :

∂U (γ) · β =
∑
β′∈Bσ

aβ′∂U (β) · β′ > aβ�U (β).

Since the aβ are all positive integers, and n�U (β) > φU (β), we will have ∂U (γ) · β > φU (β) if
aβ > n. In particular, we deduce that, for each σ, there are at most finitely many possibilities for
the aβ if ∂(γ) is to have a chance of representing φ anywhere in U . Since there are only finitely
many cones σ, we conclude. �

Suppose γ represents one of the cosets invoked in the lemma. Then the representatives of
φ in γ +Hp−1 correspond bijectively to the representatives of φ− ∂(γ) in Hp−1. Replacing φ
successively by φ− ∂(γ) for representatives γ of each of the finitely many cosets guaranteed by
the lemma, it therefore suffices to show that φ has at most finitely many representatives in Hp−1

in a neighborhood of V .
We can now replace H with Hp−1 and φ and ∂ with their restrictions to Hp−1. If there are

finitely many potential representatives of φ|Hp−1 in Hp−1 in a neighborhood of V , then of course
there will be finitely many potential representatives of φ in Hp−1 as well. With this reduction,
both φV and ∂V take values in Vp−1 and we can induct. �
Corollary 3.11.3. Let H be a finitely generated abelian group, let M be a sharp monoid, and
let ∂ : H → Hom(H,Mgp) be a positive definite pairing. Then H → Hom(H,Glog) is of finite
type and affine.

Proof. The assertion is, in other words, that for any logarithmic scheme of finite type and
any morphism φ : S → Hom(H,Glog), the fiber product H ×Hom(H,Glog) S is quasicompact. This
assertion is local in the constructible and étale topologies on S, so we can assume S is connected
and has a constant logarithmic structure, the stalk of whose characteristic monoid is M . We
therefore regard φ as a homomorphism H →M

gp.
By Theorem 3.11.1, there are only finitely many γ ∈ H such that there is a nonempty sub-

functor of that represented by S in which ∂(γ) represents φ. These are mutually disjoint, and
treating these one at a time, it is sufficient to show that the subfunctor of S in which a fixed
∂(γ) represents φ is of finite type and affine.

This functor is described by the finitely many equations ∂(γ) · ei = φ(ei), for ei lying in
a basis of H. By Proposition 2.2.7.5, this locus is representable by an affine scheme of finite
type. �
Corollary 3.11.4. Let X be a tropical curve metrized by M . Then the intersection pairing

∂ : H1(X )→ Hom(H1(X ),Glog) (3.11.4.1)

is bounded.
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Proof. The intersection pairing is positive definite. �

4. The logarithmic Picard group

Suppose that X is a proper, vertical logarithmic curve over S where the underlying scheme of
S is the spectrum of an algebraically closed field, and let X be the tropicalization of X. Then
H1(X,Glog) = H1(X,Mgp

X ) = H1(X ,PL) because Mgp
X is a sheaf of torsion-free abelian groups.

If Q is an M
gp
X -torsor on X then we say that Q has bounded monodromy if the corresponding

PL-torsor on X does. If Q is an Glog-torsor on X then we say that Q has bounded monodromy
if its induced Mgp

X -torsor has bounded monodromy.

Definition 4.1. Let X be a proper, vertical logarithmic curve over S. A logarithmic line bundle
on X is a Glog-torsor on X in the strict étale topology whose fibers over S have bounded
monodromy. Let LogPic(X/S) be the category fibered in groupoids on logarithmic schemes
over S whose T -points are the logarithmic line bundles on XT . We write Log Pic(X/S) for its
associated sheaf of isomorphism classes.

4.2 Local finite presentation
Definition 4.2.1. A category fibered in groupoids F on the category of logarithmic schemes
over S is said to be locally of finite presentation if, for any cofiltered system of affine logarithmic
S-schemes Si, the map

lim−→F (Si)→ F (lim←−Si)

is an equivalence of categories.

The definition of local finite presentation should be compared with Lemma 2.2.3.4. Local
finite presentation is important because it allows us to limit our attention to logarithmic schemes
of finite type.

Proposition 4.2.2. Suppose X is a proper, vertical logarithmic curve over S. Then
LogPic(X/S) is locally of finite presentation over S.

Proof. We prove the essential surjectivity part of Definition 4.2.1 for the functor π∗BGlog. The
full faithfulness is similar but easier, and we omit it. Then we prove that the bounded monodromy
condition defining LogPic(X/S) inside π∗BGlog is locally of finite presentation.

The assertion is local in S, so we assume S is quasicompact and quasiseparated. Consider
a cofiltered inverse system of affine logarithmic schemes Si over S. Let Xi be the base change
of X to Si. Let L be a logarithmic line bundle over Y = lim←−Xi. Then there is an étale cover
Uj of Y over which L can be trivialized. We can assume that the Uj are all quasicompact and
quasiseparated. We note that Y is quasicompact and quasiseparated because all the Xi were. In
particular, we can arrange for the Uj to be finite in number. By [EGA, Théorème IV.8.8.2], they
are induced by maps Uij → Xi for some index i. These maps can be assumed étale by [EGA,
Proposition IV.17.7.8] and surjective by [EGA, Théorème IV.8.10.5].

The transition functions defining L come from Γ(Ujk,M
gp
Y ) = lim−→i

Γ(Uijk,M
gp
Xi

), so are
induced from transition functions over Uijk for some sufficiently large i. Likewise, the cocycle
condition is checked in Γ(Ujk�,M

gp
Y ) = lim−→i

Γ(Uijk�,M
gp
Xi

) and is therefore valid for a sufficiently
large i. Then L is induced from Xi.

It remains to verify that the bounded monodromy condition is locally of finite presentation.
That is, we assume that we have a cofiltered inverse system of affine logarithmic schemes Si
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over S, as before, and that αi ∈ H1(Xi,M
gp
Xi

). We assume that their limit β ∈ H1(Y,Mgp
Y ) has

bounded monodromy and we prove the same for a sufficiently large αi.
There is a finite stratification of S into locally closed subschemes such that MS is locally

constant on each stratum. Since the bounded monodromy condition is checked on geometric
points, we can replace S with one of its strata and assume MS is constant. Now replacing S by
an étale cover, we can assume MS is constant and that the dual graph X of X is constant as
well.

Using the exact sequence

R1π∗π∗M
gp
S → R1π∗MX → R1π∗MX/S = 0 (4.2.2.1)

we can lift α to α̃ ∈ H1(X,π∗Mgp
S ) = Hom(H1(X ),Mgp

S ). The bounded monodromy condition
for α̃ can be checked by evaluating it on each of the finitely many generators of H1(X ), and for
any one γ in H1(X ), we can see that α̃(γ) is bounded by �(γ) in lim−→Γ(Si,M

gp
Si

) if and only if it
is bounded in Γ(Si,M

gp
Si

) at some finite stage. This completes the proof. �
Corollary 4.2.3. Suppose X is a proper, vertical logarithmic curve over S. Then the sheaf
Log Pic(X/S) is locally of finite presentation over S.

Proof. We can assume without loss of generality that X has connected fibers over S. Then
LogPic(X/S) is a gerbe over Log Pic(X/S) banded by Glog. Locally in S, this gerbe admits
a section, making Log Pic(X/S) into a Glog-torsor over LogPic(X/S). But Glog is certainly
locally of finite presentation and LogPic(X/S) is locally of finite presentation over S by
Proposition 4.2.2, so Log Pic(X/S) is locally of finite presentation over S, as required. �

4.3 Line bundles on subdivisions
The following statement is a corollary of Proposition 3.5.1. It says, effectively, that logarithmic
line bundles can be represented by line bundles locally in the logarithmic étale topology.

Corollary 4.3.1. Let X be a proper, vertical logarithmic curve over a logarithmic scheme S.
A class α ∈ H1(X,Mgp

X ) has bounded monodromy in the geometric fibers if and only if, étale-
locally in S, we can find a logarithmic modification S̃ → S and a model X̃ of X over S̃ such that
α|X̃ = 0.

Proof. Replacing S by an étale cover, we can assume S is affine. We can then assume S is of
finite type because the moduli space of logarithmic curves is locally of finite presentation and
LogPic(X/S) is locally of finite presentation (Proposition 4.2.2). Passing to a finer étale cover
if necessary, we can arrange for S to be atomic (Proposition 2.2.2.5) and for the dual graph of
X to be constant over the closed stratum. In particular, S is quasicompact.

Let Sval be the limit over all logarithmic modifications of S. This is a locally ringed space
and its logarithmic structure is valuative. By Proposition 3.5.1, for each point s of Sval, we can
find a subdivision Ys of Xs to which the restriction of α is zero. If Ys denotes the corresponding
logarithmic modification of Xs then α restricts to 0 on Ys.

The subdivision Ys only requires a finite number of elements of MSval,s that are not already
in MS,s, so it is possible to recover Ys and Ys as pulled back from a logarithmic modification Y1

of X over a logarithmic modification S1 of S. Moreover, there is an open neighborhood U1 of s
in S1 where α|Y1 ×S1

U1 = 0.
Since Sval is quasicompact, the preimages of finitely many of these open neighborhoods Ui

suffice to cover Sval. Let T be the fiber product of the finitely many logarithmic modifications
Si of S. Let Z and Z be the common subdivision of the Yi|T and the corresponding logarithmic

1524

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


The logarithmic Picard group and its tropicalization

modification of X over T , respectively. Then the Ui pull back to an open cover of T , from which
it follows that α|Z = 0. �
Proposition 4.3.2. Let X be a logarithmic curve over S. The following conditions are
equivalent for a Glog-torsor P on X.

(1) P has bounded monodromy.
(2) In each valuative geometric fiber of S, there is a model Y of X where P is induced from a
O∗
Y -torsor.

(3) Étale-locally in S there exist a logarithmic modification S̃ → S and a model X̃ of X over
S̃ such that the restriction of P to X̃ is representable by a O∗

X -torsor.

Proof. From the exact sequence

H1(X,O∗
X)→ H1(X,Mgp

X )→ H1(X,Mgp
X ) (4.3.2.1)

finding a Y → X where P is representable by a O∗
Y -torsor is equivalent to finding a cover

where the class of P in H1(X,Mgp
X ) is trivial. With this observation, the equivalence of the

first two conditions is Proposition 3.5.1 and the equivalence of the first and last conditions is
Corollary 4.3.1. �

4.4 Logarithmic étale descent
By definition, LogPic(X/S) is a stack in the étale topology. We show here that, in certain
situations, it is in fact a stack in the logarithmic étale topology. As the logarithmic étale topology
is generated by étale covers, logarithmic modifications, and root stack constructions [Nak17,
Proposition 3.9] (prime to the characteristic), we still need to check descent along logarithmic
modifications and root stacks. Descent along logarithmic modifications (not necessarily prime to
the characteristic) was proved by K. Kato [Kat21], as we summarize below, so the main topic of
this subsection will be descent along logarithmic modifications.

Theorem 4.4.1. The fibered category of étale Glog-torsors is a stack in the Kummer logarithmic
flat topology on logarithmic schemes. It is a stack in the full logarithmic étale topology on
logarithmic schemes whose structure sheaves are sheaves in the logarithmic étale topology.

Remark 4.4.2. We note that under either logarithmic modifications or root stacks, the coho-
mology groups of H i(X,Mgp

X ) of the characteristic monoid and the Picard group of X change.
Theorem 4.4.1 asserts that nevertheless, for a sufficiently well-behaved X, these groups change
in the same way, and thus the cohomology groups H i(X,Mgp

X ) of the logarithmic structure itself
remain constant.

Remark 4.4.3. It is not true in general, as was claimed in an earlier draft of this paper, that
LogPic(X/S) is a stack in the large full logarithmic étale topology on S, nor that it is a stack
on the small logarithmic étale topology for all bases S. Nakayama has given an example of a
logarithmic étale cover of a logarithmic scheme S with respect to which Gm does not form
a separated presheaf [Nak17, remark following Proposition 2.6]. Since one can certainly find
logarithmic curves X over S whose logarithmic Jacobians contain Gm as a subgroup, it follows
that Log Pic(X/S) cannot be a sheaf in the (small) full logarithmic étale topology on this S.
Since LogPic(X/S) is, étale-locally in S, a product of Log Pic(X/S) with BGlog, it follows as
well that LogPic(X/S) is not a stack in the (small) full logarithmic étale topology on this S.
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We will give the full proof of Theorem 4.4.1 elsewhere. Here, we will only demonstrate the
few cases that we need right now. We require the following definition to formulate the hypotheses
of those cases.

Definition 4.4.4. LetM be a finitely generated, saturated, sharp monoid. An element α ∈Mgp

will be called saturated (with respect to M) if α generates the associated group of every rank-1
localization of M in which it is nonzero. If X is a logarithmic scheme, then a section of Mgp

X is
saturated if its image in M

gp
X,x is saturated with respect to MX,x for every geometric point x

of X.

In other words, α is saturated if N/Zα is torsion-free for every rank-1 localization N of M .
Here are the versions of Theorem 4.4.1 that we will prove here.

Proposition 4.4.5. Let X be a logarithmic scheme. Every Mgp
X -torsor in the strict fppf

topology descends uniquely to an étale Mgp
X -torsor. In particular, Mgp

X is an fppf sheaf.

Proposition 4.4.6. Let X be a logarithmic scheme and let τ : Y → X be a root stack. Then
every étale Mgp

Y -torsor descends uniquely to an Mgp
X -torsor. In particular, τ∗M

gp
Y = Mgp

X .

Proposition 4.4.7. Let X be a logarithmic scheme and let τ : Y → X be a logarithmic modi-
fication. Assume τ is, étale-locally in X, the subdivision associated with a saturated section of
M

gp
X . Then every étale Mgp

Y -torsor on Y is étale-locally trivial on X.

Proposition 4.4.7 will suffice for the applications in this paper. It is also the main technical
piece of the full proof of Theorem 4.4.1. The following proposition is not used in this paper, but
will be needed for some applications and can be proved more quickly from Proposition 4.4.7 than
Theorem 4.4.1 can.

Proposition 4.4.8. Let X be a logarithmic scheme and let τ : Y → X be a logarithmic modi-
fication. Assume that X is logarithmically flat over a valuative logarithmic scheme. Then every
étale Mgp

Y -torsor on Y descends to an Mgp
X -torsor on X. In particular, τ∗M

gp
Y = Mgp

X .

4.4.9 Proof of Proposition 4.4.5. An Mgp
X -torsor is a O∗

X -torsor over an Mgp
X -torsor. We can

view M
gp
X -torsors on the strict fppf site as algebraic spaces via the espace étalé, so these satisfy

strict fppf descent, and O∗
X -torsors satisfy fppf descent by Hilbert’s Theorem 90.

4.4.10 Proof of Proposition 4.4.6. This is really a theorem of K. Kato. We merely summarize
how to deduce it from various statements in [Kat21].

It is shown in [Kat21, Theorem 3.2] that Glog is a sheaf in the Kummer logarithmic flat
topology and in [Kat21, Corollary 5.2] that Glog-torsors in the Kummer logarithmic flat topology
are étale-locally trivial. Thus, any descent datum for a Glog-torsor in the Kummer logarithmic
flat topology descends to a descent datum in the strict étale topology, in which it is effective by
definition. Therefore, BGlog is a stack in the Kummer logarithmic flat topology.

4.4.11 Observations about saturated sections of the characteristic monoid. The idea of
Definition 4.4.4 is that if X is a logarithmic scheme and α ∈ Γ(X,Mgp

X ) then α determines
a morphism X → Gtrop

m , and we should think of this as a saturated morphism if α satisfies the
condition of the definition.

Lemma 4.4.11.1. Let M be a fine and saturated monoid. Suppose α ∈Mgp
is saturated. Then

M + Nα ⊂Mgp
is saturated.
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Proof. Let σ be the rational polyhedral cone dual to M . Let τ ⊂ σ be the subcone where α ≥ 0.
Let N ⊂Mgp be the set of γ ∈Mgp such that γ(τ) ≥ 0. Then N is the saturation of M + Nα.
We wish to show that N = M + Nα.

Suppose that γ ∈ N . We can write γ as cα+ β where β ∈ Q≥0M and c ∈ Q≥0. We argue
that c must be an integer and β must be in M . If c ≥ 1 then (c− 1)α+ β is also ≥ 0 on ξ and
is in Mgp. We therefore assume that 0 ≤ c < 1 and will show that γ ∈M .

Suppose that ξ is any ray of σ. Since β ∈M , the slope of β on ξ must be ≥ 0. The slope of
α on ξ is ≥ −1 because α is saturated, and c < 1, so the slope of γ on ξ must be > −1. On the
other hand, γ must have integral slope on ξ, so this slope must be ≥ 0. This holds for all rays ξ
of σ, so we deduce that γ(σ) ≥ 0. That is, γ ∈M . �
Corollary 4.4.11.2. Suppose that X is a logarithmic scheme whose underlying scheme is the
spectrum of a field. Let α be a section of M

gp
X . Assume that neither α nor −α lies in MX . Then

there is a universal scheme with a fine logarithmic structure, Y , over X such that the restriction
of α to Y lies in MY and the underlying scheme of Y is isomorphic to A1

X . If α is saturated
then Y is saturated.

Proof. Let Y have underlying scheme Spec SymOX(−α). Write τ : Y → X for the projection. Let
MY be the submonoid of τ∗(MX)gp (the associated group of the pullback logarithmic structure)
generated by τ∗MX and O∗

Y (−α) ⊂ τ∗(MX)gp. We have a homomorphism εY : MY → OY by
the following formula, for all local choices of a ∈ O∗

Y (−α) and all b ∈ τ∗MX :

εY (anb) = anεX(b).

Note that if anb ∈MY has a second local representation as cmd for c ∈ O∗
Y (−α) and d ∈ τ∗MX

then b and d are either both units of τ∗MX or are both nonunits.3 If b and d are both units then
anb = cmd lies in

⋃
n≥0O∗

Y (−nα), and εY restricts to the canonical injection of this submonoid
into SymOX(−α), so it is certainly well defined; if b and d are both nonunits then εX(b) =
εX(d) = 0, since X is the spectrum of a field, hence εY (anb) = εY (cnd).

Thus, εY is well defined and makes MY into a logarithmic structure on Y . This logarithmic
structure is fine, since étale-locally X has a global chart by Γ(X,MX) and then Y has a global
chart by MX + Nα. The characteristic monoid of Y is MX + Nα at the closed point where
OY (−α)→ OY vanishes, and it is MX + Zα/Zα elsewhere. In particular, it is integral and
therefore fine. By Lemma 4.4.11.1, it is also saturated if α is saturated.

To conclude, we verify that Y has the required universal property. If f : Z → X is any
morphism such that f∗α lies in MZ then we obtain a morphism OZ(−α)→ OZ . This extends
to a ring homomorphism SymOZ(−α)→ OZ and therefore induces a morphism of schemes
g : Z → Y . Since MY is the submonoid of τ∗Mgp

X generated by O∗
Y (−α) and τ∗MX , the map

g∗Mgp
Y →Mgp

Z induced from f carries g∗MY into MZ . Finally, g was chosen so that g∗OY (−α)→
OZ coincides with OZ(−α)→ OZ so g is actually a morphism of logarithmic schemes. �
Corollary 4.4.11.3. Suppose X is a logarithmic scheme whose underlying scheme is the spec-
trum of a field. Suppose α is a saturated section of M

gp
X . Let Y be the universal logarithmic

scheme over X where α is locally comparable to 0 in the partial order on M
gp
X induced from

MX . Then the underlying scheme of Y is isomorphic to P1
X .

3 Indeed, write β and δ for the images of b and d in MX . Then anb = cmd entails nα + β = mα + δ. But Zα ∩
MX = 0 since MX is saturated and neither α nor −α is in MX . Thus, if one of β or δ is zero (say, δ) then
(m − n)α = β, so n = m and β = 0 as well. So either β and δ are both zero, or are both nonzero. If β and δ are
both zero then b and d are units, and if they are both nonzero then εX(b) = εX(d) = 0.
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Proof. The charts where α ≥ 0 and where α ≤ 0 are each isomorphic to A1
X by Corollary 4.4.11.2.

These are glued along the locus where α = 0, which is isomorphic to Spec
∑

n∈ZOX(nα). �

Corollary 4.4.11.4. Suppose X is a logarithmic scheme and α ∈ Γ(X,Mgp
X ). Let Y be the

universal scheme with a fine logarithmic structure where α is locally comparable to 0 in the
partial order of M

gp
Y induced from MY . Then Y is saturated and the underlying scheme of

the fiber of Y over a each point x of X is either empty, isomorphic to x, or isomorphic to P1
x.

Proof. It is immediate from Lemma 4.4.11.1 that Y is saturated.
Since the construction of Y relative to X is compatible with strict base change, it is suf-

ficient to prove the corollary after base change to a point. We therefore assume that X is the
spectrum of a field. There are now three possibilities: if α ∈MX then Y = X and we are done;
if −α ∈MX then Y = ∅ and we are done; if neither α nor −α is in MX then Y � P1

X by
Corollary 4.4.11.3. �
Lemma 4.4.11.5. Suppose that X is a quasicompact logarithmic scheme and α ∈ Γ(X,Mgp

X ).
Then there exist a root stack X ′ of X and an integer n > 0 such that n−1α is saturated on X ′.

Proof. Since X is quasicompact, there is a finite collection of rank-1 localizations of the char-
acteristic monoids MX,x at geometric points x of X. Each of these localizations is (uniquely)
isomorphic to N. Let nx be the image of α in MX,x � N. Let n be the least common multiple of
the nonzero nx and let X ′ be the extension of MX in QMX generated by MX and n−1α. Then
n−1α generates MX,x at every geometric point x of X where α is nonzero. �

4.4.12 Proof of Proposition 4.4.7. The hypotheses are preserved by étale localization in X,
and the conclusion satisfies étale descent in X. We can therefore assume that X is quasicompact
and quasiseparated and has a global chart by a sharp monoid P , and that there is a saturated
α ∈ P of such that Y is the universal logarithmic modification of X where the image of α in
M

gp
Y is locally comparable to 0.
In this situation, we prove two slightly more precise statements that imply Proposition 4.4.7.

Lemma 4.4.12.1. We have R1τ∗M
gp
Y = 0.

Proof. By proper base change for étale cohomology, which implies that the base-change map is
injective for H1 [SGA4(3), Théorème 5.1(ii)], it is sufficient to prove that

H1(τ−1x,M
gp
Y ) = 0

for all geometric points x of X. By Corollary 4.4.11.4, the underlying scheme of the fiber Z =
τ−1x is either empty, isomorphic to x, or isomorphic to P1

x. In the first two cases, the conclusion
is trivial. If Z � P1

x, we have an exact sequence

0→ π−1M
gp
x →M

gp
Z →M

gp
Z/x → 0

We have H1(Z, π−1M
gp
x ) = 0 since π−1M

gp
x is constant and Z is simply connected. We have

H1(Z,Mgp
Z/x) = 0 sinceMZ/x is concentrated in dimension 0. Combined with proper base change,

this gives R1τ∗M
gp
Y = 0. �

Lemma 4.4.12.2. The map τ∗(M
gp
Y )/Mgp

X → R1τ∗O∗
Y is an isomorphism.

Proof. We make some preliminary reductions. It is sufficient to show that the map of étale stalks
τ∗(M

gp
Y )/Mgp

X,x → R1τ∗(O∗
Y )x is an isomorphism for every geometric point x of X. Since τ is of

finite presentation, the formation of R1τ∗O∗
Y commutes with localization, as does the formation
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of τ∗(M
gp
Y )/Mgp

X . It therefore suffices to assume that X is the spectrum of a henselian local ring.
We write x for the closed point of X.

Under these assumptions, we need to show that

H0(Y,Mgp
Y )/H0(X,Mgp

X )→ H1(Y,O∗
Y ) (∗)

is an isomorphism.
Since X has no nontrivial étale covers, we can find γ and δ in MX such that γ − δ = α.

These lift to sections γ̃ and δ̃ of MX . Then α factors through ϕ = (γ̃, δ̃) : X → A2 (where A2

has the toric logarithmic structure), and Y is the pullback of the blowup of A2 at the origin. We
write X ′ = A2 and Y ′ for the blowup of X ′ at the origin.

We will now prove the proposition by considering successively more general examples of X.

Step I: X is the spectrum of a field. Then Y is either empty, isomorphic to X, or isomorphic
to P1

X . The conclusion is trivial in the first two cases, so assume Y � P1
X . Then H0(Y,Mgp

Y ) =
H0(X,Mgp

X ) + Zβ where β is the section max{0, α}. Direct calculation shows that OY (β) �
OP1

X
(1) under the isomorphism Y � P1

X . Since Pic(P1
X) is generated by OP1

X
(1), this shows

that (∗) is an isomorphism.

Step II: X is an artinian local ring and ϕ : X → X ′ factors schematically through the origin.
Let x be the closed point of X. We will show that H0(Y,O∗

Y ) = H0(τ−1x,O∗
τ−1x). Since the

same identity holds for H0(Y,Mgp
Y )/H0(X,Mgp

X ) (since M
gp
Y and M

gp
X are étale sheaves and

the inclusions x→ X and τ−1x→ Y induce equivalence of étale sites), this will be enough to
complete this case.

Every artinian local ring is an iterated extension of the residue field k = k(x) by square-zero
ideals isomorphic to k. By induction, we may therefore assume that X is such an extension of
some X0, and that the conclusion of the proposition is already known for the restriction Y0 of
Y to X0. The inductive step is to show that the restriction map H1(Y,O∗

Y )→ H1(Y0,O∗
Y0

) is
an isomorphism.

Let J be the ideal of Y0 in Y . This is also the kernel of O∗
Y → O∗

Y0
. We have an exact sequence

H1(τ−1x, J)→ H1(Y,O∗
Y )→ H1(Y0,O∗

Y0
)→ H2(τ−1x, J)

Since J is supported on τ−1x � P1
τ−1x, we have H2(τ−1x, J) = 0 for dimension reasons. We show

next that H1(τ−1x, J) also vanishes.
Let Z be the fiber product X ×X′ Y ′ as a scheme with a logarithmic structure that is not

necessarily integral. Since ϕ(X) = 0, we have Z � P1
X . Then Y is the universal scheme over Z

over which the pullback of MZ is integral (it is automatically saturated by Corollary 4.4.11.4).
Since Z � P1

X is flat over X, the ideal of Z0 in Z is Oτ−1x. Therefore, J , which is the ideal of
Y0 = Y ∩ Z0 in Y , is a quotient of Oτ−1x. Let K be the kernel of Oτ−1x → J . Then we have an
exact sequence

H1(τ−1x,Oτ−1x)→ H1(τ−1x, J)→ H2(τ−1x,K)

Since τ−1x � P1
x, both H1(τ−1x,Oτ−1x) and H2(τ−1x,K) vanish. This completes the proof that

H1(Y,O∗
Y ) = H1(τ−1x,O∗

τ−1x), and implies that (∗) is an isomorphism in this case.

Step III: X is the spectrum of an artinian local ring. For each n, let X ′
n be the nth infinitesimal

neighborhood of the origin in X ′ and let Y ′
n be its preimage in Y ′. Let Xn = ϕ−1X ′

n be the
preimage in X of X ′

n, and let Yn be the preimage in Y . Let Zn be the pullback of Y ′ to Xn as a
scheme with a logarithmic structure that is not necessarily integral. The ideal of Y ′

n−1 in Y ′
n is

OY ′
0
(n). Therefore, the ideal of Zn−1 in Zn is a quotient of OZ0(n). Since Yn−1 = Zn−1 ∩ Yn the
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ideal of Yn−1 in Yn is thus also a quotient of OZ0(n); we denote this quotient by J and write K
for the kernel. We have an exact sequence

H1(Z0,OZ0(n))→ H1(Y0, J)→ H2(Z0,K)

Since Z0 is one-dimensional, H2(Z0,K) vanishes. But H1(Z0,OZ0(n)) also vanishes, because
Z0 � P1

X0
and n ≥ 0 (in fact n ≥ 1). Since we also have H2(Y0, J) = 0 by dimension consider-

ations, we deduce that H1(Y,O∗
Y ) = H1(Y0,O∗

Y0
) = H1(τ−1x,O∗

τ−1x), as before. Thus (∗) is an
isomorphism in this case, by the same argument as in the last step.

Step IV: X is the spectrum of a complete noetherian local ring. Suppose X = SpecA and
I is the maximal ideal of A. Write Xn for the vanishing locus of In+1 and Yn = τ−1Xn.
By Grothendieck’s existence theorem, H1(Y,O∗

Y ) = lim←−H
1(Yn,O∗

Yn
). By proper base change

H0(Y,Mgp
Y )/H0(X,Mgp

X ) = H0(Y0,M
gp
Y0

)/H0(X0,M
gp
X0

). Therefore, we conclude by the previous
case.

Step V: X is the henselization of scheme of finite type at a geometric point. As before, let Xn

denote the nth-order infinitesimal neighborhood of x in X and let Yn be its preimage in Y .
We have a commutative diagram

H0(Y,Mgp
Y )/H0(X,Mgp

X ) ��

��

H1(Y,O∗
Y )

��

H0(τ−1x,M
gp
τ−1x)/M

gp
X,x

�� H1(τ−1x,O∗
τ−1x)

The left vertical arrow is an isomorphism by proper base change, and the bottom horizontal
arrow is an isomorphism by the special case of the lemma for a point. Therefore, the upper
horizontal arrow is injective.

We prove it is also surjective. Suppose that L is an invertible sheaf on Y . Let X̂ be the
completion of X and let Ŷ be the base change of Y to X̂. Let L̂ be the restriction of L to
Ŷ . Then by the previous case, there is some λ ∈ H0(Y,Mgp

Y ) such that L̂ � OŶ (λ). Since the
problem of specifying an isomorphism L � OY (λ) is locally of finite presentation, as a functor
of X, Artin’s approximation theorem implies that there is an isomorphism L � OY (λ).

Step VI: X is the spectrum of a henselian local ring. We can present X as a cofiltered
inverse limit of spectra Xi of henselian local rings of finite type with closed points xi. Then
M

gp
X,x = lim−→M

gp
Xi,xi

so we can assume that the element α ∈Mgp
X,x used to construct Y is

induced from elements αi ∈Mgp
Xi,xi

. For each i, let Yi be the universal logarithmic scheme
over Xi where αi is locally comparable to 0 in M

gp
Yi

. Then H1(Y,O∗
Y ) = lim−→H1(Yi,O∗

Yi
)

and H0(Y,Mgp
Y )/H0(X,Mgp

X ) = lim−→H0(Yi,M
gp
Yi

)/H0(Xi,M
gp
Xi

). The previous case shows that
H0(Yi,M

gp
Yi

)/H0(Xi,M
gp
Xi

)→ H1(Yi,O∗
Yi

) is an isomorphism for every i, so we conclude by
passage to the limit. �

4.4.13 The logarithmically flat case.

Proposition 4.4.13.1. Suppose that X and Y are logarithmic schemes over S and τ : Y →
X is a logarithmic modification. Assume that both X and Y are integral over S and X is
logarithmically flat over S. Then the map OX → Rτ∗OY is a quasi-isomorphism.
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Proof. The assertion is étale-local in S and in X, so we may assume that there is a cartesian
diagram

Y ��

τ

��

Y ′×S′ S ��

��

Y ′

ρ

��
X ��

����
��

��
��

��
� X ′×S′ S ��

��

X ′

��
S �� S′

(2)

in whichX ′, Y ′, and S′ are toric varieties and the maps between them are toric, and all horizontal
arrows are strict. Since X and Y are integral over S, the toric varieties X ′ and Y ′ are flat over S′.
Since X is logarithmically flat over S, the map X → X ′×S′ S is also flat.

As Y ′ → X ′ is a toric modification, we have Rρ∗OY ′ = OX′ [Ful93, § 3.5, p. 76, Proposi-
tion]. Since X ′ and Y ′ are flat over S′, this equality remains true after base change to S.4

Thus, OX′ ×S′ S → Rρ∗OY ′ ×S′ S is also a quasi-isomorphism. Then by flat base change along
X → X ′×S′ S, we obtain the quasi-isomorphism OX → Rτ∗OY that we require. �
Lemma 4.4.13.2. Suppose X and Y are logarithmic schemes over S. Assume that X and Y are
both integral over S and that X is logarithmically flat over S. Let τ : Y → X be the logarithmic
modification associated with a saturated section α of M

gp
X . Then τ∗M

gp
Y = Mgp

X .

Proof. We have a commutative diagram with exact rows:

0 �� O∗
X

��

��

Mgp
X

��

��

M
gp
X

��

��

0

0 �� τ∗O∗
Y

�� τ∗M
gp
Y

�� τ∗M
gp
Y

�� R1τ∗O∗
Y

The map O∗
X → τ∗O∗

Y is an isomorphism by Proposition 4.4.13.1. The map τ∗(M
gp
Y )/Mgp

X →
R1τ∗O∗

Y is an isomorphism by Proposition 4.4.7. We conclude that Mgp
X → τ∗M

gp
Y is an

isomorphism by the snake lemma and the five lemma. �
Proof of Proposition 4.4.8. We make an observation that we will use repeatedly in the proof.
The phrase ‘the proposition holds for τ : Y → X’ will mean that if X is logarithmically flat over
S then every étale Mgp

Y -torsor descends uniquely along τ to an Mgp
X -torsor. Suppose that we

have logarithmic modifications Z
ρ−→ Y

τ−→ X and that the proposition is known to hold for ρ.
If X is logarithmically flat over S then so is Y , because Y is a logarithmic modification of
X. Therefore, étale Mgp

Y -torsors descend uniquely along τ to Mgp
X -torsors if and only if étale

Mgp
Z -torsors descend uniquely along τρ to Mgp

X -torsors. Indeed, if L is an Mgp
Y -torsor then it is

the unique descent of ρ∗L to Y (since the proposition is known for ρ and Y is logarithmically
flat over S), so ρ∗L descends uniquely to X if and only if L descends uniquely to X.

Assume that X is logarithmically flat over a valuative logarithmic scheme S and τ : Y → X
is a logarithmic modification. We wish to show that every Mgp

Y -torsor descends uniquely to an
Mgp
X -torsor. This is a local question in the étale topology of X, so we assume that X is qua-

sicompact and has a global chart by a sharp monoid P . Let σ be the rational polyhedral cone

4 The assertion is Zariski local in X ′, so we may assume that X ′ is affine. Then Γ(X ′, Rρ∗OY ′) = RΓ(Y ′,OY ′),
so we may apply flat base change [Sta18, Tag 02KH].
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dual to P . Since X is quasicompact, every logarithmic modification of X has a refinement that
is induced from a subdivision of σ. Every subdivision of σ has a refinement that is an iterated
subdivision along hyperplanes. We can therefore find a logarithmic modification ρ : Z → Y such
that both ρ and τρ are iterated subdivisions along hyperplanes. By the observation above, it is
therefore sufficient to prove the proposition when Y is an iterated subdivision of X by hyper-
planes. By induction and another application of the observation, it suffices to assume Y is a
subdivision along a single hyperplane.

We now assume X has a global chart and that τ : Y → X is a hyperplane subdivision of X
associated with some α ∈ Γ(X,Mgp

X ). By Lemma 4.4.11.5, there exist a root stack ρ : X ′ → X
and an integer n > 0 such that n−1α ∈ Γ(X ′,Mgp

X′) and n−1α is saturated. Let τ ′ : Y ′ → X ′

and ρ′ : Y ′ → Y be the morphisms induced by base change. Note that Y ′ is the logarithmic
modification of X ′ associated with the section n−1α ∈ Γ(X ′,Mgp

X′).
We know by Proposition 4.4.6 that Mgp

Y ′ -torsors descend uniquely to Y . Therefore, by the
observation from the beginning, our conclusion holds for τ if and only if it holds for τρ′. But
we also know by Proposition 4.4.7 that every Mgp

Y ′ -torsor descends uniquely to an τ ′∗MY ′-torsor
on X ′. On the other hand, both X ′ and Y ′ are integral over S since S is valuative and all
morphisms to a valuative logarithmic scheme are integral, so τ ′∗M

gp
Y ′ = Mgp

X′ by Lemma 4.4.13.2.
Finally, every Mgp

X′-torsor descends uniquely to a Mgp
X -torsor by Proposition 4.4.6 again. �

4.4.14 Applications.

Corollary 4.4.14.1. Suppose that τ : Y → X is a subdivision of logarithmic curves over S.
Then every Mgp

Y -torsor on Y descends uniquely to an Mgp
X -torsor on X.

Proof. Since a subdivision of logarithmic curves τ : Y → X can be presented étale-locally in X
as an iterated subdivision associated with a saturated section of Mgp

X , it suffices to consider only
the case where Y is the subdivision of X associated with a single global section of Mgp

X . In this
case, Proposition 4.4.7 implies that every Mgp

Y -torsor descends uniquely to a τ∗M
gp
Y -torsor on

X. By Lemma 4.4.13.2, we have τ∗M
gp
Y = Mgp

X , so we may conclude. �
Corollary 4.4.14.2. Suppose that X is a logarithmic curve over a logarithmic scheme S. Then
LogPic(X/S) and Log Pic(X/S) satisfy descent with respect to fppf covers and root stacks of S.
If S is logarithmically flat then LogPic(X/S) and Log Pic(X/S) also satisfy descent with respect
to logarithmic modifications. In particular, LogPic(X/S) is a stack, and Log Pic(X/S) is a sheaf,
in the Kummer logarithmic flat topology on S. If S is logarithmically flat then LogPic(X/S)
is a stack, and Log Pic(X/S) is a sheaf, in the small full logarithmic étale topology on S.

Proof. The Kummer logarithmic flat topology is generated by fppf covers and root stacks. The
logarithmic étale topology is generated by étale covers, logarithmic modifications, and root stacks
of order prime to the characteristic [Nak17, Lemma 3.11]. Therefore, it will suffice to show descent
with respect to fppf covers, root stacks, and logarithmic modifications.

We know from Propositions 4.4.5, 4.4.6, and 4.4.8 that BGlog satisfies descent with
respect to fppf covers, root stacks, and (if S is logarithmically flat) logarithmic modifications.
Since LogPic(X/S) is isomorphic to Log Pic(X/S)× BGlog étale-locally in S, the statements
concerning Log Pic(X/S) and LogPic(X/S) are equivalent. We will prove the statements
involving LogPic(X/S).

Any fppf cover, root stack, or logarithmic modification of S pulls back to an fppf cover,
root stack, or logarithmic modification of X. Since X is logarithmically flat over S, it will be
logarithmically flat if S is. We have just seen in the last paragraph (with S replaced by X) that
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Mgp
X -torsors satisfy descent along all of these kinds of covers. Therefore, all that is left is to see

that boundedness of monodromy satisfies descent with respect to strict fppf covers, root stacks,
and logarithmic modifications of S.

By Proposition 4.3.2, boundedness of monodromy can be verified at the valuative geometric
points of S, so we are free to assume S is a valuative geometric point. It is immediate that
boundedness of monodromy descends along fppf covers, since the condition only depends on the
characteristic monoid. Valuative geometric points have no nontrivial logarithmic modifications,
so descent in that case is also trivial. Finally, Lemma 2.1.3.2 says that boundedness of monodromy
descends along root stacks. �

The following corollary of Proposition 4.4.7 complements Theorem 2.4.1.3.

Corollary 4.4.14.3. Let S be the spectrum of a valuation ring with generic point η and let X
be a family of nodal curves over S. Assume that Xη and η have been given logarithmic structures
MXη and Mη making Xη into a logarithmic curve over η, with Mη valuative. Let MX and MS

be the maximal extensions, respectively, of MXη and Mη to X and to S. Let j : Xη → X be the
inclusion of the generic fiber. Then R1j∗M

gp
Xη

= 0.

Proof. We wish to show that any Mgp
Xη

-torsor can be trivialized étale-locally on X. Suppose
that Lη is an Mgp

Xη
-torsor. Since the base has a valuative logarithmic structure, Corollary 4.3.1

implies that there is a logarithmic modification X̃η of Xη on which Lη is representable by an
invertible sheaf L̃η. We can extend this logarithmic modification to a logarithmic modification
X̃ of X. Now, L̃η can be represented by a divisor Dη in the smooth locus of X̃η. After replacing
X̃ by a further logarithmic modification, we can assume that the closure of Dη in X̃ is contained
in the smooth locus. Thus, L̃η extends to an invertible sheaf on X̃. Note that X̃ is an iterated
subdivision ofX associated with saturated sections ofMgp

X . Passing to the associatedMgp

X̃
-torsor,

and applying Corollary 4.4.14.1, every Mgp

X̃
-torsor on X̃ descends uniquely to a Mgp

X -torsor on
X. It follows that the Mgp

Xη
-torsor Lη extends to an Mgp

X -torsor L. Since the Mgp
X -torsor L can

be trivialized étale-locally, it follows that Lη can be trivialized étale-locally in X as well. �

4.5 Degree
Let X be a proper, vertical logarithmic curve over S, whose underlying scheme is the spectrum
of an algebraically closed field with a valuative logarithmic structure. We construct a dashed
arrow making the following diagram commute:

H0(X,Mgp
X ) ��

���������������
H1(X,O∗

X) ��

��

Log Pic(X)

deg

���
�
�

ZV
Σ �� Z

(4.5.1)

Here, V is the set of vertices of the dual graph of X, so ZV is the Néron–Severi group of X,
and the solid vertical arrow is the multidegree. The map Σ : ZV → Z is the sum. We regard a
section of Mgp

X as a piecewise linear, Mgp
S -valued function on the dual graph of X, with integer

slopes along the edges. The diagonal map to ZV sends such a function to a tuple each of whose
components is the sum of the outgoing slopes from the corresponding vertex of the dual graph.
The composed map to Z therefore takes the sum of the outgoing slopes from every vertex;
since each edge gets counted twice with opposite orientations (X is vertical, so its dual graph is
compact) the composition is zero. This gives the vertical arrow on the image of H1(X,O∗

X).
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Given any logarithmic line bundle L on X, Corollary 4.3.1 implies that there is a logarithmic
modification X̃ of X such that the restriction L̃ of L to X̃ lies in the image of H1(X̃,O∗

X̃
). We

define the degree of L to be the degree of any invertible sheaf L̃ representing L on any logarithmic
modification of X.

This defines the degree at all valuative, geometric points of LogPic(X/S). The following
proposition extends the definition to families.

Proposition 4.5.2. The degree of a logarithmic line bundle is well defined and locally constant
on LogPic(X/S).

Proof. Suppose that L is a logarithmic line bundle on a logarithmic curve X over S. We can find
a logarithmic modification S̃ and a semistable model X̃ of X ×S S̃ such that L can be represented
by an invertible sheaf on X̃. By construction, the total degree of this invertible sheaf is the degree
of L̃, the pullback of L to X̃. Since the total degree of an invertible sheaf is locally constant, so
is the total degree of L̃. It follows that the degree, as defined above, is locally constant and well
defined on S̃. But S̃ → S is surjective, and every valuative geometric point of S lifts to S̃, so
the degree is also well defined on S. Furthermore, S̃ → S is closed, so a function on S that pulls
back to a locally constant function on S̃ must have been locally constant on S. Therefore, the
total degree of L on S is also locally constant. �
Definition 4.5.3. We write Log Picd(X/S) for the open and closed substack of Log Pic(X/S)
parameterizing isomorphism classes of Glog-torsors with bounded monodromy and degree d.

4.6 Quotient presentation
We construct a quotient presentation of Log Pic0(X/S). Over the strata of S, this produces a
logarithmic abelian variety with constant degeneration, in the terminology of Kajiwara, Kato,
and Nakayama [KKN08c, KKN08b, KKN13, KKN15] (see § 4.7). Our presentation is inspired by
that of Kajiwara [Kaj93].

Let X be a proper, vertical logarithmic curve over S, with connected geometric fibers. Write
Pic[0](X/S) for the multidegree-0 part of Pic0(X/S).

Lemma 4.6.1. Let X be a proper, vertical logarithmic curve over S with connected geometric
fibers. Then the natural map Mgp

S → π∗M
gp
X is an isomorphism.

Proof. This assertion is étale-local in S. We can therefore assume that S is atomic and that the
dual graph of X is constant on the closed stratum. We denote it X . Now H0(X,Mgp

X ) is the
group of piecewise linear function on X having integer slopes along the edges and taking values
in Mgp

S . Since sections of Mgp
X correspond generically on X to rational functions, the associated

piecewise linear function on X of such a section will be linear. That is, the sum of the outgoing
slopes along the edges incident to any vertex of X will be zero.

On the other hand, X is compact so every linear function on X is constant by Lemma 3.4.5.
Therefore, the section of Mgp

X induced from any section of Mgp
X lies in the image Mgp

S , which is
to say that there is a diagonal arrow as shown in the following commutative diagram with exact
rows:

0 �� O∗
S

��

��

Mgp
S

��

��

M
gp
S

��

��

0

0 �� π∗O∗
X

�� π∗M
gp
X

��

		���������

π∗M
gp
X

�� R1π∗O∗
X

(4.6.1.1)
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As X is proper and flat over S with reduced, connected fibers, the map O∗
S → π∗O∗

X is an
isomorphism. We may therefore conclude by the five lemma, applied to the following induced
diagram:

0 �� O∗
S

��



��

Mgp
S

��

��

M
gp
S

��



��

0

0 �� π∗O∗
X

�� π∗M
gp
X

�� π∗M
gp
X

(4.6.1.2)

�
Proposition 4.6.2. The map R1π∗π∗M

gp
S → R1π∗M

gp
X induces a surjection from the

multidegree-0 part onto the degree-0 part, with kernel H1(X ).

Proof. We may assume without loss of generality that X has connected geometric fibers over S.
We use the exact sequence

0→ π∗Mgp
S →Mgp

X →M
gp
X/S → 0 (4.6.2.1)

and its associated long exact sequence in the top row of the following diagram:

0 �� π∗M
gp
X/S

��



��

R1π∗π∗M
gp
S

��

��

R1π∗M
gp
X

��

���
�
�

0

ZE �� ZV �� Z �� 0

(4.6.2.2)

Here ZV is the sheaf of abelian groups freely generated by the irreducible components of the
fibers, and ZE is the sheaf whose stalks are freely generated by the nodes. When a node
is smoothed in X, the corresponding generator of the stalk of ZE maps to zero under the
generization map.

Note that the first map in the first row of (4.6.2.1) is injective because Mgp
S → π∗M

gp
X is

an isomorphism by Lemma 4.6.1. A section of R1π∗π∗M
gp
S induces isomorphism classes of line

bundles on the components of X and therefore has a well-defined multidegree. This gives the
vertical homomorphism in the middle term of diagram (4.6.2.2).

By an explicit calculation, the map π∗M
gp
X/S → R1π∗π∗M

gp
S commutes with the boundary

map ZE → ZV computing the homology of the dual graph of X. Therefore, we recover the degree
homomorphism by passing to cokernels, as indicated by the dashed arrow in (4.6.2.2).

We write R1π∗(π∗M
gp
S )[0] for the multidegree-0 part of R1π∗(π∗M

gp
S ) and R1π∗(M

gp
X )0 for

the degree-0 part of R1π∗M
gp
X (in other words, the kernels of the center and right vertical arrows

of diagram (4.6.2.2)). It follows from the snake lemma that the map

R1π∗(π∗M
gp
S )[0] → R1π∗(M

gp
X )0 (4.6.2.3)

is surjective with kernel H1(X ). �
Corollary 4.6.3. Let X be a proper, vertical logarithmic curve over S. Let R1π∗(π∗Glog)
denote the sheaf on logarithmic schemes over S whose value on a logarithmic scheme T over S
is R1π∗π∗M

gp
T , where π abusively denotes the projection XT → T . There is an exact sequence

0→ H1(X )→ R1π∗(π∗Glog)[0]
† → Log Pic0(X/S)→ 0

where R1π∗(π∗Glog)[0]
†

is the bounded monodromy, multidegree-0 subsheaf of R1π∗(π∗Glog).
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4.7 Semiabelian structure
We assume that X is a family of logarithmic curves over S with constant degeneracy. That is, the
characteristic monoid of S is constant, as is the dual graph of X. Let Xν be the normalization
of the nodes of X. We have an exact sequence

0→ T → Pic[0](X/S)→ Pic[0](Xν/S)→ 0 (4.7.1)

where T is the torus Hom(H1(X ),Gm) and X is the dual graph of X.
We obtain a similar sequence with π∗Mgp

S in place of O∗
X . The short exact sequence

0→ O∗
Xν → ν∗π∗Mgp

S → ν∗π∗Mgp
S → 0 (4.7.2)

yields the long exact sequence

π∗ν∗ν∗π∗M
gp
S → π∗ν∗ν∗π∗M

gp
S → R1(π∗ν∗)O∗

Xν → R1(π∗ν∗)ν∗π∗M
gp
S → R1(π∗ν∗)ν∗π∗M

gp
S

(4.7.3)

As Mgp
S →M

gp
S is surjective, so is π∗ν∗ν∗π∗M

gp
S → π∗ν∗ν∗π∗M

gp
S . Furthermore, the compo-

nents of Xν are irreducible curves over S, so they have no first cohomology valued in M
gp
S

because it is torsion-free and constant on the fibers. The sequence therefore reduces to an
isomorphism between R1(π∗ν∗)O∗

Xν and R1(π∗ν∗)ν∗π∗M
gp
S . That is, we have an isomorphism

between Pic(Xν/S) and the functor T �→ Γ(T,R1π∗ν∗ν∗π∗M
gp
T ) on logarithmic schemes over S.

By pullback, we therefore obtain a morphism

R1π∗π∗M
gp
S → R1π∗ν∗ν∗π∗M

gp
S � Pic(Xν/S). (4.7.4)

The kernel of this morphism consists of those Mgp
S -torsors on X that are trivial when restricted

to Xν . Such a torsor is specified by transition functions in Mgp
S along the nodes of X and the

kernel may therefore be identified with T log = Hom(H1(X ),Glog).
Passing to the multidegree-0 parts of R1π∗π∗M

gp
S and Pic(Xν/S), we get an exact sequence

0→ Hom(H1(X ),Glog)→ R1π∗(π∗M
gp
S )[0] → Pic[0](Xν/S)→ 0 (4.7.5)

4.8 Local description of the homology action
We retain the assumptions of § 4.7 and permit further étale localization in S.

Because we have assumed the logarithmic structure of S is constant, Mgp
S is a constant sheaf

of finitely generated free abelian groups. Working locally in S, we can assume that Mgp
S →M

gp
S is

split, and therefore that Mgp
S � O∗

S ×M
gp
S . We fix one such splitting m : Mgp

S →Mgp
S , splitting

the surjection Mgp
S →M

gp
S . Using this, we get a splitting π∗Mgp

S = O∗
X × π∗M

gp
S , and therefore

also a splitting

R1π∗π∗Glog � Pic(X/S)×Hom(H1(X ),Glog) (4.8.1)

We have used the canonical identification R1π∗π∗Glog � Hom(H1(X ),Glog).
Our goal in this subsection is to explain the map H1(X )→ R1π∗π∗(Glog)[0] from

Corollary 4.6.3, which is induced from ZE → R1π∗π∗Glog, in terms of this splitting. Given
α ∈ Γ(X,Mgp

X/S) = ZE , we write π∗MS(α) for its image in R1π∗π∗Glog.
We work out the pullback of π∗MS(α) to the normalization Xν of X along its nodes. We

let X ν be the union of the stars of X . In a sense that we do not make precise here, this is
the tropicalization of Xν when Xν is given the logarithmic structure pulled back from X. Every
section α of ZE = Γ(X,Mgp

X/S) can be lifted to a section α̃ of Mgp
Xν , which can also be regarded as

a piecewise linear function on X ν . Then ν∗π∗Mgp
S (α) is represented by the line bundle OXν (α̃).

Note that the isomorphism class of OXν (α̃) depends only on α because α̃ is uniquely determined
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up to the addition of a constant from M
gp
S on each component, and the addition of a constant

only changes OXν (α̃) by a line bundle pulled back from S.
Suppose that X0 ⊂ Xν is a component and X0 is the corresponding component of X ν . Then

we have

OX0(α̃) = OX0

(∑
αeDe

)
. (4.8.2)

The sum is taken over the edges e of X0, with De denoting the node of X corresponding to
e, and αe denoting the slope of α along e when e is oriented away from the central vertex of
X0. In order to understand π∗MS(α), we will need to see how the line bundles OXi(α̃) on the
components of Xν are glued to one another.

Recall that m : Mgp
S →Mgp

S denotes a fixed splitting. For each δ ∈Mgp
S , we write mδ : OX →

OX(δ) for map sending λ ∈ OX to λm(δ) ∈ OX(δ). Suppose that D is a node of X joining
components X0 and X1 and let e be the corresponding edge of X . Recall that we have

OX0(α̃)|D = OD(α̃(0))⊗OX0(αeD)|D and

OX1(α̃)|D = OD(α̃(1))⊗OX1(−αeD)|D
(4.8.3)

where αe is the slope of α along the edge e of X corresponding to D, oriented from 0 to 1,
and α̃(i) ∈Mgp

S is the value of α̃ on the vertex i of X . Using the trivializations m, we obtain
an isomorphism

mαeδ : OX1(−αeD)|D ∼−→ OX1(−αeD + αeδ) = OX0(αeD)|D. (4.8.4)

Combined with the trivializations mα̃(0) and mα̃(1) of OD(α̃(0)) and OD(α̃(1)), we obtain an
isomorphism

mα̃(1)−α̃(0)−αeδ : OX0(α̃)|D ∼−→ OX1(α̃)|D. (4.8.5)

We glue OX0(α̃) to OX1(α̃) along D by this isomorphism and repeat the same process for each
edge of X to produce a line bundle L(α,m) on X. Note that L(α,m) depends on α̃ only up to
a canonical isomorphism determined by the trivialization m, so we omit the dependence on α̃
from the notation.

Remark 4.8.6. We could have chosen α̃ canonically to take the value 0 at every vertex of X ν ,
but the added flexibility will be useful in the proof of Proposition 4.8.8.

Remark 4.8.7. If α̃ were actually well defined on X01 = X0 ∪D X1 then α̃(1)− α̃(0) = αeδe,
where δe is the length of e. Then mα̃(1)−α̃(0) = mαeδe , so the isomorphisms above agree with
the canonical identification OX0(α̃)|D = OX01(α̃)|D = OX1(α̃)|D.

Proposition 4.8.8. The isomorphism (4.8.1) sends π∗MS(α) to (L(α,m),−∂(α)).

Proof. The second component of the formula is implied by Lemma 3.4.7. It can also be deduced
from the argument below.

Let X̃ be the universal cover of X and let ρ : X̃ → X be the corresponding étale cover.
The fundamental group of X acts by deck transformations on X̃. Since H1(X̃ ) = 0, we can
find a lift of α̃ to M X̃ . Without loss of generality, we can assume that the function on Xν

constructed before the statement of the proposition is induced from this α̃ by restriction along
some embedding Xν ⊂ X̃.

By construction, ρ∗L(α,m) induces ρ∗π∗MS(α). We will prove that π∗MS(α) =
(L(α,m), ∂(α) · γ) by comparing their transition data on the cover X̃.

1537

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


S. Molcho and J. Wise

If γ ∈ π1(X ) then γ acts by deck transformations on X̃ and we have a canonical
identification

γ∗OX̃(α̃) = OX̃(γ∗α̃) = OX̃(α̃)⊗OX(∂(α) · γ).
By definition, we have an inclusion O∗

X(∂(α) · γ) inside π∗Mgp
S as the fiber over −∂(α) · γ ∈

π∗Mgp
S . This gives us a canonical identification γ∗ρ∗π∗MS(α̃) = ρ∗π∗MS(α̃) that serves as a

descent datum for ρ∗π∗MS(α̃) from X̃ to π∗MS(α̃) on X.
In terms of the splitting m, the map from O∗

X(∂(α) · γ) to π∗Mgp
S is given by

(m−∂(α)·γ ,−∂(α) · γ) : O∗
X(∂(α) · γ)→ O∗

X × π∗Mgp
S . (4.8.8.1)

The second component of this formula gives the homomorphism H1(X )→M
gp
S that makes up

the second component of (4.8.1).
The transition function for L(α,m) around the loop γ is given by∏

e

(m−δeαe)γe = m−∑
αeγeδe . (4.8.8.2)

By definition of the intersection pairing,
∑
αeγeδe = ∂(α) · γ, so (4.8.8.2) agrees with the first

component of (4.8.8.1). �

4.9 Tropicalizing the logarithmic Jacobian
For any proper, vertical logarithmic curve X over S, we construct a morphism

Log Pic0(X/S)→ Tro Jac(X/S) (4.9.1)

over S. For each logarithmic scheme T and object of Log Pic0(X/S), we must produce a section
of Tro Jac(X/S). By Corollary 4.2.3, it is sufficient to do this when T is of finite type. Under this
assumption, the T -points of Tro Jac(X/S) are generization-compatible objects of Tro Jac(Xt),
for each geometric point t of T . We therefore describe the morphism first under the assumption
that X has constant dual graph over S and S has constant characteristic monoid (which covers
the case of a geometric point) and then discuss generization.

If X has constant dual graph and S has constant characteristic monoid, we use the following
commutative diagram of exact sequences:

0 �� H1(X ) �� H1(X,π∗Glog)[0]
† ��

��

Log Pic0(X/S) ��

���
�
�
�
�
�
�
�

0

H1(X,π∗Glog)†

0 �� H1(X ) �� Hom(H1(X ),Glog)† �� Tro Jac(X /S) �� 0

(4.9.2)

The first row of the diagram comes from Corollary 4.6.3 and the bottom row is the definition of the
tropical Jacobian from § 3.6. The identification between H1(X,π∗Glog) and Hom(H1(X ),Glog)
comes from the fact that Mgp

S is a torsion-free sheaf: since a smooth, proper curve has no
nontrivial torsors under such a sheaf, any such torsor on a nodal curve can be trivialized on its
normalization, and torsors under Mgp

S on X are determined uniquely by monodromy around the
loops of the dual graph. A unique dashed arrow exists by the universal property of the cokernel.

We show now that this morphism is compatible with generizations. Any specialization s� t
in Log Pic0(X/S) can be represented by a map T → Log Pic0(X/S) where T is a strictly henselian
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valuation ring with some logarithmic structure, s is its generic point, and t is its closed point.
This map gives a logarithmic curve XT = X ×S T over T and an Mgp

XT
-torsor P on T with

bounded monodromy and degree 0. Since Log Pic0(X/S) is the quotient of H1(X,π∗Glog) by a
discrete group, we can lift P to a π∗Mgp

T -torsor, Q, on XT .
We now have the following commutative diagram:

H1(Xt, π
∗Mgp

t )†

��

H1(XT , π
∗Mgp

T )† ��

��





�� H1(Xs, π
∗Mgp

s )†

��

H1(Xt, π
∗Mgp

t )† H1(XT , π
∗Mgp

T )†�� �� H1(Xs, π
∗Mgp

s )†

Hom(H1(Xt),M
gp
t )† �� Hom(H1(Xs),M

gp
s )†

(4.9.3)

The commutativity of the trapezoid rendered in dotted arrows is precisely the compatibility
of our map with generization.

Theorem 4.9.4. Let X be a proper, vertical logarithmic curve over S. There is an exact
sequence

0→ Pic[0](X/S)→ Log Pic0(X/S)→ Tro Jac(X/S)→ 0 (4.9.4.1)

Proof. Applying the snake lemma to diagram (4.9.2), and identifying H1(X,π∗Glog) =
Hom(H1(X ),Glog), we see that the exactness of (4.9.4.1) is equivalent to that of the sequence

0→ Pic[0](X/S)→ R1π∗(π∗Glog)[0]
† → R1π∗(π∗Glog)† → 0 (4.9.4.2)

We note that the bounded monodromy subgroup of R1π∗(π∗Glog)[0] is simply the preimage of
that in Hom(H1(X ),Glog), and that the multidegree-0 subgroup of Pic(X/S) is the preimage
of the multidegree-0 subgroup of R1π∗(π∗Glog). Therefore, it will be sufficient to demonstrate
the exactness of the following sequence:

0→ Pic(X/S)→ R1π∗(π∗Glog)→ Hom(H1(X ),Glog)→ 0 (4.9.4.3)

This amounts to showing that, for each logarithmic scheme T over S, the following sequence is
exact, where Y = X ×S T :

0→ R1π∗O∗
Y → R1π∗π∗M

gp
T → R1π∗π∗M

gp
T → 0 (4.9.4.4)

The exact sequence (4.9.4.4) arises from the long exact sequence

π∗π∗M
gp
T → π∗π∗M

gp
T → R1π∗O∗

Y → R1π∗π∗M
gp
T → R1π∗π∗M

gp
T → R2π∗O∗

Y (4.9.4.5)

associated with the short exact sequence

0→ O∗
Y → π∗Mgp

T → π∗Mgp
T → 0 (4.9.4.6)

We have R2π∗O∗
Y = 0 by Tsen’s theorem. As π∗Mgp

T is a constant sheaf on the fibers and Mgp
T →

M
gp
T is surjective, the map π∗π∗M

gp
T → π∗π∗M

gp
T is surjective as well. This gives the exactness

of (4.9.4.4) and completes the proof. �
Corollary 4.9.5. Let X be a proper, vertical logarithmic curve over S. For each degree d, the
sheaf Log Picd(X/S) and the stack LogPicd(X/S) are bounded.

Proof. As Log Picd(X/S) is a torsor under Log Pic0(X/S), it is sufficient to prove the corollary for
d = 0. By the exact sequence (4.9.4.1), Log Pic0(X/S) is a Pic[0](X/S)-torsor over Tro Jac(X/S).
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As both Pic[0](X/S) and Tro Jac(X/S) are bounded – in the latter case by Corollary 3.10.5 – it
follows that Log Pic0(X/S) is also bounded.

Finally, we note that LogPicd(X/S) is isomorphic, locally in S, to Log Picd(X/S)× BGlog,
so the conclusion follows from the boundedness of BGlog. �

4.10 The valuative criterion for properness
Theorem 4.10.1. Let X be a proper, vertical logarithmic curve over S. Then LogPic(X/S)→
S satisfies the valuative criterion for properness (Theorem 2.2.5.2) over S.

Proof. Let R be a valuation ring with a valuative logarithmic structure and with field of fractions
K. We consider a lifting problem

SpecK ��

��

LogPic(X/S)

��
SpecR ��

��������

S

(4.10.1.1)

and show it has a unique solution. These data give us a logarithmic curve XR over R and a
Mgp
XK

-torsor PK on XK with bounded monodromy. Let j : XK → XR denote the inclusion.
By Theorem 2.4.1.3 and Corollary 4.4.14.3, we have that R1j∗M

gp
XK

= 0 and Mgp
XR
→ j∗M

gp
XK

is an isomorphism. These imply that the morphism of group stacks BMgp
XR
→ j∗BM

gp
XK

induces
isomorphisms on sheaves of isomorphism classes and sheaves of automorphisms, hence is an
equivalence. Pushing forward to S gives

π∗BM
gp
XR

= j∗π∗BM
gp
XK

. (4.10.1.2)

But a section of j∗π∗BM
gp
XK

is a commutative square (4.10.1.1) (ignoring bounded monodromy),
and a section of π∗BM

gp
XR

is a diagonal arrow lifting it (again ignoring bounded monodromy).
To conclude, we check that if PK has bounded monodromy then so does PR. Let XR be the

tropicalization of XR and let XK be the tropicalization of XK . Let PK and PR be the PL-torsors
on XK and XR induced by PK and PR. Then the pullback of PK along the contraction map
XR →XK coincides with the extension of PR along the map M

gp
R →M

gp
K . That is, PR ⊗Mgp

R

M
gp
K descends along XR →XK , so it must have trivial monodromy around all loops of XR

collapsed in XK . This means that PR has bounded monodromy. �
Remark 4.10.2. One can also argue using Proposition 4.3.2.

Since K has a valuative logarithmic structure, we may replace XR with a semistable model
so that PK is representable by an invertible sheaf on XK , and therefore by a divisor DK . Over an
étale extension K ′ of K it is possible to represent DK′ as a sum of sections σi : SpecK ′ → XK′ .
Let R′ be the integral closure of R in K ′. For each i there is a universal choice of semistable
model X ′

R′ such that σi extends to a section of the strict locus of X ′
R′ over R′. Therefore, there

is a universal choice of semistable model X ′′
R′ → XR′ such that the closure of DK′ lies in the

strict locus of X ′′
R′ . Since this model is characterized by a universal property, it descends to a

semistable model X ′′
R → XR such that the closure DR of DK lies in the strict locus over R.

But then OX′′
R
(DR) represents a Mgp

XR
-torsor extending PK . Logarithmic line bundles that are

representable by invertible sheaves have bounded monodromy.
This proves the universal closedness part of the valuative criterion, but the choice ofOX′′

R
(DR)

depends on the choice of DK , so further argument is necessary to prove separatedness.
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Corollary 4.10.3. The projection Log Pic(X/S)→ S satisfies the valuative criterion for
properness.

Proof. Locally in S the projection LogPic(X/S)→ Log Pic(X/S) has a section making
Log Pic(X/S) into a Glog-torsor over S. But Glog satisfies the valuative criterion for properness,
so Log Pic(X/S) does as well. �

Once we have demonstrated the algebraicity of Log Picd, we will be able to conclude that it
is proper in Corollary 4.12.5.

4.11 Existence of a smooth cover
Definition 4.11.1. We call a presheaf X on logarithmic schemes a logarithmic space if there
exist a logarithmic scheme U and a morphism U → X that is surjective on valuative geometric
points and representable by logarithmically smooth logarithmic schemes.

Theorem 4.11.2. Let X be a proper logarithmic curve over S. Then there exist a logarithmic
scheme and a universally surjective, logarithmically smooth morphism to LogPic(X) that is
representable by logarithmic spaces.

Proof. We consider a map T → S that is a composition of étale maps and logarithmic modifi-
cations. Let Y be a semistable model of X ×S T over T . Then Pic(Y/T ) is representable by an
algebraic stack over T . When equipped with the logarithmic structure pulled back from T , we
have a morphism to LogPic(X/S):

Pic(Y/T )→ LogPic(Y/T )→ LogPic(XT /T )→ LogPic(X/S) (4.11.2.1)

We will argue that these maps are a logarithmically étale cover of Log Pic(X/S) using the
following lemma.

Lemma 4.11.3. For any logarithmic curve Y over T , the map Pic(Y/T )→ LogPic(Y/T ) is
representable by logarithmic spaces and is logarithmically étale.

Granting this lemma, we complete the proof of Theorem 4.11.2.
We show first of all that Pic(Y/T )→ LogPic(X/S) is representable by logarithmic schemes

and is logarithmically étale. The first arrow in the sequence (4.11.2.1) has these properties by
Lemma 4.11.3, the second is an isomorphism by Corollary 4.4.14.1 and Lemma 3.5.3, and the
last arrow is the base change of the logarithmically étale morphism T → S, by definition. Their
composition is therefore representable by logarithmic schemes and is logarithmically étale.

Proposition 4.3.2 implies that, as T and Y vary over logarithmic modifications of étale
covers of S and semistable models of XT , respectively, the maps Pic(Y/T )→ LogPic(X/S) are
surjective on valuative geometric points. This completes the proof. �
Proof of Lemma 4.11.3. We wish to show that, for any logarithmic scheme T ′ over T , and any
logarithmic line bundle L on Y ′ = Y ×T T ′, there exist a universal logarithmic scheme U over
T ′ and a lift of L|U to an invertible sheaf on Y ×T U . Without loss of generality, we can assume
that T = T ′ to lighten the notation.

The logarithmic line bundle L on Y is a Glog-torsor. It induces a Gtrop
m -torsor L via the map

Mgp
Y →M

gp
Y , and this torsor obstructs lifting L to a Gm-torsor, in the sense that sections of L

are in natural bijection with lifts. Let us write π∗L for the presheaf on logarithmic schemes over
T whose value on T ′ is Γ(Y ′, L′), where Y ′ is the base change of Y to T ′ and L′ is the pullback
of L to a Gtrop

m -torsor on Y ′. We need to demonstrate that π∗L is representable by a logarithmic
space that is strict and logarithmically étale over T .
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It is sufficient to prove that π∗L is representable by a logarithmic space that is logarithmi-
cally étale over T in an étale neighborhood of each geometric point t of T . We will therefore
assume that T is affine and has a global chart by MT,t. Since LogPic(Y/T ) is locally of finite
presentation (Proposition 4.2.2), there is a morphism T → T0, a logarithmic curve π0 : Y0 → T0,
and a logarithmic line bundle L0 on Y0 that pulls back to L. Then π0∗L0 pulls back to π∗L by
proper base change. If π0∗L0 is representable by a logarithmically étale logarithmic space over
T0 then π∗L will be representable by its base change to T . Hence we may replace T and Y by
T0 and Y0. We therefore assume without loss of generality that T is of finite type in addition to
being affine. Since T is of finite type, and our problem is étale-local on T , we can also assume
that T is an atomic neighborhood of t. That is, we assume T has a global chart by MT,t and the
logarithmic stratum of T containing t is connected. After further étale localization, we assume
as well that the dual graph of Y is constant on the stratum of T that contains t.

We give a combinatorial interpretation of π∗L. Let Yt be the fiber of Y over t and let Y
be its dual graph. We write PLt for the sheaf on Y that corresponds with M

gp
Yt

on Yt. Since L
is constant on the logarithmic strata of Y (since these strata are normal and M

gp
Y is constant

and torsion-free), it descends to a PLt-torsor Lt on Y . For each geometric point t′ of T , we
have a homomorphism M

gp
T,t →M

gp
T,t′ . This induces a homomorphism PLt → PLt′ on Y , and this

induces a PLt′-torsor, Lt′ on Y .
To specify a section of π∗L at t′ is the same as to give a section of Lt′ . To specify a section

of π∗L on some logarithmic scheme T ′ over T is the same as to give a section of Lt′ for every
geometric point t′ of T ′, in a fashion that is compatible with the maps Lt′ → Lt′′ associated
with geometric specializations t′′ � t′. In other words, we may think of L as a sheaf on the
constant family Y × T , and π∗L = ρ∗L , where ρ : Y × Y → T is the projection.

Since L is a sheaf, we have an exact sequence

0→ ρ∗L →
∏
v

Lv →
∏
e

Le (4.11.3.1)

Choose trivializations Lv � PLv and Le � PLe over each vertex v, and each edge e, of Y . If
e is an edge of Y connecting vertices v and w then PLe is the subgroup of PLv × PLw con-
sisting of pairs (f, g) such that f − g lies in the subgroup Zδe generated by the length δe of e.
Combining this observation with our trivializations and the isomorphism π∗L � ρ∗L , the exact
sequence (4.11.3.1) translates into a cartesian square:

π∗L ��

��

∏
e∈E

Zδe

��∏
v∈V

Gtrop
m ��

∏
e∈E

Gtrop
m

Thus, π∗L is a fiber product of logarithmic spaces that are logarithmically étale over T , hence
is a logarithmic space that is logarithmically étale over T . �
Corollary 4.11.4. There exist a logarithmic scheme W and a cover of W → Log Pic(X/S)
that is logarithmically smooth and representable by logarithmic spaces.

Proof. Locally in S, we can identify LogPic(X/S) = Log Pic(X/S)× BGlog by identifying
Log Pic(X/S) with the sheaf of logarithmic line bundles on X trivialized over a section. A section
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Log Pic(X/S)→ LogPic(X/S) makes Log Pic(X/S) into a Glog-bundle over LogPic(X/S). If
U → LogPic(X/S) is a logarithmically smooth cover by a logarithmic scheme, then its pullback
is a logarithmically smooth cover W → Log Pic(X/S), and W is a Glog-torsor over the logarith-
mic scheme U , hence a logarithmic space. Replacing W by a logarithmically smooth cover, we
can arrange for W to be a logarithmic scheme as required. �
Corollary 4.11.5. The diagonals of Log Pic(X/S) and LogPic(X/S) are representable by
logarithmic spaces.

Proof. Let Z be Log Pic(X/S) or LogPic(X/S). We have a logarithmically smooth cover U → Z
that is representable by logarithmic spaces. We wish to show thatW = V ×Z×Z Z is representable
by logarithmic spaces whenever V is a logarithmic scheme with two maps to Z. But

W ×
Z×Z

(U × U) = (V ×
Z×Z

(U × U)) ×
U×U

(U ×
Z
U)

is the fiber product of the logarithmic space U ×Z U with the logarithmic space V ×Z×Z(U × U)
over the logarithmic scheme U × U , hence is a logarithmic space. �

4.12 Representability of the diagonal
Our algebraicity result is slightly stronger for Log Pic.

Theorem 4.12.1. The diagonal of Log Pic(X/S) over S is representable by finite morphisms of
logarithmic schemes.

In other words, we are to show that if X is a proper, vertical logarithmic curve over S with
two logarithmic line bundles L and L′ then there is a universal logarithmic scheme T over S
such that LT � L′

T and, moreover, the underlying scheme of T is finite over that of S. This
assertion only depends on the difference between L and L′ in the group structure of Log Pic, so
we can assume L′ is trivial. The assertion is also local in the strict étale topology on S, so we
freely replace S by an étale cover. By Corollary 4.10.3, the diagonal of Log Picd(X/S) satisfies
the valuative criterion for properness, so it will suffice to prove that the diagonal is schematic,
quasicompact, and locally quasifinite. In fact, morphisms of algebraic spaces that are separated
and locally quasifinite are schematic [Sta18, Tag 03XX], so we only need to show the diagonal
is representable by algebraic spaces, locally quasifinite, and quasicompact.

Lemma 4.12.2. The relative diagonal of Log Pic(X/S) over S is quasicompact.

Proof. It is sufficient to demonstrate that Log Pic0(X/S) has quasicompact diagonal over S. This
assertion is local in the constructible topology on S, so we assume that the dual graph of X is
constant over S and that MS is a constant sheaf on S. Let X denote the tropicalization of X.
In this situation, Corollary 4.6.3 gives an étale cover of Log Pic0(X/S) by V = R1π∗(π∗Glog)[0]

†
.

By étale descent, it is sufficient to show that V ×Log Pic0(X/S) V → V × V is quasicompact.
We can recognize this map as the base change to V × V along V × V → V : (v, w) �→ v − w of

H1(X ) = ker(V → Log Pic0(X/S))→ V . It therefore suffices to demonstrate that H1(X )→ V
is quasicompact.

Since Pic[0](X/S) is separated, Theorem 4.9.4 implies that the map Log Pic0(X/S)→
Tro Jac(X/S) is separated, and in particular quasiseparated. By base change, the compati-
bility square (4.9.2) then shows that V → Hom(H1(X ),Glog)† is also quasiseparated. There-
fore, the quasicompactness of H1(X )→ V follows from the quasicompactness of H1(X )→
Hom(H1(X ),Glog)†, which is Corollary 3.11.4. �
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Lemma 4.12.3. Let S be a logarithmic scheme, let X be a compact tropical curve over S. Then
the zero section of Tro Jac(X /S) is representable by logarithmic schemes of finite type that are,
étale-locally in S, affine over H1(X )×S Tro Jac(X /S) (viewing H1(X ) as an étale sheaf over
S and identifying it with its espace étalé).

Proof. Suppose we are given a section S → Tro Jac(X /S). Let Z be the pullback of the zero
section of Tro Jac(X /S) to S. We wish to show Z is representable by a logarithmic scheme that
is of finite type over S and is affine over H1(X ). This is an étale-local assertion on S, so we can
work locally in S and assume S → Tro Jac(X /S) can be lifted to S → Hom(H1(X ),Glog). We
can realize Z as the pullback of ∂ : H1(X )→ Hom(H1(X ),Glog) to S. We therefore have

Z = S ×
Hom(H1(X ),Glog)

H1(X ) =
⋃

α∈H1(X )

S ×
Hom(H1(X ),Glog)

{∂(α)}. (4.12.3.1)

Here the union ranges over local sections α of H1(X ) over S. But ∂ is quasicompact by
Corollary 3.11.4, so, locally in S, we only need to consider finitely many of the α ∈ H1(X ). We
can therefore assume there is a single α. We write Zα for the component of Z that corresponds.

Locally in S, we can choose a surjection from a finitely generated free abelian group A onto
H1(X ). This induces an embedding Hom(H1(X ),Glog)→ Hom(A,Glog), which is a product of
copies of Glog. Applying Proposition 2.2.7.5 on each copy, we get the result. �
Corollary 4.12.4. Let S be a logarithmic scheme and let X be a proper, vertical logarithmic
curve over S. Then the zero section of Log Pic(X/S) is representable by logarithmic schemes
that are of finite type and, étale-locally in S, affine over H1(X )×S Log Pic(X/S), where X is
the tropicalization of X.

Proof. We use the exact sequence from Theorem 4.9.4. By Lemma 4.12.3, the map from
Pic[0](X/S) to Log Pic0(X/S) is representable by logarithmic schemes of finite type and affine
over H1(X ). But the zero section of Pic[0](X/S) is a closed embedding because Pic[0](X/S) is
separated and schematic over S; in particular, it is affine and of finite type. We deduce that the
zero section of Log Pic(X/S) is of finite type and is affine over H1(X ). �
Proof of Theorem 4.12.1. The diagonal of Log Pic(X/S) is the base change of the embedding
of the zero section, so it is sufficient to demonstrate that the embedding of the zero section is
finite. We have seen that it is of finite type in Corollary 4.12.4. Corollary 4.12.4 also shows that
it is affine over an algebraic space that is étale over S. In particular, it has affine fibers. But it
also satisfies the valuative criterion for properness by Corollary 4.10.3. Therefore, the fibers are
both affine and proper, hence are finite. Since the zero section is also of finite type, it is therefore
quasifinite. A quasifinite separated morphism is schematic [Sta18, Tag 03XX], so the zero section
is schematic. Since it is quasifinite and proper, it is finite [Sta18, Tag 02LS]. �
Corollary 4.12.5. For each integer d, the sheaf Log Picd(X/S) and the stack LogPicd(X/S)
are proper over S.

Proof. We have shown that Log Picd(X/S) has finite diagonal by Theorem 4.12.1, is bounded
by Corollary 4.9.5, and satisfies the valuative criterion by Theorem 4.10.1. The properness
of LogPicd(X/S) follows because it is a gerbe banded by the proper group Glog over
Log Picd(X/S). �
Remark 4.12.6. Of course, the statements demonstrated here are all well known for the Picard
group of a proper family of smooth curves. The separatedness of the Picard group implies that
the diagonal is finite, by definition. However, the Picard stack of a proper family of smooth curves
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is not separated because line bundles have the nonproper group Gm acting as automorphisms.
This is resolved in the logarithmic Picard stack because the automorphism group of a logarithmic
line bundle is the proper logarithmic group, Glog.

For a proper family of nodal curves, the Picard group can fail to be separated because of the
possibility of twists by components of the special fiber.

4.13 Smoothness
Theorem 4.13.1. Let X be a logarithmic curve over S. Then Log Pic(X/S) is logarithmically
smooth.

There are two parts to smoothness: the infinitesimal criterion and local finite presentation.
Local finite presentation was addressed in Proposition 4.2.2.

Lemma 4.13.2. LogPic(X/S) satisfies the infinitesimal criterion for smoothness over S. Its
logarithmic tangent stack is π∗BGa, meaning isomorphism classes of deformations are a torsor
under H1(X,OX) and automorphisms are in bijection with H0(X,OX).

Proof. Consider a lifting problem

T ��

��

LogPic(X/S)

��
T ′

��������
�� S

(4.13.2.1)

in which T ′ is a strict infinitesimal square-zero extension of T . The lower horizontal arrow gives
a logarithmic curve X ′ over T ′ with fiber X over T , and the upper horizontal arrow gives a
logarithmic line bundle L on X. We wish to extend this to T ′. It is sufficient to assume that T ′

is a square-zero extension with ideal J .
Let L be the Mgp

X -torsor induced from L. As this is a torsor under an étale sheaf, and the
étale sites of X and X ′ are identical, L extends uniquely to L′. We therefore assume L′ is fixed.
We note that the bounded monodromy condition for a putative L′ extending L depends only on
L
′, and is equivalent to that for L, hence is automatically satisfied.

We wish to show that L′ can be lifted to an Mgp
X′-torsor. Locally in X there is no obstruction

to extending L to L′. If we take any two local extensions of L, their difference L′ ⊗ L′′∨ is a
Mgp
X′-torsor whose restriction to X is trivialized, as is its induced M

gp
X′-torsor. Therefore, the

Mgp
X′-torsor L′ ⊗ L′′∨ is induced from a uniquely determined O∗

X′-torsor extending the trivial one
from X.

It follows that extensions of L form a gerbe on X banded by OX ⊗ J . Obstructions to
producing a lift – in other words, obstructions to producing a section of this gerbe – lie in
H2(X,OX ⊗ J), which vanishes locally in S because X is a curve over S. By the cohomo-
logical classification of banded gerbes, deformations form a torsor under H1(X,OX ⊗ J) and
automorphisms are in bijection with H0(X,OX ⊗ J).

To get the logarithmic tangent space, we take a trivial extension T ′ of T by J = OT . Then
isomorphisms between a given extension L′ and the trivial extension form a torsor under the
group of automorphisms of the trivial extension, Ga. �

4.14 Tropicalizing the logarithmic Picard group
Let X be a proper, vertical logarithmic curve over S and let X denote the tropicalization of X.
We construct a tropicalization map

LogPic(X/S)→ TroPic(X /S). (4.14.1)
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Since TroPic(X /S) is locally constant on the logarithmic strata of S, our strategy will be
to construct (4.14.1) stratumwise and then show its compatibility with generization.

Assume first that S has constant characteristic monoid and that the dual graph of X is
constant over S. Under these assumptions, we have an anticontinuous tropicalization map t :
X →X .

Suppose thatQ is aMgp
X -torsor onX. Let U →X be a local isomorphism and let U = t−1U .

Let NS(U) denote the Néron–Severi group of U . Then NS is a functor on finite X-schemes and we
observe that the sheaf V on X (whose sections are members of the free abelian group generated
by the vertices) is isomorphic to t∗ NS. Combined with Lemma 2.4.2.4 and the exact sequence
in the middle column of (3.4.1), this proves the following proposition.

Proposition 4.14.2. Let X be a logarithmic curve over S, where S has constant characteristic
monoid and X has constant dual graph. Let X be the tropicalization of X. Then the sheaf of
linear functions L on X is quasi-isomorphic to t∗[M

gp
X → NS].

For the reader’s convenience, we recall a few facts about strictly commutative 2-groups.
Suppose that we have a short exact sequence of sheaves on a site T :

0 �� K
i �� G

q
�� H �� 0

This induces a sequence of morphisms of 2-groups:

· · · �� H �� BK �� BG �� BH �� · · ·
The connecting homomorphism H → BK takes an element h ∈ H to its preimage
{g ∈ G : q(g) = h} in G; this is a coset of K and, in particular, a K-torsor when the embedding
in G is forgotten. The remaining maps are given by extension of structure group: a G-torsor P
induces an H-torsor P/K, and a K-torsor L similarly induces a G-torsor L×K G = (L×G)/K,
with the quotient taken by the antidiagonal action of K.

The sequence is ‘long exact’ in the sense that H is the kernel of BK → BG, and BK is the
kernel of BG→ BH. Explicitly, a K-torsor with a trivialization of its induced G-torsor is the
same thing as a K-torsor with a K-equivariant map to G, which is to say a coset of K in G, that
is, a section of H. Likewise, a G-torsor with a trivialization of its induced H-torsor is a G-torsor
with a G-equivariant map to H; any such torsor admits a unique reduction to a K-torsor by
taking the fiber over 0 ∈ H.

We now specialize to the cases of interest, which are

• K = Gm, G = Glog, H = Glog on the logarithmic curve X → S, and
• K = L, G = PL, H = V on the tropicalization X .

We will write Glog ⊗ L for the Glog-torsor associated to a Gm-torsor L, and P for the Glog-
torsor associated to a Glog-torsor P . The tropicalization map LogPic(X/S)→ TroPic(X )
arises from the relationship between Glog and PL. Since t∗M

gp
X = PL, and M

gp
X -torsors are,

locally in S, trivial on the fibers of t : X →X (namely, the strata of X), pushforward along t
gives an equivalence

BGlog(X) ∼−→ BPL(X ) : P �→ t∗P .

Furthermore, if P is a Glog-torsor on X, with induced Glog-torsor P , then the fiber of P over
a section α of P is a O∗

X -torsor, P (α). We obtain a map from P to the Néron–Severi presheaf NS
sending α to the class of P (α). Since t∗ NS = V, we obtain t∗P → V. That is, the PL-torsor on
X associated to a Mgp

X -torsor on X comes with a canonical trivialization of its induced V-torsor,
hence descends uniquely to a L-torsor that we call trop(P ). Explicitly, trop(P ) is the L-torsor of
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multidegree-0 lifts of P to an O∗
X -torsor:5

trop(P ) = {(L,α : Llog ∼−→ P ) |multideg(L) = 0}.
In order to extend this construction to one valid over a general base, we will need to prove its

compatibility with the generization maps for TroPic(X /S), given by Proposition 3.8.2. Note
that the bounded monodromy condition has not yet entered into the discussion; indeed, it only
becomes necessary when considering families of nonconstant degeneracy.

Proposition 4.14.3. Let X be a proper logarithmic curve over S and let s be a geometric
point of S. Then π∗(BM

gp
X )s → Γ(Xs,BM

gp
Xs

) is fully faithful and restricts to an isomorphism
on the bounded monodromy subgroups.

Proof. Full faithfulness follows from proper base change for étale cohomology [SGA4(3),
Théorème 5.1(i) and (ii)], so the point is to prove surjectivity on the bounded monodromy
subgroup. The assertion is étale-local in S, so we may assume that the logarithmic structure of S
has a global chart. The chart gives a stratification ofX into finitely many locally closed subschemes,
and we can assume without loss of generality that only one is closed and that it contains s.

Suppose that Ls is an M
gp
X -torsor on Xs with bounded monodromy. We extend Ls to an

M
gp
X -torsor on X inductively over the strata of S. By induction, we can assume that LZ has

already been constructed on a closed union of strata Z containing s and that the complement
of Z in S is an open subset U on which MS is constant. Let j denote the inclusion of U in S.

The homomorphism M
gp
S → j∗M

gp
U induces a homomorphism M

gp
X → N

gp
X by pushout. Let

KZ be the Ngp
X -torsor on XZ induced from Ls along this homomorphism.

Let XU denote the dual graph of a geometric fiber of X over U and let VU be its universal
cover. Pulling back along the projection Xs →XU , we obtain an étale cover Vs of Xs, which
corresponds to an étale cover of Xs. By construction, this cover extends to an étale cover ρ :
V → X of all of X.

We also use ρ to denote the restriction of ρ to the preimage of Z. The pullback ρ∗KZ is
trivial. Indeed, it suffices to trivialize ρ∗Ks, and Ks has trivial monodromy around all loops in
Vs, by its construction and the assumption of bounded monodromy in L. Then ρ∗KZ extends
trivially to an N

gp
X -torsor K ′ on V and the action of deck transformations extends as well. By

descent, we obtain an NX -torsor K on X extending KZ .
We may now define L = K ×i∗KZ

i∗LZ where i is the inclusion of XZ in X. This is a torsor
under N ×i∗NXZ

i∗MXZ
, which is isomorphic to MX by the canonical map. �

Suppose now that S is a strictly henselian valuation ring with special point ξ and generic
point η. We have a commutative diagram

Γ(Xξ,BM
gp
Xξ

)

��

Γ(X,BMgp
X )

��

���� Γ(Xη,BM
gp
Xη

)

��

Γ(Xξ,BM
gp
Xξ

)

��

Γ(X,BMgp
X )

��

���� Γ(Xη,BM
gp
Xη

)

��
B NS(Xξ) Γ(S,B NS(X/S)) ���� B NS(Xη)

5 The formula for trop(P ) should be interpreted as a groupoid. Since O∗
X → Mgp

X is injective, there is at most one
isomorphism between any two objects of trop(P ), so this groupoid is equivalent to a set.
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Upon passage to the bounded monodromy subgroups and composing, we obtain

LogPic(X/S)(ξ)

��

LogPic(X/S)(S)

��

���� LogPic(X/S)(η)

��

Γ(Xξ,BM
gp
Xξ

)†

��

Γ(X,BMgp
X )†

∼�� ��

��

Γ(Xη,BMXη)†

��
B NS(Xξ) (B NS(X/S))(S) ��∼�� B NS(Xη)

(4.14.4)

The isomorphism in the second row is Proposition 4.14.3 and we get the isomorphism
(B NS(X/S))(S) � B NS(Xξ) from the knowledge that NS(X/S) is an étale sheaf over S.

The vertical compositions in diagram (4.14.4) are canonically trivialized, as was discussed
earlier. Proposition 4.14.2 implies that TroPic(Xξ) is the kernel of Γ(Xξ,BM

gp
Xξ

)† → B NS(Xξ)
(and similarly over η) so we obtain the following commutative diagram:

LogPic(X/S)(ξ)

��

LogPic(X/S)(S) ����

��														
LogPic(X/S)(η)

��
TroPic(Xξ) �� TroPic(Xη)

(4.14.5)

We leave it to the reader to verify that the construction in the proof of Proposition 4.14.3 is
the same as the one used in the proof of Proposition 3.8.2 so that the map TroPic(Xξ)→
TroPic(Xη) displayed above is indeed the same as the one guaranteed by Proposition 3.8.2.
The commutativity of the inner trapezoid gives the compatibility of the tropicalization map
with generization.

Theorem 4.14.6. Let X be a proper, vertical logarithmic curve over S and let X be its
tropicalization. Then there are exact sequences (in the étale topology)

0→ Pic[0](X/S)→ LogPic(X/S)→ TroPic(X /S)→ 0

0→ Pic[0](X/S)→ Log Pic(X/S)→ Tro Pic(X /S)→ 0

Proof. The second exact sequence is obtained from the first by dividing, term by term, by the
terms of the following exact sequence:

0→ BGm → BGlog → BGlog → 0 (4.14.6.1)

We have exact sequences

0→ O∗
X →Mgp

X →M
gp
X → 0 (on X)

and

0→ L→ PL→ V→ 0 (on X ) (4.14.6.2)

Rotating these sequences, pushing forward to S, and restricting to bounded monodromy,
we get a commutative diagram of exact sequences (with ρ∗BPL denoting the stack on S of
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PL-torsors on X ):

0 �� Pic(X/S) ��

��

LogPic(X/S) ��

��

π∗(BM
gp
X )† �� 0

0 �� NS(X/S) �� TroPic(X /S) �� ρ∗(BPL)† �� 0

The kernel of LogPic(X/S)→ TroPic(X/S) therefore coincides with the kernel of the map
Pic(X/S)→ NS(X/S), which is Pic[0](X/S). Likewise, Pic(X/S) surjects onto NS(X/S) so
LogPic(X/S)→ TroPic(X/S) is surjective as well. �

4.15 Logarithmic abelian variety structure
In this subsection, we explain how the logarithmic Jacobian carries the structure of a log abelian
variety, in the sense of [KKN15]. For the convenience of the reader, we recall briefly the necessary
definitions. For details and proofs, we refer the reader to [KKN15]. We try to keep the notation
of [KKN15] as much as possible, but some changes will be necessary in order to avoid conflicts
with notation already introduced here. We fix a base logarithmic scheme S, and form the site
fs/S, whose objects are fine and saturated log schemes over S and whose coverings are strict
étale surjections.

Let G be a semiabelian group scheme, that is, an extension

1→ T → G→ A→ 1 (4.15.1)

of an abelian variety A by a torus T = SpecZ[H] = Hom(H,Gm). Here, H is a sheaf of lattices
over fs/S. Just as Glog extends Gm, there is a sheaf T log = Glog ⊗Gm T extending T that can
be defined on fs/S by the formula

T log(S′) = Hom(H,Mgp
S′ ). (4.15.2)

Equivalently, T log = Hom(H,Glog), where we regard H as a sheaf on fs/S, and Hom denotes
the sheaf of homomorphisms. There is an evident inclusion T → T log induced from Gm → Glog,
and pushing out T → G along this map, we obtain an exact sequence

1→ T log → Glog → A→ 1 (4.15.3)

where Glog = T log ⊕T G.

Definition 4.15.4 [KKN08b, Definition 2.2]. A log 1-motif is a map K → Glog, where G is a
semiabelian group scheme and K is sheaf of locally free abelian groups of finite rank on fs/S.

The map K → Glog naturally defines a subsheaf Glog
(K) ⊂ Glog as follows. The composed map

from K to the quotient Glog/G ∼= T log/T = T
log determines a pairing 〈, 〉 : H ×K → Glog, and

a subsheaf T log
(K), determined by the formula

T
log
(K)(S

′) =
{
φ ∈ T log(S′)

∣∣∣ ∀ geometric points s ∈ S′, x ∈ Hs,
∃y, y′ ∈ K s.t 〈x, y〉 ≤ φ(x) ≤ 〈x, y′〉

}
. (4.15.5)

We thus obtain Glog
(K) by simply pulling back T log

(K) under the map G→ T
log. A log 1-motif

defines an abelian variety with constant degeneration, by assigning to K → Glog the quotient
sheaf Glog

(K)/K.

Definition 4.15.6 [KKN08a, Definition 4.1]. A log abelian variety is a sheaf A on fs/S such
that all of the following properties hold.
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(1) For each geometric point s ∈ S, the pullback of A to fs/s is a log abelian variety with
constant degeneration.

(2) Étale-locally on S, there is an exact sequence

0→ G→ A→ T
log
(K)/K → 0 (4.15.6.1)

for some semiabelian variety G over S, some bilinear form H ×K → Γ(S,Mgp
S ), and T log =

Hom(H,Glog).
(3) Let K denote the image of K in Hom(H,Glog) and H the image of H in Hom(K,Glog).

For each geometric point s ∈ S, there exists a map φ : Ks → Hs with finite cokernel such
that 〈φ(y), z〉 = 〈y, φ(z)〉 for all y, z ∈ Ks, and 〈φ(y), y〉 ∈MS,s.

(4) The diagonal A → A×A is representable by finite morphisms.

We are now ready to indicate how the logarithmic Jacobian fits into this context.

Theorem 4.15.7. Let X be a proper, vertical logarithmic curve over S. Then Log Pic0(X/S)
is a logarithmic abelian variety in the sense of Kajiwara, Kato, and Nakayama [KKN08a].

Proof. We verify the conditions of Definition 4.15.6.
Given a family of logarithmic curves X → S, with dual graph X , we obtain a sheaf of lattices

H1(X ). We set H = K = H1(X ) for the lattices appearing in the definition above, and take 〈, 〉
to be the intersection pairing. We let G = Pic[0](X) denote the multidegree-0 part of Pic(X/S).

The third condition in the definition is immediate in our context. The two lattices H and K
are H1(X ), and we may take φ = id. For any y ∈ H1(Xs), the pairing 〈y, y〉 is a sum of elements
of MS,s by Definition 3.3.1, and therefore is in MS,s.

The last condition is exactly Theorem 4.12.1.
The first and second condition follow from Corollary 4.6.3 and the exact sequence of

Theorem 4.9.4 respectively, once we observe the following lemma.

Lemma 4.15.8. For K = H1(X ), the subsheaf T
log
(K) coincides with the subsheaf of elements

with bounded monodromy (T log)† in T
log

.

Proof. Since both the bounded monodromy condition and the condition defining T log
(Y ) are defined

pointwise, we may check that the two groups are the same on a logarithmic scheme s whose
underlying scheme is the spectrum of an algebraically closed field. If φ : H1(X )→M

gp has
bounded monodromy then, by definition, there are integers m and n such that m〈x, x〉 ≤ φ(x) ≤
n〈x, x〉. Thus, φ ∈ T log

(Y ) as it verifies the definition with y = mx, y′ = nx.
For the converse, suppose that φ : H1(X )→M

gp
s and, for every x ∈ H1(X ), there are y, y′ ∈

H1(X ) such that 〈x, y〉 ≤ φ(x) ≤ 〈x, y′〉. For any y ∈ H1(X ), we have 〈x, y〉 ≤ n〈x, x〉 for some
positive integer n. Indeed, we may take n to be the maximum of the coefficients of y as a linear
combination of edges of X . We likewise have 〈x, y′〉 ≥ −m〈x, x〉 for some positive integer m,
and therefore −m〈x, x〉 ≤ φ(x) ≤ n〈x, x〉, as required. �

This concludes the proof of Theorem 4.15.7. �

4.16 Prorepresentability
The logarithmic Picard group and logarithmic Jacobian cannot be represented by schemes, or
even by algebraic stacks, with logarithmic structures. This follows from the nonrepresentabil-
ity of the logarithmic multiplicative group, which was proved in Proposition 2.2.7.2. We have
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already seen in § 4.11 that both are nearly representable in the sense that they have loga-
rithmically smooth covers by logarithmic schemes. In this subsection we will consider another
near-representability property.

Let X be the tropicalization of a logarithmic curve X over S. Theorem 4.9.4 shows that
Log Pic0(X/S) is a torsor under the algebraic group Pic[0](X/S) over Tro Jac(X /S), and
Theorem 4.14.6 shows that Log Pic(X/S) is a Pic[0](X/S)-torsor over Tro Pic(X /S). There-
fore, the nonrepresentability of Log Pic(X/S) can be attributed to the nonrepresentability of
Tro Pic(X /S). However, we saw in § 3.9 that Tro Pic(X /S) is prorepresentable. We might
therefore reasonably expect Tro Pic(X/S) to be similarly prorepresentable.

We saw in Proposition 3.9.1 that Hom(H1(X ),Glog)† is, locally in S, prorepresentable by
a collection of submonoids of Mgp

S +H1(X ). Each of these submonoids represents a functor
on logarithmic schemes that can be represented by an algebraic stack with a logarithmic struc-
ture (see [CCUW20, § 6] for further details). Therefore, we can think of Hom(H1(X ),Glog) as
ind-representable on logarithmic schemes by algebraic stacks with logarithmic structure. Since
Tro Jac(X /S) is a quotient of Hom(H1(X ),Glog)† by H1(X ), we conclude that Tro Jac(X /S)
is, locally in S, the quotient of an ind-algebraic stack with logarithmic structure by H1(X ).
The same applies to Tro Picd(X /S) for all d, since it is a torsor under Tro Pic0(X /S) =
Tro Jac(X /S).

Proposition 4.16.1. Log Pic(X/S) is, locally in S, the quotient of an ind-algebraic stack with
a logarithmic structure by the action of H1(X ).

Proof. Log Pic(X/S) is a torsor over Tro Pic(X /S) under the algebraic group Pic[0](X/S). �
For a moduli problem F on logarithmic schemes, one defines a minimal logarithmic structure

on an S-point of F in such a way that when F is representable, minimality corresponds to
strictness of the morphism S → F . We introduce a similar notion that corresponds to strictness
at the level of associated groups.

Definition 4.16.2. Let S be a logarithmic scheme and let F be a covariant functor valued
in sets on logarithmic structures over MS such that F (MS) has one element. We say that a
logarithmic structure N over MS and an object ξ ∈ F (N) is pseudominimal if, for every η ∈
F (P ), there is a unique morphism u : Ngp → P gp and ξ′ ∈ F (u−1P ∩N) that is sent to ξ under
u−1P ∩N → N and is sent to η under u−1P ∩N → P .

If F is a presheaf on logarithmic schemes then we say that ξ ∈ F (T ) is pseudomini-
mal if ξ is pseudominimal when F is regarded as a functor on logarithmic structures over
MT .

Note that if ξ1 ∈ F (N1) and ξ2 ∈ F (N2) are both pseudominimal then there is a canonical
isomorphism Ngp

1 � Ngp
2 .

Proposition 4.16.3. With notation as in Definition 4.16.2, if pseudominimal elements exist
then the collection of pseudominimal objects of F prorepresents F .

Proof. Let G(P ) = lim−→(N, ξ)
Hom(N,P ) with the colimit taken over all pseudominimal (N, ξ).

There is a canonical morphism G→ F that we want to show is an isomorphism. It is surjective
by the existence of pseudominimal objects. Now suppose that ξ1 ∈ F (N1) and ξ2 ∈ F (N2) are
pseudominimal objects projecting to the same η ∈ F (P ). By definition of pseudominimality,
there exist a unique morphism u : Ngp

1 → Ngp
2 and an object ξ′ ∈ F (u−1N2 ∩N1) projecting to

both ξ1 and ξ2 along the canonical maps to N1 and N2. It is immediate that ξ′ is pseudominimal,
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which implies that the pseudominimal objects are cofiltered. Moreover, the diagram

u−1N2 ∩N1
��

��

N1

��
N2

�� P

(4.16.3.1)

commutes, so the homomorphisms N1 → P and N2 → P represent the same element of G(P ).
This demonstrates the injectivity of G→ F and completes the proof. �
Proposition 4.16.4. A T -point of Log Pic0(X/S) over f : T → S is pseudominimal if and only
if the canonical map f∗Mgp

S +H1(X )→M
gp
T is a bijection.

Proof. Since Log Pic0(X/S)→ Tro Jac(X/S) is strict, a T -point of Log Pic0(X/S) is pseudo-
minimal if and only if the induced T -point of Tro Jac(X/S) is pseudominimal. The proposition
therefore follows from Proposition 3.9.1. �
Example 4.16.5. The group Glog is not prorepresentable, because it lacks pseudominimal objects.
For simplicity we will work with Glog instead. Indeed, consider a logarithmic structure over
a point with characteristic monoid M = Ne1 + Ne2. Then Glog(S) = Ze1 + Ze2. Consider the
element e1 − e2. Any pseudominimal object (N, ξ) must have Ngp = Z. But if u : Z→M is a
homomorphism taking 1 to e1 − e2 then u−1M = {0}, and then there is no element of Glog(0) = 0
inducing e1 − e2 via a homomorphism to M .

On the other hand, we have already seen that the bounded monodromy subfunctors
Hom(H,Glog)† ⊂ Hom(H,Glog) associated to a positive definite quadratic form on H do admit
pseudominimal objects. For a concrete example, we work over a base monoid containing a
nonzero element δ and consider H = Z with the quadratic form � that has �(1) = δ. Let N
be a submonoid of M ×H that contains (nδ, 1) and (nδ,−1) for some positive integer n,
and let ξ ∈ G†

log(H) = M
gp × Z be the element (0, 1). We will check that (N, ξ) is pseudo-

minimal relative to any element of G†
log(M). Indeed, suppose that η ∈ G†

log(P ) ⊂ P gp. Then
there is a positive integer m such that −mδ ≤ η ≤ mδ, so P contains both η +mδ and
mδ − η; for simplicity we choose m ≥ n. Therefore, the preimage of P under the natural homo-
morphism u : Ngp → P

gp contains (mδ, 1) and (mδ,−1). Hence (0, 1) lies in the associated
group of u−1P ∩N , so we can find ξ′ = (0, 1) ∈ Glog(u−1P ∩N) lifting both ξ ∈ Glog(N) and
η ∈ Glog(P ).

4.17 Schematic models
We show that the combinatorics of the tropical Picard group can be used to construct toroidal
compactifications of Log Picd(X/S). This section is inspired directly by Kajiwara, Kato, and
Nakayama [Kaj93, KKN15] and is, for the most part, only a tropical reinterpretation of their
results.

Suppose that X is a logarithmic curve over a logarithmic scheme S with tropicalization X .
For simplicity, we assume that S is atomic, or at least that it has a morphism to σ for some
rational polyhedral cone σ, dual to M , and that X is pulled back from a tropical curve Y over
σ (we abuse notation here and do not distinguish notationally between σ and its Artin cone).
Then Tro Pic(X /S) is pulled back from Tro Pic(Y ). A subdivision Z of Tro Pic(Y ) induces a
subdivision of Tro Pic(X /S) and a subdivision Log Pic(X/S)Z of Log Pic(X/S) by pullback.
Since subdivisions are proper and Log Pic(X/S) is proper, the subdivision, Log Pic(X/S)Z , is
proper as well.
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Suppose now that Z is actually representable by a cone space in the sense of [CCUW20].
Then Z ×σ S is representable by an algebraic stack over S with a logarithmic structure.
By Theorem 4.14.6, Log Pic(X/S) is a torsor over Tro Pic(X /S) under the group scheme
Pic[0](X/S). Therefore, Log Pic(X/S)Z is also a torsor over ZS under the same group scheme.
This implies that Log Pic(X/S)Z is representable by an algebraic stack with a logarithmic
structure.

Lemma 4.17.1. Let L be a logarithmic line bundle on a proper, vertical logarithmic curve X
over S. Assume that the logarithmic structure of S is pseudominimal. Then the automorphism
group of L, fixing the underlying schemes of X and S and the minimal logarithmic structure of
X, is Γ(S,Mgp

S ).

Proof. LetNS andNX be the minimal logarithmic structures onX and on S, respectively, associ-
ated with the curveX over S. ThenMgp

S is isomorphic to the direct sumN
gp
S +H1(X ), where X

is the tropicalization of X over S. We choose the splitting as follows: L induces λ̄ ∈ H1(X ,PL) =
Hom(H1(X ),Mgp

S )/∂E(X ). Locally in S, we choose a lift of λ̄ to λ ∈ Hom(H1(X ),Mgp
S ). Then

we identify H1(X ) with its image in Mgp
S under λ.

Now consider an automorphism of L as in the statement of the lemma. This comprises an
automorphism of φ of MS and an isomorphism L � φ∗L. Since L and φ∗L are isomorphic,
the homomorphisms λ and φλ must coincide modulo ∂E(X ). That is, φλ = λ+

∑
ai∂(ei).

In particular, for each γ ∈ H1(X ), we must therefore have

φλ(γ) = γ +
∑
ei∈γ

ai�(ei) (4.17.1.1)

where the sum is taken over the constituent edges of γ. If any ai < 0 then φk(γ) cannot lie in
MS for k � 0. Similarly, if any ai > 0 then φk(γ) will not lie in MS for k 
 0. Therefore, ai = 0
for all i and φ acts as the identity on Mgp

S .
The automorphism φ of MS is therefore determined uniquely by a homomorphism M

gp
S →

O∗
S . This homomorphism must vanish on N

gp
S ⊂Mgp

S , so it descends to a homomorphism
H1(X )→ O∗

S . Writing A for the automorphism group in the statement of the lemma, this
gives us an exact sequence

0→Mgp
X → A→ Hom(H1(X ),O∗

S) (4.17.1.2)

The Mgp
X on the left represents the automorphisms of L when the logarithmic structure of S is

held fixed. We wish to show that only the zero homomorphism H1(X )→ O∗
S lifts to A.

Consider the sheaf Ã on X whose sections over an étale U → X consist of an automorphism
φ of π∗MS |U that fixes the minimal logarithmic structure of X and the characteristic monoid of
π∗MS |U and an isomorphism between L|U and φ∗L|U . Since logarithmic line bundles are locally
trivial, an isomorphism between L|U and φ∗L|U always exists locally in X and there is therefore
an exact sequence of sheaves on X:

0→Mgp
X → Ã→ Hom(H1(X ),O∗

X)→ 0

Pushing forward to S, we get the following extension of (4.17.1.2):

0→ π∗M
gp
X → A→ Hom(H1(X ),O∗

S)→ R1π∗M
gp
X (4.17.1.3)

The map Hom(H1(X ),O∗
S)→ R1π∗M

gp
X sends a homomorphism φ to the multidegree-0 line

bundle on X obtained by gluing using φ around the loops of X . It is, in other words, the
inclusion of the torus part of Pic[0](X) in Log Pic(X) and, in particular, is injective. It follows
that π∗M

gp
X → A is bijective. By Lemma 4.6.1, π∗M

gp
X = Mgp

S and the lemma is proved. �

1553

https://doi.org/10.1112/S0010437X22007527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007527


S. Molcho and J. Wise

Corollary 4.17.2. Let Log Pic(X/S)Z be a subdivision of Log Pic(X/S) that is representable
by an algebraic stack with a logarithmic structure. Then Log Pic(X/S)Z is representable by an
algebraic space with a logarithmic structure.

Proof. Since objects of Log Pic(X/S)Z are pseudominimal, Lemma 4.17.1 shows that objects of
Log Pic(X/S)Z have no nontrivial automorphisms. Therefore, Log Pic(X/S)Z is a sheaf, and
hence an algebraic space. �

4.18 Unintegrable torsors
We will show that a Glog-torsor on a logarithmic curve that deforms to all infinitesimal orders
does not necessarily integrate to a Glog-torsor over a complete noetherian local ring. Such
objects are excluded from the logarithmic Picard group by the bounded monodromy condition
of Definition 3.5.5, and this subsection is meant to explain the necessity of that condition.

In this subsection we can take cohomology either in the Zariski topology or the étale topology.
Let P be a Glog-torsor on a logarithmic scheme X. By the projection Glog → Glog, this

induces a Glog-torsor P over X. We note that there is an exact sequence

H1(X,Mgp
X )→ H1(X,Mgp

X )→ H2(X,O∗
X)

As H2(X,O∗
X) vanishes for a curve over an algebraically closed field (or, more generally, over an

artinian local ring with algebraically closed residue field), every Glog-torsor on such a curve lifts
to a Glog-torsor. To prove the existence of an unintegrable Glog-torsor, it will therefore suffice to
give an example of an unintegrable Glog-torsor on a family of logarithmic curves over a complete
noetherian local ring with algebraically closed residue field.

Let S = SpecC[[t]] and let X be a family of curves with smooth total space such that the
general fiber is smooth and connected, but the special fiber has two irreducible components,
joined to each other at two ordinary double points, but is otherwise smooth. This is essentially
the simplest example where étale cohomology with nontorsion coefficients does not commute
with base change [SGA4(3), § 2]. In this example, cohomology in the Zariski topology also fails
to commute with base change.

Let MS be the divisorial logarithmic structure on S and let M ′
S be an extension of MS with

M
′
S = M

gp
S × Z. One may simply take M ′

S = MS ×N, but it will be convenient later to have a
valuative example; for this one can take a logarithmic structure with characteristic monoid N
on the generic point of S and give S the logarithmic structure obtained by pushforward. It is
convenient to write S′ = (S,M ′

S), so thatM ′
S = MS′ . IfMX is the divisorial logarithmic structure

on X then let X ′ = (X,M ′
X) be the pullback of (X,MX)→ (S,MS) along S′ → (S,MS). We

construct a Mgp
X′-torsor on the special fiber X ′

0 that lifts to all finite orders (this is automatic,
by infinitesimal invariance of the étale site) but not to X ′.

We compute H1(X,Mgp
X′) by means of the exact sequence

H0(X,Mgp
X′/S′)→ H1(X,π−1M

gp
S′ )→ H1(X,Mgp

X′)→ H1(X,Mgp
X′/S′)

AsMgp
X′/S′ is concentrated in dimension 0 onX, the last term in the sequence vanishes. The group

H1(X,π−1M
gp
S′ ) vanishes because X is normal (see [SGA4(3), § 2]). Hence H1(X,Mgp

X′) = 0.
On the other hand, in the exact sequence

H0(X0,M
gp
X′/S′)

∂−→ H1(X0, π
−1M

gp
S′ )→ H1(X0,M

gp
X′)→ H1(X0,M

gp
X′/S′)

we still have H1(X0,M
gp
X′/S′) = 0, for the same reason, but

H1(X0, π
−1M

gp
S′ ) = H1(X0,Z2) � Z2
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since the fundamental group of X0 is Z in the Zariski topology. (In the étale topology, it is the
nontorsion part of the fundamental group that is Z.)

The sheaf M
gp
X′/S′ is a skyscraper Z, concentrated at the nodes of X0. Therefore,

H0(X0,M
gp
X′/S′) = Z2. The map ∂ is the intersection pairing and one can verify directly that

its rank is 1. Alternatively, one may observe that it is induced by pushout from the intersection
pairing on X, which certainly has rank at most 1 because H1(X0, π

−1MS) � Z. In any case,
there is a nonzero element in H1(X0,M

gp
X′) (and one can verify that this group is free of rank 1).

This gives a formal collection of elements of H1(Xn,M
gp
X′), where Xn is the reduction

of X modulo tn+1, for every n ≥ 0, whose image in H1(Xn,M
gp
X′) is nonzero. However,

H1(X,Mgp
X′) = 0, so this formal collection cannot be integrated.

Proposition 4.18.1. Let X ′ and S′ be as above and let Z be either the category fibered in
groupoids on LogSch/S′ whose value is the groupoid of Glog-torsors on X ′

T , or the sheaf of
isomorphism classes of such. Then Z has no logarithmically smooth cover by a logarithmic
scheme.

Proof. Suppose that U is a logarithmic scheme and U → Z is a logarithmically smooth cover.
Choose S′ as in the discussion preceding the statement of the proposition, with algebraically
closed residue field. Since the logarithmic structure of S′

0 is valuative, the map S′
0 → Z lifts to

U . Then the formal family of points S′
n → Z constructed above lifts to S′

n → U by the infinites-
imal criterion for logarithmic smoothness. Since U is a logarithmic scheme, this family can be
integrated to a map S′ → U , and therefore the maps S′

n → Z can be integrated to S′ → Z. We
have just seen no such integration exists. �

5. Examples

We calculate some examples of LogPic(X/S), over a base S whose underlying scheme is the
spectrum of an algebraically closed field k. We use the quotient presentation of Corollary 4.6.3,
which requires an explicit understanding of H1(Xν ,Glog) and the map H1(X )→ H1(Xν ,Glog).

5.1 The Tate curve
Let Y → Spec k[[t]] be a family of curves whose generic fiber Yη is a smooth curve of genus 1
and whose special fiber X consists of n rational curves arranged in a circle. We give Spec k[[t]]
its divisorial logarithmic structure and we take S to be the closed point of Spec k[[t]], with the
logarithmic structure induced by restriction.

Let X be the tropicalization of X. This is a graph with n vertices in a circle, and we have
H0(X ) = Z and H1(X ) = Z. The intersection pairing Z× Z→M

gp
S sends (a, b) to abδ where

δ is the sum of the lengths of the edges of X . Corollary 3.4.8 then gives exact sequences:

0→ Z δ−→ G†
log → Tro Jac(X /S)→ 0 (5.1.1)

0→ Tro Jac(X /S)→ Tro Pic(X /S)→ Z→ 0 (5.1.2)

That is, Tro Jac(X /S) = G†
log/Zδ. In particular, if MT = R≥0 then the T -points of

Tro Jac(X /S) may be identified with R/Zδ. By Theorem 4.14.6, Log Pic0(X/S) is an extension
of Glog

†
/Zδ by Pic[0](X/S) � Gm.

In order to understand this extension more explicitly, we will use the quotient presen-
tation of Corollary 4.6.3. Recall from (4.7.5) that we may identify H1(X,π∗Glog)[0] with
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Figure 7. A tropical curve of genus 2.

Hom(H1(X ),Glog). Therefore, Corollary 4.6.3 gives us the following exact sequence:

0→ H1(X )→ Hom(H1(X ),Glog)† → Log Pic0(X/S)→ 0 (5.1.3)

The pairing H1(X )×H1(X )→ Glog lifts the intersection pairing on X , valued in Glog. Sub-
stituting H1(X ) = Z, we obtain Log Pic0(X/S) = G†

log/Zδ̃ where G†
log denotes the subfunctor

of Glog that is bounded by δ, and δ̃ is a lift of δ to MS .
The following is the tropicalization sequence from Theorem 4.14.6:

0→ Gm → G†
log/Zδ̃ → G†

log/Zδ → 0 (5.1.4)

The element δ̃ ∈ Glog can be understood as a ‘logarithmic period’, in the following sense. The
map d log : Mgp

X → Ωlog
X/S factors through Mgp

X/S and therefore gives us a logarithmic differential
φ on X. We wish to compute

∫
γ φ where γ is a basis for H1(X ), without attempting to introduce

any general theory of integration.
Let X̃ be the ‘universal cover’ of X, whose tropicalization X̃ has vertices indexed by the

integers, with consecutive vertices connected by an edge. We can recognize X̃ as a subdivision
of G†

log, and we have X = X̃/H1(X ) = X̃/Zγ.
Locally in X, there is no obstruction to lifting φ to Mgp

X̃
, so there is a global section Φ of Mgp

X̃

lifting φ. Then Φ(γ.x)− Φ(x) is a function of x ∈ X̃ valued in π∗Mgp
S . It is therefore constant

and represents the coboundary of γ in H1(X,π∗Mgp
S ) = Mgp

S .

5.2 A curve of genus 2
Let X consist of two rational components joined along three nodes. The tropicalization X has
two vertices, v1 and v2, and three edges, e1, e2, and e3, which we choose to orient from v1 to v2,
as shown in Figure 7. We write δi for the length of ei in MS . The differences e1 − e2 and e2 − e3
form a basis for H1(X ). In this basis, the matrix of the intersection pairing is

A =
(
δ1 + δ2 −δ2
−δ2 δ2 + δ3

)
. (5.2.1)

The presentation Tro Jac(X/S) = Hom(H1(X ),Glog)†/H1(X ) becomes

Tro Jac(X/S) = (Glog ×Glog)†/AZ2. (5.2.2)

In particular, the real points are R2/AZ2 � S1 × S1.
The commutative diagram in (3.4.1) gives a morphism

H0(X ,V)→ Tro Pic(X ) ⊂ H1(X , L). (5.2.3)
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Figure 8. A fundamental domain for the quotient Hom(H1(X ),R)/∂H1(X ) and the sub-
division, under an isomorphism to Tro Pic2(X ), into regions parameterizing balanced tropical
divisors on quasistable models of X .

In concrete terms, this sends an integer linear combination of vertices D on X to the torsor
of piecewise linear functions on X that are linear along the edges of X and whose failure of
linearity at each vertex v of X is D(v). We denote this torsor L(D).

The exact sequence in the first row of (3.4.1) shows that lifts of L(D) to H1(X ,M
gp
S ) =

Hom(H1(X ),Mgp
S ) correspond to the trivializations of the induced H-torsor H(D). This torsor

is the sheaf of assignments of integers to the vertices of X such that the sum of outgoing slopes
at each vertex v is D(v).

The same reasoning applies equally well to any subdivision Y of X . Since Tro Pic(Y ) =
Tro Pic(X ) and Hom(H1(Y ),Mgp

S ) = Hom(H1(X ),Mgp
S ), giving D ∈ H0(Y ,V) and a trivial-

ization of H(D) will also produce points in Tro Pic(X ) and Hom(H1(X ),Mgp
S ). Figure 8 shows

a piece of Hom(H1(X ),R) with horizontal coordinate e1 − e2 and vertical coordinate e2 − e3.
For D ∈ H0(X ,V) and trivialization of H(D) chosen according to the following rules, we have
plotted a picture of those data at the corresponding position in Hom(H1(X ),R).

(1) D is supported on a quasistable model Y of X , meaning that each edge of X is subdivided
at most once.
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(2) If v ∈ Y is a point of subdivision of X then D(v) = 1.
(3) We have 0 ≤ D(v1) ≤ 2 and −2 ≤ D(v2) ≤ 0.

In the picture, each vertex v is labeled by D(v) unless D(v) = 0 and each edge is labeled by the
slope it has been assigned in a choice of trivialization of H(D). The shaded parallelogram is the
fundamental domain

{x∂(e1 − e2) + y∂(e2 − e3) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1} (5.2.4)

for the quotient by ∂H1(X ).
This subdivision is suggested by Caporaso’s compactification of Pic2(X). We originally com-

puted it with the help of Margarida Melo, Martin Ulirsch, and Filippo Viviani. The same example
also appears in [ABKS14, Figure 1] and [AP20, Figure 4].

5.3 Nonmaximal degeneracy
Finally, let us look at an example which is not maximally degenerate. Suppose X is the union of
two curves Y1 and Y2, glued along two points p1, p2, with pi in the first copy glued to pi in the
second copy. The dual graph X of X is again topologically a circle, with two vertices, v1 and
v2, and two edges, e1 and e2, with lengths δ1 and δ2. As in § 5.1, we find that Tro Jac(X /S) =
G†

log/Z(δ1 + δ2) and Log Pic0(X/S) is an extension of this torus by the algebraic Jacobian.
To compute Log Pic0(X/S), we use the quotient presentation from Corollary 4.6.3.

Equation (4.7.5) presents H1(X,π∗Glog) as an extension of H1(Xν ,Gm) = Pic(Y1)× Pic(Y2)
by Hom(H1(X ),Glog):

0→ G†
log → H1(X,π∗Glog)† → Pic0(Y1)× Pic0(Y2)→ 0 (5.3.1)

Then Corollary 4.6.3 says that Log Pic0(X/S) is the quotient of H1(X,π∗Glog)† by H1(X ).
In general, the composition

H1(X )→ H1(X,π∗Glog)→ H1(Xν ,Gm) = Pic0(Y1)× Pic0(Y2) (5.3.2)

is nonzero. Indeed, recall that the mapH1(X )→ H1(X,π∗Glog) is induced from the composition

H1(X ) ⊂ H0(X,Mgp
X/S)→ H1(X,π∗Mgp

S ), (5.3.3)

which was itself induced from the short exact sequence (4.6.2.1). IdentifyingH0(X,Mgp
X/S) = ZE ,

where E is the set of edges of X , the basis element e corresponding to the node p is sent
to (OY1(p),OY2(−p)). Therefore, the basis e1 − e2 of H1(X ) is sent to (OY1(p1 − p2),
OY2(−p1 + p2)).

If Y1 or Y2 has positive genus, the mapH1(X )→ Pic[0](X) is therefore nonzero, and will even
be injective if OYi(p1 − p2) is not a torsion point of the Jacobians of both curves. This shows
that the surjection H1(X,π∗Glog)[0]

† → Pic[0](Xν/S) does not factor through Log Pic0(X/S),
even though its restriction to Pic[0](X/S) ⊂ H1(X,π∗Glog) does factor through its image in
Log Pic0(X/S). Indeed, the map Pic[0](X/S)→ Log Pic0(X/S) is injective by Theorem 4.14.6.
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aux questions de passage à la limite, inThéorie des topos et cohomologie étale des schémas.
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dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et
B. Saint-Donat; MR 0354654.
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