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Abstract

We prove several finite product-sum identities involving the q-binomial coefficient, one of which is used
to prove an amazing identity of Gauss. We then use this identity to evaluate certain quadratic Gauss sums
and, together with known properties of quadratic Gauss sums, we prove the quadratic reciprocity law for
the Jacobi symbol. We end our article with a new proof of Jenkins’ lemma, a lemma analogous to Gauss’
lemma. This article aims to show that Gauss’ amazing identity and the properties of quadratic Gauss sums
are sufficient to establish the quadratic reciprocity law for the Jacobi symbol.

2020 Mathematics subject classification: primary 11L05; secondary 11A07, 11A15.
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1. Introduction

We begin with a short discussion on finite sum-product identities involving the
q-binomial coefficient. We prove four such identities in Section 2, two of which are
due to Gauss and are evaluations of special values of the Rogers–Szegö polynomials.
The other two identities, (2.4) and (2.5), are possibly new.

In Section 3, we prove an amazing identity of Gauss (3.3) using (2.4).
In Section 4, we evaluate certain quadratic Gauss sums using identity (3.3). This

proof is not new and we are essentially filling in the details of the proof given by
Jenkins [6].

Next, in Section 5, we reproduce a proof of another identity on quadratic Gauss
sums (5.1) which can be found in several classical textbooks. We chose to reproduce
this proof and the proof of (3.3) to make this article as self-contained as possible.
These two results then lead to a new proof of the quadratic reciprocity law for the
Jacobi symbol.

Jenkins [6] gave a different proof of the quadratic reciprocity law for the Jacobi
symbol using a formula for the Jacobi symbol. We will refer to Jenkins’ formula, which
is an analogue of Gauss’ lemma, as Jenkins’ lemma. In Section 6, we give a new proof
of Jenkins’ lemma using identities (3.3) and (5.1).
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2. The q-binomial coefficient

Let q be a complex variable. Let (a; q)0 = 1 and

(a; q)n =

n∏
k=1

(1 − aqk−1), n ∈ Z+.

The q-binomial coefficient is given by

[n
k

]
q
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q; q)n

(q; q)k(q; q)n−k
if n, k are integers, 0 ≤ k ≤ n,

0 otherwise.

The Rogers–Szegö polynomial is defined by

hn(x, q) =
n∑

j=0

[n
j

]
q
x j.

We note that as q→ 1, hn(x, q)→ (1 + x)n. However, hn(x, q) does not seem to have
representations in terms of products except for a few special cases such as the two
evaluations

h2n(−1, q) =
2n∑
j=0

[2n
j

]
q
(−1) j = (q; q2)n (2.1)

and

hn(q, q2) =
n∑

j=0

[n
j

]
q2

q j = (−q; q)n, (2.2)

which were both discovered by Gauss.
Identities (2.1) and (2.2) were proved by Gauss [3, Sections 6–9] using recurrence

relations. It turns out that these identities can also be established using Euler’s identity
[4, Theorem 349],

∞∑
j=0

x j

(q; q)j
=

1
(x; q)∞

, (2.3)

where

|q| < 1 and (a; q)∞ =
∞∏

k=1

(1 − aqk−1).

Using (2.3), we find that
( ∞∑

k=0

(−x)k

(q; q)k

)( ∞∑
�=0

x�

(q; q)�

)
=

1
(−x; q)∞

1
(x; q)∞

=
1

(x2; q2)∞
=

∞∑
n=0

x2n

(q2; q2)n
.
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Comparing the coefficients of x2n,

2n∑
j=0

(−1) j

(q; q)j

1
(q; q)2n−j

=
(q; q2)n

(q; q)2n
,

which is equivalent to (2.1).
Similarly, by (2.3),

( ∞∑
k=0

(qx)k

(q2; q2)k

)( ∞∑
�=0

x�

(q2; q2)�

)
=

1
(xq; q2)∞

1
(x; q2)∞

=
1

(x; q)∞

=

∞∑
n=0

xn

(q; q)n
=

∞∑
n=0

(−q; q)n

(q2; q2)n
xn.

Comparing the coefficients of xn,
n∑

j=0

q j

(q2; q2)j

1
(q2; q2)n−j

=
(−q; q)n

(q2; q2)n
,

which is equivalent to (2.2).
There is a ‘companion’ of (2.3) [4, Theorem 348] given by

∞∑
j=0

q j( j−1)/2x j

(q; q)j
=

∞∏
k=1

(1 + xqk−1).

Since
( ∞∑

j=0

q j( j−1)/2(−x) j

(q; q)j

)( ∞∑
j=0

q j( j−1)/2x j

(q; q)j

)
=

∞∏
k=1

(1 − xqk−1)(1 + xqk−1)

=

∞∏
k=1

(1 − x2q2k−2) =
∞∑

j=0

q j( j−1)(−x2) j

(q2; q2)j
,

we find, by comparing the coefficients of x2n, that

2n∑
j=0

[2n
j

]
q
(−1)n−jq(n−j)2

= (q; q2)n. (2.4)

Similarly, since
( ∞∑

j=0

q j( j−1)(qx) j

(q2; q2)j

)( ∞∑
j=0

q j( j−1)x j

(q2; q2)j

)
=

∞∏
k=1

(1 + xq2k−2)(1 + xq2k−1)

=

∞∏
k=1

(1 + xqk−1) =
∞∑

j=0

q j( j−1)/2x j

(q; q)j
,
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we find, by comparing the coefficients of xn, that

n∑
j=0

[n
j

]
q2

q(n−2j+1)(n−2j)/2 = (−q; q)n. (2.5)

3. Cyclotomic units and an identity of Gauss

It is known that if (t, m) = 1, then e2πit/m is a primitive mth root of unity. We will
use ζm to denote any primitive mth root of unity. It is often mentioned that as q→ 1,

[n
k

]
q
→

(
n
k

)
,

the usual binomial coefficient. It is, however, more interesting to note that if we let
q = ζn+1, then

[n
k

]
ζn+1

=

k∏
j=1

1 − ζn−j+1
n+1

1 − ζ j
n+1

=

k∏
j=1

1 − ζ−j
n+1

1 − ζ j
n+1

=
(−1)k

ζk(k+1)/2
n+1

. (3.1)

This observation is due to Gauss [3, Section 12]. Using (3.1), Gauss deduced the
following result from (2.1).

THEOREM 3.1. Let n be a positive integer and (t, 2n + 1) = 1. Then,

2n∑
j=0

e2πitj2/(2n+1) =

n∏
k=1

(ζ2k−1
2n+1 − ζ

−(2k−1)
2n+1 ) (3.2)

= (2i)n
n∏

k=1

sin
(2t(2k − 1)π

(2n + 1)

)
. (3.3)

Instead of deducing (3.3) from (2.1) as Gauss did, we will now derive (3.3) from
(2.4).

PROOF. Let q = ζ2n+1. From (2.4) and (3.1),

(−1)n
2n∑
j=0

ζ
(n−j)2

2n+1

ζ
j( j+1)/2
2n+1

=

n∏
k=1

(1 − ζ2k−1
2n+1). (3.4)

Now if ζ2n+1 is a primitive (2n + 1)th root of unity, then ζ2
2n+1 is also a primitive

(2n + 1)th root of unity. Therefore, we find from (3.4), after multiplying both sides
by (−1)n, that

2n∑
j=0

ζ
2(n−j)2

2n+1

ζ
j( j+1)
2n+1

=

n∏
k=1

(ζ2(2k−1)
2n+1 − 1).
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This implies that

ζ−1−3−···−2n−1
2n+1

2n∑
j=0

ζ
2n2+j2−4nj−j
2n+1 =

n∏
k=1

(ζ2k−1
2n+1 − ζ

−(2k−1)
2n+1 ).

Using the identity 1 + 3 + · · · + (2n − 1) = n2 and the fact that ζ−4nj−j
2n+1 = ζ

−2nj
2n+1, we

deduce that
2n∑
j=0

ζ
(n−j)2

2n+1 =

n∏
k=1

(ζ2k−1
2n+1 − ζ

−(2k−1)
2n+1 ).

Observing that
2n∑
j=0

ζ
(n−j)2

2n+1 =

2n∑
j=0

ζ
j2

2n+1

since the set of least nonnegative residues of n − j modulo 2n for 0 ≤ j ≤ 2n is
{0, 1, 2, . . . , 2n}, we deduce (3.2). Letting ζ2n+1 = e2πit/(2n+1) with (t, 2n + 1) = 1 and
rewriting the right-hand side of (3.2) using sin x = (eix − e−ix)/2i completes the proof
of (3.3). �

In a similar manner, from (2.2) and (3.1), we derive an analogue of (3.3), namely,
n−1∑
j=0

(−1) jeπij
2/n = e−πi(n−1)/42n−1

n−1∏
k=1

cos
kπ
n

. (3.5)

4. The quadratic Gauss sum

DEFINITION 4.1. Let s and t be positive integers. Define

g(s, t) =
t−1∑
j=0

e2πisj2/t.

The function g(s, t) is sometimes referred to as the quadratic Gauss sum (see [1,
page 177, Problem 16], [2, page 12]). It turns out that one can evaluate g(1, m) for any
odd positive integer m.

THEOREM 4.2. Let m be an odd positive integer. Then,

g(1, m) =
m−1∑
j=0

e2πij2/m =

⎧⎪⎪⎨⎪⎪⎩
√

m if m ≡ 1 (mod 4),
i
√

m if m ≡ 3 (mod 4).
(4.1)

= i((m−1)/2)2√
m.

Proofs of (4.1) can be found in many books. See [1, Ch. 9, Section 10] or [2, Lemma
1.2.1]. We will give a proof of Theorem 4.2 using (3.3). This proof is sketched in
Jenkins’ article [6].

We need the following lemma.
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LEMMA 4.3. Let m be an odd positive integer. Then,

sin mx
sin x

= (2i)m−1
m−1∏
j=1

sin
(
x − 2πj

m

)
.

Lemma 4.3 is a consequence of the identity

xm − 1 = (x − 1)
m−1∏
j=1

(x − ζ2j
m ),

where we observed that {ζ j
m | 1 ≤ j ≤ (m − 1)} = {ζ2j

m | 1 ≤ j ≤ (m − 1)} since m is an
odd positive integer and ζ2

m is also a primitive mth root of unity.

PROOF OF THEOREM 4.2. Letting x→ 0 in Lemma 4.3, we deduce that

(−1)m−1(2i)m−1
m−1∏
j=1

sin
(2πj

m

)
= m.

This implies that
∣∣∣∣∣(2i)m−1

m−1∏
j=1

sin
(2πj

m

)∣∣∣∣∣ = m. (4.2)

Next, write
m−1∏
j=1

sin
(2πj

m

)
=

(m−1)/2∏
j=1

sin
(2π(2j − 1)

m

)
sin

(2π(2j)
m

)

= (−1)(m−1)/2
(m−1)/2∏

j=1

sin
(2π(2j − 1)

m

)
sin

(2π(m − 2j)
m

)

= (−1)(m−1)/2
(m−1)/2∏

j=1

sin2
(2π(2j − 1)

m

)
,

where we have used sin y = − sin(2π − y) in the second equality. By (4.2),
∣∣∣∣∣(2i)(m−1)

(m−1)/2∏
j=1

sin2
(2π(2j − 1)

m

)∣∣∣∣∣ = m,

which implies that

(2i)(m−1)/2
(m−1)/2∏

j=1

sin
(2π(2j − 1)

m

)
= um
√

m,

where um is some power of i. By comparing both sides and using the fact that

sin(2π(2j − 1)/m) < 0 if j > m/4 + 1/2,
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we deduce immediately that if m = 8k + 1, then

um = i4k(−1)2k = 1.

Similarly, if m = 8k + 3, 8k + 5 and 8k + 7, then um = i, 1 and i, respectively. There-
fore,

(2i)(m−1)/2
(m−1)/2∏

j=1

sin
(2π(2j − 1)

m

)
= i((m−1)/2)2√

m. (4.3)

Substituting (4.3) into (3.3) with t = 1 and m = 2n + 1 completes the proof of
Theorem 4.2. �

Trigonometric identities related to (4.3) can also be found in [9, Section 51].

COROLLARY 4.4. Let a and b be two positive odd integers. Then,

g(1, ab)
g(1, a)g(1, b)

= (−1)(a−1)(b−1)/4. (4.4)

PROOF. From (4.1), we deduce that

g(1, ab)
g(1, a)g(1, b)

= i((ab−1)/2)2−((a−1)/2)2−((b−1)/2)2
.

Since
a − 1

2
+

b − 1
2
≡ ab − 1

2
(mod 2),

it follows that(a − 1
2

)2
+

(b − 1
2

)2
+

(a − 1)(b − 1)
2

−
(ab − 1

2

)2
≡ 0 (mod 4),

and this completes the proof of (4.4). �

Note that in (4.1), we evaluate the Gauss sum for odd positive integers. We end
this section by giving an analogue of (4.1) for even positive integers, but with the
corresponding Gauss sum ‘weighted’ by (−1) j. Letting x→ −1 in the identity

x2n − 1
x2 − 1

=

2n∏
j=1

j�n,2n

(x − ζ j
2n),

gives

2n−1
n−1∏
j=1

cos
πj
2n
=
√

n. (4.5)

Using (4.5) and (3.5), we deduce the following analogue of (4.1).
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THEOREM 4.5. If n is any positive integer, then
n−1∑
j=0

(−1) jeπij
2/n = e−πi(n−1)/4√n.

5. The Jacobi symbol and the quadratic Gauss sum

DEFINITION 5.1. Let p be an odd prime. The Legendre symbol
( a

p

)
L is defined by

( a
p

)
L
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if (a, p) � 1,
1 if x2 ≡ a (mod p) is solvable,
−1 otherwise.

DEFINITION 5.2. The Jacobi symbol
( a

b
)
J is defined for an odd positive integer b by

(a
b

)
J
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if b = 1,

k∏
j=1

( a
pj

)αj

L
if b =

k∏
j=1

p
αj

j .

We will write
( ·

b
)

to represent
( ·

b
)
J . Our aim is to prove the following theorem.

THEOREM 5.3. Let m be any positive odd integer and a be an integer such that
(a, m) = 1. Then,

g(a, m) =
( a
m

)
g(1, m). (5.1)

Theorem 5.3 and its proof can be found in [2, Theorem 1.5.2]. The proof uses (4.1)
and an automorphism σm of the cyclotomic field Q(ζk) which sends ζk to ζm

k . The
proof we present here follows closely the proof given in Hua’s book [5, Section 7.5]
and Lang’s book [8, Ch. 4, Section 3]. We will prove two lemmas before proving
Theorem 5.3.

Let a and b be two relatively prime positive integers. The Chinese remainder
theorem implies that if an arithmetic function f ( j) satisfies f ( j + ab) = f ( j), then

ab−1∑
j=0

f ( j) =
a−1∑
h=0

b−1∑
k=0

f (ak + bh).

Now, since for any positive integer c, the function e2πicj2/ab is a function of j with period
ab, we find that

g(c, ab) =
ab−1∑
j=0

e2πicj2/(ab) =

a−1∑
h=0

b−1∑
k=0

e2πic(ak+bh)2/(ab)

=

a−1∑
h=0

e2πicbh2/a
b−1∑
k=0

e2πicak2/b = g(cb, a)g(ca, b).

This yields the first lemma.
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LEMMA 5.4. Let a, b and c be positive integers with (a, b) = 1. Then,

g(ca, b)g(cb, a) = g(c, ab).

Our next task is to establish the second lemma, which is a special case of
Theorem 5.3.

LEMMA 5.5. Let a be any integer, α be any positive integer and p be an odd prime
with (a, p) = 1. Then,

g(a, pα) =
( a

pα

)
g(1, pα). (5.2)

PROOF. For α = 1, we observe that if ( j, p) = 1, then

1
2

(
1 +

( j
p

))
=

⎧⎪⎪⎨⎪⎪⎩
1 if x2 ≡ j (mod p) is solvable,
0 otherwise.

Note that we may then write

g(a, p) =
p−1∑
j=0

e2πiaj2/p = 1 + 2
(p−1)/2∑

j=1

e2πiaj2/p

= 1 + 2
p−1∑
�=1

1
2

(
1 +

(
�

p

))
e2πia�/p

= 1 +
p−1∑
�=1

e2πia�/p +

p−1∑
�=1

(
�

p

)
e2πia�/p. (5.3)

Now, since

1 +
p−1∑
�=1

e2πia�/p = 0 (5.4)

and
p−1∑
�=1

(
�

p

)
e2πia�/p =

p−1∑
�=1

(a2�

p

)
e2πia�/p =

( a
p

) p−1∑
�=1

(a�
p

)
e2πia�/p, (5.5)

we conclude from (5.3), (5.4) and (5.5) that

g(a, p) =
( a

p

)
g(1, p)

and (5.2) is true for α = 1. We will next show that (5.2) is true for α = 2. We will first
show that

g(a, pα) = pg(a, pα−2).
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[10] Gauss’ identity and Jenkins’ lemma 95

This follows from the fact that the set of integers {0, 1, . . . , pα − 1} can be written as
{s + tpα−1 | 0 ≤ s ≤ pα−1 − 1, 0 ≤ t ≤ p − 1}. Therefore,

g(a, pα) =
pα−1−1∑

s=0

p−1∑
t=0

e2πia(s+tpα−1)2/pα

=

pα−1−1∑
s=0

e2πias2/pα
p−1∑
t=0

e4πiast/p

= p
pα−1−1∑

s=0
p|s

e2πias2/pα = pg(a, pα−2).

If we follow the above argument with α = 2, we conclude that g(a, p2) = p, which
means that g(a, p2) is independent of a and we may write

g(a, p2) =
( a

p2

)
g(1, p2),

which is (5.2) for α = 2.
Suppose (5.2) is true for all 1 ≤ k < α. Then,

g(a, pα) = pg(a, pα−2) = p
( a

pα−2

)
g(1, pα−2) =

( a
pα

)
g(1, pα). �

We are now ready to prove Theorem 5.3.

PROOF OF THEOREM 5.3. Let m = pα1
1 pα2

2 · · · p
αk
k . We prove the theorem by induction

on k. Write m = m′pαk
k . Then, by Lemma 5.4,

g(a, m) = g(a, m′pαk
k ) = g(am′, pαk

k )g(apαk
k , m′)

=

(am′

pαk
k

)
g(1, pαk

k )
(apαk

k

m′

)
g(1, m′)

=

( a
m′pαk

k

)( m′

pαk
k

)
g(1, pαk

k )
( pαk

k

m′

)
g(1, m′)

=

( a
m

)
g(m′, pαk

k )g(pαk
k , m′) =

( a
m

)
g(1, m). �

We are now ready to prove the main part of the quadratic reciprocity law for the
Jacobi symbol.

THEOREM 5.6. Let a and b be two positive odd integers with (a, b) = 1. Then,
(a
b

)(b
a

)
= (−1)(a−1)(b−1)/4.
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PROOF. Note that by Theorem 5.3, Lemma 5.4 and Corollary 4.4,(a
b

)(b
a

)
=

g(a, b)g(b, a)
g(1, b)g(1, a)

=
g(1, ab)

g(1, b)g(1, a)
= (−1)(a−1)(b−1)/4. �

REMARK 5.7. Theorem 5.6 and all the identities for the quadratic Gauss sum leading
up to (5.1) are known results that appear at different places in [5, 8]. We have seen here
that these topics are connected via Gauss’ amazing identity (3.3).

6. Jenkins’ lemma

The proof of Theorem 5.6 given in the previous section is inspired by Jenkins
[6]. Jenkins’ proof involves (3.3), (4.1) but not (5.1). Instead, Jenkins uses a lemma
analogous to a generalisation of Gauss’ lemma. We now state Jenkins’ lemma.

DEFINITION 6.1. For positive integers N and a, let rN(a) denote the least nonnegative
residue of a modulo N.

LEMMA 6.2. Let m be an odd positive integer and a be any integer with (a, m)= 1.
Let S = {2j − 1 | 1 ≤ j ≤ (m − 1)/2}. Let T = {rm(a(2j − 1)) | 1 ≤ j ≤ (m − 1)/2} and
ν(a, m) be the number of integers in T but not in S. Then,( a

m

)
= (−1)ν(a,m).

We observe that ν(a, m) counts the number of even integers in T. We now give a
proof of Lemma 6.2 as a corollary of (3.3) and (5.1).

PROOF. From (3.3), we deduce that

g(a, m) = (2i)(m−1)/2
(m−1)/2∏

j=1

sin(2πa(2j − 1)/m)

= (−1)ν(a,m)(2i)(m−1)/2
(m−1)/2∏

j=1

sin(2π(2j − 1)/m) (6.1)

= (−1)ν(a,m)g(1, m),

where we use that the fact that a ‘minus’ sign is introduced when rm(a(2j − 1)) is even,
which explains the appearance of (−1)ν(a,m) on the right-hand side of (6.1). The proof
is completed by using (5.1). �

The proof of Lemma 6.2 in the case when m = p is an odd prime is easier and
similar to the proof of Gauss’ lemma, which states that if S′ = { j | 1 ≤ j ≤ (p − 1)/2},
T ′ = {rp(aj) | 1 ≤ j ≤ (p − 1)/2} and ν′(a, p) is the number of integers in T ′ that are
not in S′, then ( a

p

)
L
= (−1)ν

′(a,p).

For completion, we will state this special case and give a direct proof.
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LEMMA 6.3. Let p be an odd prime and a be any integer with (a, p) = 1. Let

S = {2j − 1 | 1 ≤ j ≤ (p − 1)/2}, T = {rp(a(2j − 1)) | 1 ≤ j ≤ (p − 1)/2}

and ν(a, p) be the number of integers in T but not in S. Then,( a
p

)
L
= (−1)ν(a,p).

PROOF. Let ν = ν(a, p),

E = {t | t ∈ T is even} = {e1, e2, . . . , eν}

and

O = {t | t ∈ T ∩ S} = {o1, o2, . . . , o(p−1)/2−ν}.

Let O′ = {p − e | e ∈ E}. We claim that O ∪ O′ = S. First note that all integers in O
are distinct. For if as ≡ as′ (mod p) with s, s′ ∈ S, then s = s′. Similarly, all integers in
E are distinct. Next, suppose o = p − e ∈ O ∩ O′ for some o ∈ O and e ∈ E. Suppose
o = as and e = as′ for some s, s′ ∈ S. Then, as ≡ p − as′ (mod p), which implies that
s + s′ ≡ 0 (mod p). This implies that s + s′ = 0 since s, s′ are odd positive integers less
than p − 2. However, these are both impossible because s + s′ > 0. Thus, O ∪ O′ = S
and therefore,

1 · 3 · · · (p − 2) ≡ a(p−1)/2(−1)ν(a,p)(1 · 3 · · · (p − 2)) (mod p),

which implies that

a(p−1)/2 ≡ (−1)ν(a,p) (mod p)

and the proof is completed using Euler’s criterion [1, Theorem 9.2]. �

REMARK 6.4. The generalisation of Lemma 6.3 is an analogue of the Gauss–Schering
lemma [10], which is a generalisation of Gauss’ lemma with the prime p replaced by
any odd positive integer m and the Legendre symbol replaced by the Jacobi symbol.
Kuroki and Katayama [7] showed that if we replace S and S′ by any set S∗ such that
S∗ ⊂ { j | 1 ≤ j ≤ (m − 1)} with |S∗| = (m − 1)/2 and define T∗ = {rm(as) | s ∈ S∗}, then( a

m

)
= (−1)ν

∗(a,m),

where ν∗(a, m) is the number of integers in T∗ but not in S∗.

REMARK 6.5. We observe that (5.1) follows from Jenkins’ lemma and (6.1), namely,

g(a, m) = (−1)ν(a,m)g(1, m) =
( a
m

)
g(1, m).

In other words, if we know Jenkins’ lemma (see [6] for a proof), then we have a new
proof of (5.1).
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